
Inference of Inversion Transduction Grammars

Alexander Clark alexc@cs.rhul.ac.uk

Department of Computer Science, Royal Holloway University of London, Egham TW20 0EX, United Kingdom

Abstract

We present the first polynomial algorithm
for learning a class of inversion transduc-
tion grammars (itgs) that implement con-
text free transducers – functions from strings
to strings. The class of transductions that we
can learn properly includes all subsequential
transductions. These algorithms are based
on a generalisation of distributional learning;
we prove correctness of our algorithm under
an identification in the limit model.

1. Introduction

Many important problems can be cast as the problem
of learning an unknown function from one domain X
to another Y from a sequence of input-output pairs
(x1, y1), . . . , (xn, yn) where (xi, yi) ∈ X × Y. Often X
may have the structure of a vector space, and Y may
be the real numbers, which gives the class of regression
problems, or may just be {0, 1} which leads to classi-
fication. The learning problem depends crucially on
the algebraic structure of X and Y. In this paper, we
consider the case where the elements of both X and Y
are strings — i.e. free monoids over a finite alphabet.
These functions are then called transductions. Many
Natural Language Processing problems can be cast in
this form: for example POS-tagging can be viewed as
a transduction which preserves length. Machine trans-
lation is a transduction where the length of the output
string need not be the same as the length of the in-
put string. Indeed natural language understanding is
best viewed as a transduction from sentences to logical
forms. Moreover, these transductions occur in many
other areas of computer science, the most historically
prominent example being that of compilation (Aho &
Ullman, 1969), where they are called syntax-directed
translation schemes.

Unfortunately until now, essentially the only algorithm

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

with any formal guarantees for learning these functions
or transductions was the ostia algorithm for learning
subsequential functions (Oncina et al., 1993). This
class of functions is clearly not powerful enough to
do any but a very limited amount of re-ordering and
moreover has poor out of domain performance. Thus
the application of techniques based on learning algo-
rithms with theoretical guarantees has been limited to
language pairs that require very limited amounts of re-
ordering such as Castilian to Catalan. Indeed, in many
cases the models are inferred using algorithms not for
the class of subsequential transducers but rather the
much simpler class of locally-testable transductions,
where the state is determined by the local context (Vi-
lar et al., 1996).

In this paper, we present an algorithm for learning
a class of context free transducers that are capable
of performing radical reorderings of the input string,
and where the class of languages that can be learned
properly include the class of subsequential transducers.
Note that the algorithms we present here are some
way away from being directly applicable to learning
MT models from raw text, and the theoretical learning
results we present – an empirical evaluation is beyond
the scope of this paper – are not as sharp as we would
like.

Nonetheless, we consider that the study of these algo-
rithms is essential for the next generation of syntax-
based machine translation systems – this paper con-
tains the first non-trivial algorithms for learning these
models. Future progress will depend on a sound the-
oretical understanding of inference for these models.
(Mylonakis & Sima’an, 2010) point out that “existing
empirical work is largely based on successful heuristic
techniques, and the learning of Hiero-like BITG/SCFG
remains an unsolved problem.”.

Current approaches rely either on raw heuristics or on
a more principled stochastic search for a probabilis-
tic model. For example, (Blunsom et al., 2009) use a
Gibbs sampler to find suitable re-orderings.

We also note that in the inductive inference frame-

Inference of ITGs

work, there are trivial enumerative algorithms that can
learn all enumerable classes of computable functions,
by taking the first function in an enumeration that is
compatible with the data seen so far.

Until recently there have been only a limited number of
algorithms with formal guarantees for learning context
free grammars (cfgs), and essentially no algorithms
for learning itgs. Recently, techniques for learning
cfgs and Multiple Context Free Grammars (mcfgs)
based on distributional learning have been developed
and a general theory proposed (Clark, 2010a) based
on using objective models: models where nonterminal
symbols have a well defined interpretation indepen-
dent of other symbols in the grammar. This paper
extends these approaches to the learnability of syn-
chronous cfgs which are closely related to mcfgs. If
we assume that the grammars define a function, then
it is possible to have algorithms that learn merely from
positive examples even under a very difficult learning
environment where the sequence may be adversarially
chosen. The reason for this is that if we have a func-
tion and we see an input-output pair (a,m), then we
know not just that the pair (a,m) is a positive ex-
ample, but also that all of the infinitely many other
examples (a, n) where m 6= n are not examples. This
means that we do not have the problems of control-
ling over-generalisation that plague non-probabilistic
learning models in the inductive inference framework.

