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Abstract

The standard approach to max-margin pa-
rameter learning for Markov random fields
(MRFs) involves incrementally adding the
most violated constraints during each iter-
ation of the algorithm. This requires exact
MAP inference, which is intractable for many
classes of MRF. In this paper, we propose
an exact MAP inference algorithm for binary
MRFs containing a class of higher-order mod-
els, known as lower linear envelope potentials.
Our algorithm is polynomial in the number
of variables and number of linear envelope
functions. With tractable inference in hand,
we show how the parameters and correspond-
ing feature vectors can be represented in a
max-margin framework for efficiently learn-
ing lower linear envelope potentials.

1. Introduction

Considerable advances have been made in the past sev-
eral years in applying the max-margin principle to the
task of learning the parameters of a Markov random
field (MRF) for structured prediction (Taskar et al.,
2005; Tsochantaridis et al., 2004). The standard ap-
proach is to learn model parameters by constraining
the max-margin objective to favour the ground-truth
assignment over all other joint assignments to the vari-
ables. Since the set of all possible joint assignments
can be prohibitively large (exponential in the number
of the variables), constraints are introduced incremen-
tally by finding the most violated ones at each iteration
(with respect to the current parameter settings).

Despite these advances, learning the parameters of
an MRF remains a notoriously challenging task due
to the difficulty of finding the most violated con-
straints, which requires performing exact MAP infer-
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ence. Except in a few special cases, such as tree-
structured graphs or binary pairwise MRFs with sub-
modular potentials, inference is intractable and the
max-margin framework cannot be applied. When sub-
stituting approximate inference routines to generate
constraints, the max-margin framework is not guaran-
teed to learn the optimal parameters and often per-
forms poorly (Finley and Joachims, 2008).

Recently, models with structured higher-order terms
have become of interest to the machine learning
community with many applications in computer vi-
sion, particularly for encoding consistency constraints
over large sets of pixels, e.g., (Lempitsky et al., 2009;
Nowozin and Lampert, 2009; Rother et al., 2009). A
rich class of higher-order models, known as lower lin-

ear envelope potentials, which includes the generalized
Potts model and its variants (Kohli et al., 2007), was
proposed by Kohli and Kumar (2010). While efficient
approximate inference algorithms exist for these mod-
els, parameter learning remains an unsolved problem.

In this paper we focus on learning the lower linear en-
velope parameters for binary MRFs. We propose an
exact MAP inference algorithm for these models that
is polynomial in the number of variables and number
of linear envelope functions. This opens the way for
max-margin parameter learning. However, to encode
the max-margin constraints we require a linear rela-
tionship between model parameters and the features
that encode each problem instance.

Our key insight is that we can represent the lower lin-
ear envelope in two different ways: the first—as the
minimum over a set of linear functions—is tractable
for MAP inference (i.e., constraint generation), and
the second—a sample-based representation with linear
constraints—is tractable for max-margin learning. By
switching between these representations we can learn
model parameters efficiently.

We evaluate our approach on synthetic data as well as
a variant of the real-world “GrabCut” image segmen-
tation problem (Rother et al., 2004).
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2. Related Work

Our work focuses on a class of higher-order potentials
known as lower linear envelope potentials, which can
be used to represent arbitrary concave functions over
the number of variables (in a clique) taking a given
assignment. Kohli and Kumar (2010) show how such
potentials can be represented by introducing a multi-
valued auxiliary variable to select each linear func-
tion in the envelope. In principle, the optimal assign-
ment can be found by jointly minimizing the energy
function over the original variables and this auxiliary
variable. However, this is non-trivial, in general, and
Kohli and Kumar (2010) only show how the resulting
energy function can be approximately optimized.

Earlier research, on MRFs with restricted variants of
the lower linear envelope potential, showed how ex-
act inference can be performed in the binary case.
Kohli et al. (2007) introduced the Pn-model for encod-
ing consistency constraints. This was later extended
to the robust Pn-model (a lower linear envelope po-
tential with only two terms per label—one increas-
ing and one constant) by Kohli et al. (2008) who also
describe an efficient move-making inference algorithm
based on graph-cuts (Boykov and Kolmogorov, 2004;
Boykov et al., 1999). Multiple robust Pn-models can
be added to form a non-decreasing concave envelope.
Ladicky et al. (2009) used this model for improving
the quality of multi-class image labeling.