2. Definitions

We assume that we are given two finite non-empty
alphabets Σ and ∆. We define Σ∗ (and similarly ∆∗)
to be the set of all finite strings of symbols from Σ,
and we use λ to define the empty string. We define
concatenation of strings u and v by uv, and we will
extend this to sets in the natural way: given U, V ⊆ Σ∗

we define UV = {uv|u ∈ U, v ∈ V }.

We will consider relations between Σ∗ and ∆∗. We will
use letters from the first half of the alphabet a, b . . .
for elements of Σ∗ and letters from the second half
m,n, . . . for elements of ∆∗. We assume that these
relations are (possibly partial) functions, which we will
write both as T : Σ∗ → ∆∗, and as T ⊂ Σ∗ ×∆∗. We
will write Dom(T) = {a|(a,m) ∈ T}. If T is a partial
function, i.e. if Dom(T) 6= Σ∗, then we will extend
it to a total function T ′ from Σ∗ → ∆∗ ∪ {0} where
0 6∈ ∆ is a distinguished symbol.

Given pairs of strings (a,m) ∈ Σ∗×∆∗, we define two
concatenation operations: (a,m) ⊕ (b, n) = (ab,mn)
and (a,m) 	 (b, n) = (ab, nm). We will also call
a pair of strings (a,m) a biword. We will define

a bicontext as an element of Σ∗ × Σ∗ × ∆∗ × ∆∗,
which we will write as (a, b, m, n). We can com-
bine a bicontext with a biword to get a biword, by
wrapping which we write as: (a, b, m, n) � (c, o) =
(acb,mon). Our approach is based on modeling the
relationship between bicontexts and biwords where
(a, b, m, n) ∼T (c, o) iff (acb,mon) ∈ T . For a biword
(a,m) we define BiCon(a,m) = {(b, c, n, o)|∃d, p ∈
Σ∗ × ∆∗ s.t. bdc = a, npo = m} to be the set of
all bicontexts that occur in a word. We define
BiSub(a,m) = {(d, p)|∃(b, c, n, o) s.t. bdc = a, npo =
m}. We extend these operations to sets as before.

We take |u| to be the length of a word; and we define
|(a,m)| = |a| + |m|, and |(a,m, b, n)| = |a| + |m| +
|b| + |n|. The size of a set or sequence of words, bi-
words or bicontexts is defined to be the sum of the
lengths of the elements of the set or sequence. Note
that |BiSub(a.m)| ≤ |BiCon(a,m)| = |a+1||a+2||m+
1||m + 2|/4.

The representations we will use will be Inversion
Transduction Grammars (itgs) (Wu, 1997), a limited
class of grammars that have a 2-normal form and are
therefore efficiently biparsable.

An itg, in the normal form we use, consists of a set
V of nonterminals (NTs), a distinguished nonterminal
start symbol, which we denote by S, and a set of rules
of the following three types, where A,B and C are in
V , a ∈ Σ∗, m ∈ ∆∗

A → [BC], A → 〈BC〉, A → a/m (1)

We will say that a nonterminal derives a biword if
there is an appropriate sequence of derivation steps;
we will write this derivation relation as A

∗⇒G (a,m).
Suppose that B

∗⇒ (b, n) and C
∗⇒ (c, o). Then if there

is a rule A → [BC] then A
∗⇒ (b, n)⊕ (c, o) = (bc, no)

and if there is a rule A → 〈BC〉 then A
∗⇒ (b, n) 	

(c, o) = (bc, on). Additionally if there is a rule A →
a/m then A

∗⇒ (a,m). The derivation relation is the
smallest relation that satisfies these closure properties.
For a grammar G, and an NT A we define L(G, A) =
{(a,m)|A ∗⇒G (a,m)}. The transduction defined by G
is defined as T (G) = L(G, S).

We will now give a simple example that we will refer to
as Tpp. Consider arithmetic expressions using the two
binary operators + and ×, and the set of digits 1, . . . 9.
We can write these unambiguously in either prefix or
postfix notation. For example 2×(3+4) would be writ-
ten as ×2+34 in prefix, or 234+× in postfix. We can
consider the function from strings in prefix notation
to those in postfix notation; since this is only a par-

Inference of ITGs

S

O

+/+

P

S

1/1

S

2/2

S

P

S

1/1

S

2/2

O

+/+

Figure 1. Derivation trees for input output pair
(+12, 12+).