In contrast to these works, we propose an algo-
rithm for exactly optimizing binary MRFs with ar-

bitrary lower linear envelope potentials. Our work,
and the previous approaches, are related to a num-
ber of methods that transform higher-order or multi-
label energy functions into quadratic pseudo-Boolean
functions (e.g., (Ishikawa; 2009; Rother et al., 2009)).
These functions have been studied extensively in
the operations research literature (for a survey see
Boros and Hammer (2002)). Under certain conditions,
the resulting pseudo-Boolean function can be mini-
mized exactly by finding the minimum-cut in a suit-
ably constructed graph (Freedman and Drineas, 2005;
Hammer, 1965). Our work makes use of this result.

Our max-margin learning framework is based on the
approaches introduced by Tsochantaridis et al. (2004;
2005) and Taskar et al. (2005), which have been suc-
cessfully applied within many application domains (see
Joachims et al. (2009) for a recent survey and the “1-
slack” reformulation). Szummer et al. (2008) showed
how this framework could be adapted to learn pair-
wise MRF parameters using graph-cuts for inference.
Unlike their approach, our method applies to models
with higher-order terms.

3. Lower Linear Envelope MRFs

We begin by providing a brief overview of higher-order
Markov random fields (MRFs). We then introduce
the lower linear envelope potential and show how to
perform exact inference in models that contain these
potentials. In the next section we will discuss learning
the parameters of these models.

Higher-order MRFs. The energy function for a
higher-order MRF over discrete random variables y =
{y1, . . . , yn} can be written as:

E(y) =
∑

i

ψU
i (yi)

︸ ︷︷ ︸
unary

+
∑

ij

ψP
ij(yi, yj)

︸ ︷︷ ︸
pairwise

+
∑

c

ψH
c (yc)

︸ ︷︷ ︸
higher-order

(1)

where the potential functions ψU
i , ψ

P
ij and ψH

c encode
preferences for unary, pairwise and k-ary variable as-
signments, respectively. The pairwise terms, ψP

ij , also
called edge potentials, are usually only defined over a
sparse subset of possible variable pairs (yi, yj). The
latter terms, ψH

c , are defined over arbitrary subsets
of variables (or cliques), yc = {yi : i ∈ Cc} where
Cc ⊆ {1, . . . , n} is a subset of variable indices, and are
known as higher-order potentials.

In this paper, we will be concerned with inference and
learning of higher-order binary MRFs (i.e., yi ∈ {0, 1})
with lower linear envelope potentials. A lower linear
envelope potential1 over a subset of binary variables yc

is a piecewise linear function defined as the minimum
over a set of K linear functions

ψH
c (yc) , min

k=1,...,K

{
ak
∑

i∈C

yi + bk

}
(2)

where (ak, bk) ∈ R
2 are the linear function param-

eters. Figure 1 shows an example lower envelope
for three linear functions. Kohli and Kumar (2010)
showed that this representation can encode arbitrary
concave functions of x =

∑
i∈C yi given sufficiently

many linear functions. The parameterization, how-
ever, is not unique.

Definition 3.1 (Active). We say that the k-th linear

function is active with respect to an assignment yc if

ψH
c (yc) = ak

∑
i∈C yi + bk.

Clearly, if a linear function is never active it can be re-
moved from the potential without changing the energy
function.

1For brevity, in this paper we set the per-variable
weight wi that appears in Kohli et al. (2008) and
Kohli and Kumar (2010) to one, but note that arbitrary
non-negative per-variable weights can be easily added.
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Figure 1. Example lower linear envelope ψH
c (yc) (shown

solid) with three terms (dashed) as a function of x =∑
i∈C

yi. When x ≤ n1 the first linear function is active,
when n1 < x ≤ n2 the second linear function is active,
otherwise the third linear function is active.

Definition 3.2 (Redundant). We say that the k-th

linear function is redundant if it is not active for any

assignment to yc.

Although not strictly necessary, in the following, we
assume that our potentials do not contain redundant
linear functions. Furthermore, we assume that the pa-
rameters {(ak, bk)}

K
k=1 are sorted in decreasing order of

ak. Clearly, this implies that ak > ak+1 and bk < bk+1.

Exact Inference. The goal of inference is to find
an energy-minimizing assignment y⋆ ∈ argmin

y
E(y).