1 3 2 2 × + ×
×
1
+
3
×
2
2

× 1 + 3 × 2 2

1 3 2 2 × + ×

Figure 2. Example of alignment matrix for prefix order to
postfix order transduction. The example is (×1 + 3 ×
22, 1322 × +×). On the left an alignment matrix, and
on the right an alignment diagram showing the crossing
dependencies.

tial function we can extend this to a total function as
discussed. This transduction will thus consist of pairs
(1, 1), (+12, 12+), (9, 9), (×2 + 34, 234 +×) . . . A sim-
ple itg for this will have nonterminals S, O, P , with
rules S → 1/1, . . . S → 9/9, O → +/+, O → ×/×,
and S → 〈OP 〉, P → [SS]. For each derivation we
have a derivation tree which we can draw in two ways,
ordered according to the input or according to the out-
put. For example, we have that S

∗⇒ (+12, 12+). Fig-
ure 1 shows the input and output trees for this deriva-
tion. Note how the rule S → 〈OP 〉 flips the tree in the
output. Figure 2 gives an example alignment.

3. Principles

Our algorithm is based on the ideas of distributional
learning presented in (Clark & Eyraud, 2007; Clark,
2010a). These were extended to the case of mcfgs by
(Yoshinaka, 2011; 2010). Since synchronous cfgs are
a special case of mcfgs, we can naturally take these

techniques across, modifying them to take account of
the fact that we are learning functions. This means
that we can dispense with the need for Membership
Queries and, as discussed in Section 1, rely purely on
positive examples. We will also rely on a dual repre-
sentation where the nonterminals are indexed by con-
texts rather than strings as in (Clark, 2010b).

For every non-terminal we define a desired set of bi-
words I(N); we want I(N) to be equal to L(G, N).
We will have two types of nonterminal in our gram-
mar. We will have “primal” nonterminals N which
are indexed by a biword (a,m); these are preterminals
and each such nonterminal will just derive the biword
itself, through a terminal rule of the form N → a/m;
each nonterminal will only appear on the left hand side
of one rule and therefore L(G, N) = {(a,m)}. We will
write the symbol corresponding to (a,m) as ‖a,m‖.
We define I(‖a,m‖) to be the singleton set {(a,m)}.

The other type is “dual” and is indexed by a bicon-
text. For each nonterminal N we have a bicontext
(a, b, m, n), where a, b ∈ Σ∗ and m,n ∈ ∆∗. We will
aim to have the set of biwords generated by this non-
terminal correspond exactly to the set of biwords that
can occur in that bicontext. For such a nonterminal
N , which we will write as ‖a,b,m,n‖ we will define,
given a transduction T :

I(N) = {(c, o) ∈ Σ∗ ×∆∗|(acb,mon) ∈ T} (2)

We define the start symbol S = ‖λ, λ, λ, λ‖. In this
case I(S) = T . Note that the requirement that
L(G, N) = I(N). may seem unrealistic, but as we
shall see below is satisfied by any subsequential trans-
ducer.

For our example Tpp, we have primal nonterminals like
‖1,1‖, ‖2,2‖, ‖+,+‖, and dual nonterminals such as
‖×, λ, λ,×‖.

Using this representation we can then say whether a
rule is valid or not. Given a rule A → [BC] we say
that it is valid iff I(A) ⊇ I(B)⊕I(C). Similarly, given
a rule A → 〈BC〉 we say that it is valid iff I(A) ⊇
I(B)	 I(C). Terminal rules are always valid.

We first note that some branching rules will always be
valid. Going back to our example we can see that the
rule ‖λ, λ, λ, λ‖ → 〈‖×,×‖‖×, λ, λ,×‖〉 is automati-
cally valid.

Lemma 1. The following four classes of rules are
valid for any transduction.

1. ‖a,b,m,n‖ → [‖a, cb,m,on‖‖c,o‖]

2. ‖a,b,m,n‖ → [‖c,o‖‖ac,b,mo,n‖]

Inference of ITGs

3. ‖a,b,m,n‖ → 〈‖a, cb,mo,n‖‖c,o‖〉

4. ‖a,b,m,n‖ → 〈‖c,o‖‖ac,b,m,on‖〉

Proof. We will just prove two of the four cases.
Case 1: Suppose (d, p) ∈ I(‖a, cb,m,on‖).
This means that (adcb,mpon) ∈ T . Therefore
(dc, po) ∈ I(‖a,b,m,n‖). Case 4: Suppose (d, p) ∈
‖ac,b,m,on‖; then (acdb,mpon) ∈ T . (c, o)	(d, p) =
(cd, po) which is therefore in I(‖a,b,m,n‖).

A simple example of an invalid rule from our example
Tpp is the rule ‖λ, λ, λ, λ‖ → [‖λ, λ, λ, λ‖‖λ, λ, λ, λ‖],
since (1, 1)⊕ (1, 1) is not in T .

We now give a lemma that justifies our use of the term
valid above.

Lemma 2. For any relation T , if the itg G con-
sists only of valid rules, then L(G, N) ⊆ I(N), i.e. if
N

∗⇒G (a,m) it holds that (a,m) ∈ I(N), and specifi-
cally T (G) ⊆ T .

Proof. Proof is by induction on the length of the
derivation. Note that if N is primal this is imme-
diate. Otherwise suppose true for all derivations of
length ≤ k ≥ 1. Let N

∗⇒G (a,m) be a derivation of
length k + 1. Suppose it starts with a rule N → [PQ]
and derivations of length≤ K of the form P

∗⇒G (b, n),
Q

∗⇒G (c, o) where (a,m) = (b, n)⊕(c, o). By inductive
hypothesis (b, n) ∈ I(P), (c, o) ∈ I(Q); since the rule
N → [PQ] is valid, we have that I(P)⊕ I(Q) ⊆ I(N)
and therefore (a,m) ∈ I(N). An identical argument
holds for rules of the form N → 〈PQ〉 and so the
lemma holds.

We now discuss how we can eliminate invalid rules.
Suppose we have an invalid rule of the form A → [BC].
This means that there must be some (b, n) ∈ I(B) and
(c, o) ∈ I(C) such that (bc, no) is not in I(A). Suppose
A = ‖a,d,m,p‖. This means that (abcd,mnop) is not
in T ; and therefore since T is a total function, there
will be some (abcd, q) where q is not equal to mnop.
Thus when we observe the pair (abcd, q) we will know
that the rule A → [BC] is invalid, and we can discard
it. The crucial point here is the local validity of the
rules: since each nonterminal has a well defined set
of biwords associated with it we can test the validity
independently.

Given a rule of the form ‖a,b,m,n‖ →
[‖c,d,o,p‖‖e, f ,q, r‖] we say that a triple of bi-
words contradicts this rule if they are of the form
(cgd, osp), (ehf, qtr), (aghb, w) where w 6= mstn.
If a transduction contains such a triple then

clearly the rule is invalid for that transduction,
since (g, s) ∈ I(c, d, o, p), (h, t) ∈ I(e, f, q, r) yet
(g, s) ⊕ (h, t) is not in I(a, b, m, n). Similarly, given a
rule of the form ‖a,b,m,n‖ → 〈‖c,d,o,p‖‖e, f ,q, r‖〉
it is contradicted by a triple of biwords if they are
of the form (cgd, osp), (ehf, qtr), (aghb, w) where
w 6= mtsn. Crucially, it might be the case that
aghb 6∈ Dom(T), in which case w = 0. It is at this
point that it becomes important for the function to
be total or extended to be total.

Given a finite set of biwords D we say that a dual
branching rule is invalid with respect to D, if there
is a triple of biwords in D that contradicts the rule.
Otherwise we say it is valid w.r.t. D.

We can now define an algorithm for constructing an
itg given a finite set of NTs some of which are primal
and some of which are dual, and a finite set of input-
output pairs.

Algorithm 1 describes the procedure for making an
itg in pseudocode. Note that the algorithm runs in
time polynomial in the total size of NP , ND and D.
There are a number of obvious optimisations we could
make that we neglect here for clarity. The algorithm
works by taking all possible rules, and removing those
that are invalid. We could also add rules of the form
‖ab,mn‖ → [‖a,m‖‖b,n‖] and so on, which would
be automatically valid, but these would be redundant.

4. Algorithm

Given this construction we can define a simple algo-
rithm. Given a finite sample of data K, for each pair
of strings (a,m) in the data we consider every pos-
sible split such that bcde = a and nopq = m. We
then hypothesise that there might be two rules, both
of which have a nonterminal that derives the string
biword (cd, op): one rule will have a nonterminal that
derives (c, o) and another that derives (d, p); the sec-
ond will have nonterminals that derive (c, p) and (d, o)
and compose them backwards (i.e. with a 〈〉 rule).

As the algorithm proceeds we receive a stream of
input-output pairs. At each step, we add the new pair
to the pool of examples that we use to eliminate in-
valid rules. If the new pair is not generated by the
transduction then we will add new NTs. The precise
algorithm for adding new rules depends on the learning
model. In this paper we make no assumptions about
the sequence of examples, and thus the sequence may
be chosen by an adversary. We therefore have to pick
all possible rules, which while formally efficient (in P),
gives an impractical explosion of possible rules. Under
a probabilistic model, more refined algorithms could

Inference of ITGs

be chosen that would still be correct.