To do this, we follow the approach of a num-
ber of works that address the problem of in-
ference in certain classes of higher-order MRFs
by transforming the inference problem to that of
minimizing a quadratic pseudo-Boolean function,
i.e., pairwise MRF (e.g., (Boros and Hammer, 2002;
Freedman and Drineas, 2005; Ishikawa, 2009)). For
example, Kohli et al. (2008) showed that exact infer-
ence can be performed when the potential is a concave
piecewise linear function of at most three terms (one
increasing, one constant, and one decreasing). We now
extend this result to arbitrary many terms.

Consider, again the lower linear envelope potential
represented by Equation 2. Introducing K − 1 aux-
iliary binary variables z = (z1, . . . , zK−1), we define
the quadratic pseudo-Boolean function

Ec(yc, z) = a1
∑

i∈C

yi + b1

+

K−1∑

k=1

zk

(
(ak+1 − ak)

∑

i∈C

yi + bk+1 − bk

)
(3)

The advantage of this formulation is that minimizing
over z, subject to some constraints, selects (one of) the
active function(s) from ψH

c (y) as we will now show.

Proposition 3.3. Minimizing the function Ec(yc, z)
over z subject to zk+1 ≤ zk for all k is equiva-

lent to mink=1,...,K

{
ak
∑

i∈C yi + bk
}
, i.e., ψH

c (yc) =
minz:zk+1≤zk E

c(yc, z).

Proof. The constraints ensure that z takes the form of
a vector of all ones followed by all zeros. There are K
such vectors and for k = 1Tz+1 we have Ec(yc, z) =
ak
∑

i∈C yi + bk. Therefore, minimizing over z is the
same as minimizing over k ∈ {1, . . . ,K}.

The constraints on z can be enforced by adding
Mzk+1(1 − zk) for k = 1, . . . ,K − 2 to the energy
function with M sufficiently large.2 Rewriting the
quadratic pseudo-Boolean function of Equation 3 in
posiform (Boros and Hammer, 2002) and adding the
constraints on z, we have

Ẽc(yc, z) = b1 − |C|(a1 − aK) +
∑

i∈C

a1yi

+

K−1∑

k=1

(bk+1 − bk) zk +

K−1∑

k=1

|C| (ak − ak+1) z̄k

+

K−1∑

k=1

∑

i∈C

(ak − ak+1) ȳizk +

K−2∑

k=1

Mzk+1z̄k (4)

where z̄k = 1−zk and, likewise, ȳi = 1−yi, and all co-
efficients (apart from the constant term) are positive.

Importantly, Ẽc(yc, z) is a submodular energy func-
tion, which allows us to perform efficient inference.

Definition 3.4 (Submodularity). A pseudo-

Boolean function f : {0, 1}n → R is called submod-
ular if f(u) + f(v) ≥ f(u ∨ v) + f(u ∧ v) for all

u,v ∈ {0, 1}n.

Proposition 3.5. The energy function Ẽc(yc, z) de-

fined by Equation 4 is submodular.

Proof. Follows from the fact that all the bi-linear
terms in Equation 4 are of the form λūv with λ ≥ 0.
See Boros and Hammer (2002).

It is well known that submodular pairwise energy func-
tions can be minimized exactly in time polynomial in
the number of variables by finding the minimum-st-
cut on a suitably constructed graph (Hammer, 1965;
Kolmogorov and Zabih, 2004). We illustrate one pos-

sible construction for Ẽc(yc, z) in Figure 2.

Using this fact, we can show that an energy function
containing arbitrary lower linear envelope potentials
can be minimized in polynomial time.

2In practice we can set M =
∑

k
|ak|n + |bk| to ensure

that each constraint is satisfied.



Max-margin Learning for Lower Linear Envelope Potentials in Binary MRFs

Theorem 3.6. For binary variables y ∈ {0, 1}n, let
E0(y) be a submodular energy function, and let

E(y) = E0(y) +
∑

c

ψH
c (yc),

where ψH
c (yc) are arbitrary lower linear envelope

higher-order potentials. Then E(y) can be minimized

in time polynomial in the number of variables n and

total number of linear envelope functions.