Algorithm 1 Make ITG
Require: ND is finite set of bicontexts including

(λ, λ, λ, λ), NP is a finite set of biwords and D is
finite set of input output pairs;
S := (λ, λ, λ, λ);
P := ∅;
for (a,m) in NP do

P := P ∪ {‖a,m‖ → a/m} ;
end for
for (a, b, m, n), (c, d, o, p), (e, f, q, r) ∈ ND do

P := P ∪ {‖a,b,m,n‖ → [‖c,d,o,p‖‖e, f ,q, r‖]
∪{‖a,b,m,n‖ → 〈‖c,d,o,p‖‖e, f ,q, r‖〉};

end for
for (a, b, m, n) ∈ ND, (c, o) ∈ NP do

if (acb,mon) ∈ D then
P := P ∪ {‖a,b,m,n‖ → c/o};

end if
end for
for (a, b, m, n), (c, d, o, p) ∈ ND, (g, s) ∈ NP do

P := P ∪ {‖a,b,m,n‖ → [‖c,d,o,p‖‖g, s‖]};
P := P ∪ {‖a,b,m,n‖ → 〈‖c,d,o,p‖‖g, s‖〉};
P := P ∪ {‖a,b,m,n‖ → [‖g, s‖‖c,d,o,p‖]};
P := P ∪ {‖a,b,m,n‖ → 〈‖g, s‖‖c,d,o,p‖〉};

end for
for each branching rule in P do

if there is a triple of strings in D that show it is
invalid then

remove rule from P ;
end if

end for
return G = (NP ∪ND, S, P)

The pseudocode is presented in Algorithm 2.

Algorithm 2 Learn ITG
D := ∅, Pos := ∅;
S := (λ, λ, λ, λ), N := {S};
for each input-output pair (ai,mi) do

D := D ∪ {(ai,mi)};
if mi 6= 0 then

Pos := Pos ∪ {(ai,mi)};
if it is not the case that S

∗⇒Ĝ (ai,mi) then
ND := BiCon(Pos), NP := BiSub(Pos);

end if
end if
let Ĝ = MakeITG(ND, NP , D);
output Ĝ;

end for

We can consider our running example in the light
of this algorithm. Suppose we first observe the bi-

word (+12, 12+). This has 49 biword substrings:
we will add primal nonterminals and associated ter-
minal rules for each of these: such as the useful
rules ‖+,+‖ → +/+, and the useless ‖+1, λ‖ →
+1/λ. We also have 100 bicontexts including the
useful ‖+, λ, λ,+‖ and ‖λ, λ, λ, λ‖, as well as many
useless ones. Using this we will construct many
rules: we will have some useful valid rules such as
‖λ, λ, λ, λ‖ → 〈‖+,+‖‖+, λ, λ,+‖〉 and many other
invalid rules. Consider the pair (+11, 11+); from
this we will hypothesise many rules including, from
the segmentation (+, 1) ⊕ (1, 1) = (+1, 11), the rule
‖λ,1, λ,+‖ → [‖λ,11, λ,1+‖‖+,1,1,+‖]. This is in-
valid; though there are some elements for which it
is correct. (+ + 3, 31+) is in I(λ, 11, λ, 1+) since
(+ + 311, 31 + 1+) is correct; (×13, 3 × 1) is in
I(+, 1, 1,+) since (+ × 131, 13 × 1+) is correct, but
(+ + 3, 31+)⊕ (×13, 3× 1) = (+ + 3× 13, 31 + 3× 1)
is not in I(λ, 1, λ,+) since (+ + 3× 131, 31 + 3× 1+)
is incorrect. The correct output for + + 3 × 131 is
313 × +1+. Therefore, once we see the triple of in-
puts: (+ + 311, 31 + 1+), (+ × 131, 13 × 1+) and
(++3×131, 313×+1+) we will know that this rule is
invalid. There are also valid rules that do not conform
to our expectation of what the correct rule should be,
in the sense that they may not be length preserving.

5. Learnable class

We wish to show that this algorithm will converge for
a certain class of transductions. We will start by defin-
ing a class Tfk of transductions; and we will prove some
basic properties of this class including that it is large
enough to include some standard classes of transduc-
tions.

For any transduction T , if we have a finite set of non-
terminals, and a collection of only valid rules then we
will define a transduction T̂ which will be a subset of
T . The question is for which transductions is there a
finite set of NTs such that the valid rules define exactly
T . There is no precise syntactic way of characterising
this class, since, as with cfgs, many of the decision
problems associated with itgs are undecidable.

We will say that a set of primal and dual NTs is a
kernel for a transduction T , if the set of all valid rules,
as defined in Algorithm 2, defines the transduction T .
Tfk is defined as the set of all functions with a finite
kernel.

On its own this is slightly circular – we will now dis-
cuss some of the properties of Tfk. First note that
Tfkincludes all subsequential transducers: this is the
largest class of rational transductions that is widely

Inference of ITGs

used (Mohri, 1997). Recall that a transduction is a
subsequential transducer if there is a complete finite
automaton, all of whose states are accepting, where the
transitions are labelled with an output string from ∆∗

and additionally each state has a “final” output string
which it outputs when the input ends at that state. We
will write σ(q) for this extra string output from state
q. Given a subsequential transducer A, with states Q,
and a set of transitions E ⊂ Q× Σ×∆∗ ×Q, we can
easily define a suitable set of nonterminals. For each
state q, we let aq be a string such that δ(q0, aq) = q,
and we let mq be the corresponding output. We add
for each state a nonterminal ‖aq, λ,mq, λ‖. For each
transition labelled with input a and output m, we add
a preterminal ‖a,m‖, and for each final string n we
add a preterminal ‖λ,n‖.

We can see then that given a transition (p, a, m, q)
where a ∈ Σ,m ∈ ∆∗, we will have a valid rule of
the form

‖ap, λ,mp, λ‖ → [‖a,m‖‖aq, λ,mq, λ‖]

To model the final output function σ, we also add a
terminal rule for each transition (p, a, m, q) of the form
‖ap, λ,mp, λ‖ → a/wσ(q).

We also need the special case for the start symbol q0

where aq0 = λ and mq0 = λ. ‖λ, λ, λ, λ‖ → λ/σ(q0).
This is responsible for dealing with the case where the
input string has zero length, in which case the output
is σ(q0).

Given these NTs we can see that all of these rules will
be valid. As in other approaches of this kind, it is
enough to show that there is a set of valid rules; all
invalid rules will ultimately be removed, and thus ir-
relevant or useless nonterminals will not be part of the
hypothesis, if we trim unreachable or unusable NTs.

We also note that Tfkincludes some non-subsequential
rational transductions, as well as many non-rational
transductions. To give a trivial example, the itg with
a single nonterminal S, indexed by (λ, λ, λ, λ) and with
rules: S → 〈SS〉, and with S → λ/λ S → a/a for all
a ∈ Σ, will defined a function which maps each string
to its reverse.

We are also interested in transductions where the do-
main of the function is not necessarily Σ∗; in this case
we have a difficulty that does not present itself in the
case of a rational transduction. The domain of an itg
will be a context free language, but the complement
of a context-free language, in contrast to the case of
a regular language, is not necessarily context-free. In
this case we will model the transduction using an itg,
and when the itg does not define an output for a given

input, we return the symbol 0.

The simple example Tpp of a prefix to postfix trans-
duction is also in Tfk, since we can define an itg with
the following NTs: the primal NTs are ‖+,+‖, ‖×,×‖,
and the dual NTs are ‖+, λ, λ,+‖, ‖λ, λ, λ, λ‖. We will
have valid rules of the form

‖λ, λ, λ, λ‖ → 〈‖+,+‖‖+, λ, λ,+‖〉 (3)
‖λ, λ, λ, λ‖ → 〈‖×,×‖‖+, λ, λ,+‖〉 (4)

‖+, λ, λ,+‖ → [‖λ, λ, λ, λ‖‖λ, λ, λ, λ‖] (5)

as well as terminal rules of the form ‖λ, λ, λ, λ‖ → 1/1
and so on for the other digits, and ‖×,×‖ → ×/×,
‖+,+‖ → +/+.

6. Correctness

We will now prove the main result of our paper; the
correctness of the algorithm for Tfk.

Our learning model is identification in the limit. Given
T we have T ′ which is the completion of T using the
extra symbol 0. A presentation of a transduction T is a
sequence (a1, w1), . . . such that T ′ = {(ai, wi)|i ∈ N}.
An algorithm will produce a grammar Gn from each
finite sequence (a1, w1) . . . (an, wn). We say that an al-
gorithm identifies in the limit a transduction T , if for
every presentation of T , there is some natural number
N such that for all n ≥ N , Gn = GN and T (GN) = T .
We say that an algorithm identifies in the limit a class
of transductions T if for every T ∈ T , the algorithm
identifies in the limit T . It is important to remember
that the transduction output by the algorithm at var-
ious points need not be a function. In what follows we
will assume a fixed transduction T in Tfkand a given
presentation of T . First of all note that when the itg
only has valid rules, and defines the correct transduc-
tion T , then the algorithm will have converged and
after that point it will never change.

Lemma 3. If there is some n such that NP , ND is a
kernel at step n, then there is some N > n when the
algorithm will converge to the correct transduction.

Proof. Since we have a kernel, we know that the trans-
duction will include the true transduction. So NP , ND

will never increase after that point. Consider every
possible invalid rule from these NTs; for each such
rule there will be a triple of examples, which rule it out.
Each of these examples is in T ′ and so will be present at
some point; once all of these examples have appeared
in the presentation, the algorithm will give exactly the
right answer and will not change further.

Theorem 1. Algorithm 2 identifies in the limit Tfk.

Inference of ITGs

Proof. Suppose T is a transduction in Tfk and
(a1,m1), (a2,m2) . . . is a presentation of T . We will
use Pn = {(ai,mi)|mi 6= 0, i ≤ n} to refer to the
set of positive examples seen in the first n examples.
Let ND be a set of bicontexts and NP be a set of bi-
words such that ND ∪ NP is a kernel for T . Let n
be the smallest number such that BiCon(Pn) contains
ND and BiSub(Pn) contains NP . Consider the itg
produced at this step: Gn.

There are various cases which we need to consider.
Case 1: the itg has only valid rules and is correct
in which case we have converged. Case 2: the itg
has only valid rules but does not define a sufficiently
large transduction. In this case, there must be some
point at which an element of T \ T (Gn) occurs in the
presentation; at this point ND, NP will be a kernel and
thus by the preceding lemma it will converge. Case 3:
the itg has some invalid rules. By an argument similar
to the previous lemma, either at some point we will
remove all invalid rules, which will take us to Case 1 or
Case 2, or we will increase ND, NP and therefore again
by the preceding lemma we will converge; there are no
other cases, and so we have established the lemma.

Finally we would like to say something about the ef-
ficiency of the algorithm, It is easy to see that the
algorithm runs in polynomial update time – if ` is the
maximum length of the biwords seen so far, and n
is the number of examples, then there is a polynomial
p(`, n) which bounds the running time of the algorithm
to point n.

Ideally, we would like to be able to bound the num-
ber of examples, or rather the total size of examples
needed to learn using the idea of a characteristic set.
We would like to have a bound that says: given an
itg with n NTs which defines a transduction T ∈ Tfk

there is a set X of biwords of total size p(n) such that
when the algorithm has seen any set that includes X
it will have converged to the right answer. This will be
very hard to do: while it is possible to do this for some
classes of fsts, itgs have some additional problems,
primarily that there is no canonical form and that the
length of the shortest biwords generated by an itg
can, just as with cfgs, be exponential in n. More-
over, it could be the case that there is a much smaller
itg where the NTs do not correspond to individual
contexts.

However we can say something. For a transduction T
in Tfk, let n be the size of the smallest itg definable
using primal and dual NTs as above, where the size is
defined as the sum of the lengths of all biwords and
bicontexts. Then there is a set X of polynomial size

in n that will contain a kernel. Once we have a kernel,
then there is another set Y of polynomial size in the
size of the data seen so far after which it will converge.
This gives a sort of “double polynomial” bound which
is the best we can do at the moment.

Ideally we would like a pure PAC result for a large
class of transducers – it is easy to see that this would
fall foul of the well-known negative results for PAC-
learning of finite automata. Distribution-free learning
is too onerous a requirement.

7. Discussion

To the best of our knowledge these algorithms are
the first with any non-trivial theoretical guarantees,
that can learn any non-rational transductions. One
exception is the work of (Yoshinaka, 2011) on learning
mcfgs which implicitly defines a learning algorithm
for itgs, albeit for a very limited class and without
considering a functional dependency. There have been
a number of heuristic algorithms for learning itgs;
typically these approaches learn itgs with one non-
terminal. That is a rather different task. A simpler
task is that of learning tree to tree transductions from
input-output pairs of fully labelled trees. In the sim-
ple cases this reduces to algorithms for various types
of tree transducers, typically top-down deterministic
tree transducers (Eisner, 2003; Lemay et al., 2010).

We note that if we study the learnability of partial
functions in the case where we do not extend it to a
total function, then it is enough for the domain to be
substitutable in the sense defined by (Clark & Eyraud,
2007): a language is substitutable if abc, adc, ebf ∈ L
implies edf ∈ L. In this case, the closure properties of
the language will be sufficient to allow incorrect rules
to be eliminated using only examples from within the
transduction; as a special case note that Σ∗ is substi-
tutable.

The algorithm presented here is a “dual” algorithm
in the sense of (Clark, 2010a). It is worth consider-
ing the corresponding primal algorithm, where instead
of defining the non-trivial NTs in terms of bicontexts
we consider them in terms of biwords. A natural ap-
proach to this would be to consider congruential itgs
in the sense of (Yoshinaka & Clark, 2010) result for
congruential multiple context free grammars. We con-
sider for any biword (u, v) its distribution in T to be
CT (u, v) = {(a, b, c, d)|(aub, cvd) ∈ T}, and define a
congruence relation (u, v) ≡T (u′, v′) iff CT (u, v) =
CT (u′, v′). We would then have primal NTs indexed
by biwords, such that the set of biwords derived from
the NT indexed by (u, v) would consist of all biwords

Inference of ITGs

congruent to (u, v). However there are problems; con-
sider for example, the identity transduction T (w) = w
over a two letter alphabet Σ = ∆ = {a, b}. In this case,
(a, a) 6≡T (b, b); in particular (a, λ, λ, a) ∈ CT (a, a) but
is not in CT (b, b) since (ab, ba) 6∈ T . Thus these con-
gruence classes may be too small to be useful. How-
ever it might be possible to overcome this difficulty by
considering a boundary symbol as discussed in (Yoshi-
naka, 2010).

Conceptually the existence of these algorithms could
be important for debates about the nature of linguistic
representation, since they demonstrate that it is not
necessary to learn a fixed constituent structure in order
to model a transduction that is sensitive to hierarchical
structure in the input.

In their current form, though correct, the quantity
of data they require and the computational require-
ments render them impractical for large scale appli-
cation. We conjecture that the use of lattice based
approaches as advocated in (Clark, 2010b) could be a
productive direction; the assumption that each non-
terminal is defined by a single context is perhaps too
restrictive. The use of lattice based approaches would
allow an exponentially large number of NTs indexed
by all subsets of a finite set of bicontexts. It is also
natural to consider a query-learning model of learning
functions, where the learner can pick an input string
a and get the corresponding output T (a), or to con-
sider a probabilistic model where we assume that the
conditional entropy of the output given the input is
bounded in some way. Both of these approaches would
allow learning of transductions that are not functional
which would be important for machine translation.

Acknowledgments

We would like to thank the reviewers for their very
detailed and helpful reviews; and Ryo Yoshinaka for
discussions.

References

Aho, A.V. and Ullman, J.D. Syntax directed transla-
tions and the pushdown assembler. Journal of Com-
puter and System Sciences, 3(1):37–56, 1969.

Blunsom, P., Cohn, T., Dyer, C., and Osborne, M. A
Gibbs sampler for phrasal synchronous grammar in-
duction. In Proceedings of the 47th Annual Meeting
of the ACL, pp. 782–790, 2009.

Clark, Alexander. Towards general algorithms for
grammatical inference. In Proceedings of ALT, Can-
berra, Australia, October 2010a. Invited Paper.

Clark, Alexander. Efficient, correct, unsupervised
learning of context-sensitive languages. In Proceed-
ings of CoNLL, pp. 28–37, Uppsala, Sweden, 2010b.

Clark, Alexander and Eyraud, Rémi. Polynomial iden-
tification in the limit of substitutable context-free
languages. Journal of Machine Learning Research,
8:1725–1745, August 2007.

Eisner, J. Learning non-isomorphic tree mappings for
machine translation. In Proceedings of the 41st An-
nual Meeting of the ACL, pp. 205–208, 2003.

Lemay, A., Maneth, S., and Niehren, J. A learning
algorithm for top-down XML transformations. In
Proceedings of the twenty-ninth ACM symposium on
Principles of database systems, pp. 285–296, 2010.

Mohri, Mehryar. Finite-state transducers in language
and speech processing. Computational Linguistics,
23(2):269–311, 1997.

Mylonakis, M. and Sima’an, K. Learning Probabilistic
Synchronous CFGs for Phrase-based Translation. In
Proceedings of CoNLL-2010, pp. 117, 2010.

Oncina, J., Garćıa, P., and Vidal, E. Learning sub-
sequential transducers for pattern recognition in-
terpretation tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15:448–458,
1993.

Vilar, J.M., Jiménez, V.M., Amengual, J.C., Castel-
lanos, A., Llorens, D., and Vidal, E. Text and speech
translation by means of subsequential transducers.
Natural Language Engineering, 2(4):351–354, 1996.

Wu, Dekai. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–403, September
1997.

Yoshinaka, Ryo. Polynomial-time identification of
multiple context-free languages from positive data
and membership queries. In Proceedings of the In-
ternational Colloquium on Grammatical Inference,
2010.

Yoshinaka, Ryo. Efficient learning of multiple context-
free languages with multidimensional substitutabil-
ity from positive data. Theoretical Computer Sci-
ence, 412(19):1821 – 1831, 2011.

Yoshinaka, Ryo and Clark, Alexander. Polynomial
time learning of some multiple context-free lan-
guages with a minimally adequate teacher. In Pro-
ceedings of the 15th Conference on Formal Gram-
mar, Copenhagen, Denmark, 2010.