Proof. By Proposition 3.3 we have argmin
y
E(y) =

argmin
y
(E0(y) +

∑
c minzc

Ẽc(yc, zc)). By Proposi-

tion 3.5 we have that the Ẽc(yc, zc) are submodular.
The sum of submodular energy functions is submod-
ular. Each higher-order term adds K − 1 auxiliary
variables so the total number of variables in the aug-
mented energy function is less than n plus the total
number of linear functions.

Relationship to Binary MRFs. As an aside, we
note that Ẽc(yc, zc) is just a pairwise binary MRF.
Evidently, we can express Equation 4 as

Ẽc(yc, z) = const. +
∑

i∈C

ψY
i (yi) +

K−1∑

k=1

ψZ
k(zk)

+
∑

(i,k)

ψP
ik(yi, zk) +

∑

(k,k+1)

ψC
k,k+1(zk, zk+1) (5)

where, for example, ψZ
k(zk) = (bk+1 − bk) if zk = 1

and |C| (ak − ak+1) otherwise. For brevity, we omit
details of the remaining potential functions, which can
be trivially constructed by considering the correspon-
dence between the two forms.

4. Learning the Lower Linear Envelope

We now show how the max-margin framework can be
used to learn parameters of our lower linear envelope
potentials. For simplicity of exposition we consider a
single higher-order term. The extension to multiple
higher-order terms is straightforward.

We begin by reviewing a variant of the max-margin
framework introduced by Tsochantaridis et al. (2004)
and Taskar et al. (2005). We then show how an alter-
native representation of the lower linear envelope can
be learned using the framework. Finally, we discuss
some practical issues such as invariance to clique size.

Max-margin Learning. Given an energy function
E(y;θ) = θTφ(y) parameterized as linear combination
of features φ(y) ∈ R

m and weights θ ∈ R
m, and a set

(a) linear envelope

(b) constraints

(c) unary and pairwise

Figure 2. Construction of an st-graph for minimizing en-
ergy functions with arbitrary lower linear envelope poten-
tials. With slight abuse of notation, we use the variables to
denote nodes in our graph. For each lower linear envelope
potential edges are added as follows: for each i ∈ C, add
an edge from yi to t with weight a1; for each i ∈ C and
k = 1, . . . ,K − 1, add an edge from zk to yi with weight
ak − ak+1; for k = 1, . . . ,K − 1, add an edge from s to zk
of with weight |C|(ak − ak+1) and edge from zk to t with
weight bk+1−bk; and for k = 1, . . . ,K−2, add a constraint
edge from zk+1 to zk of infinite weight. Other edges may
be required to represent unary and pairwise potentials (see
(Kolmogorov and Zabih, 2004)).

of T training examples {yt}
T
t=1 the max-margin frame-

work is a principled approach to learning the weights
of the model.

In our formulation we will allow additional linear con-
straints to be imposed on the weights of the form
Gθ ≥ h, where G ∈ R

d×m and h ∈ R
d. This is not

typically necessary, but, as we will see below, is re-
quired when learning lower linear envelope potentials.

Now, let Yt = {0, 1}
n be the set of all possible assign-

ments for the t-th training example. The (margin-
rescaling) max-margin approach formulates learning
as a quadratic programming optimization problem,
MaxMarginQP

(
{yt,Yt}

T
t=1,G,h

)
:

minimize 1
2‖θ‖

2 + C
T

∑T

t=1 ξt (6)

subject to

θT(φt(y)− φt(yt)) + ξt ≥ ∆(y,yt), ∀t,y∈Yt,
ξt ≥ 0, ∀t,
Gθ ≥ h

where C ≥ 0 is a regularization constant, and ∆(y,yt)
measures the loss between a ground-truth assignment
yt and any other assignment. In our work we use the
Hamming loss, which measures the proportion of vari-
ables whose corresponding assignments disagree. More
formally, the Hamming loss is defined as ∆(y,y′) =
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Figure 3. Example concave function of x =
∑n

i=1
yi. The

function can be represented as the minimum over a set
of linear functions (lower linear envelope) or as a set of
sampled points θk with curvature constraint.

1
n

∑n

i=1 [[yi 6= y′i]], where [[P ]] is the indicator function
taking value one when P is true and zero otherwise.

The number of constraints in the QP is exponential in
the number of variables, and a standard approach to
solving the max-margin QP is by adding constraints
incrementally. Briefly, at each iteration the algorithm
checks for the most violated constraint (for each train-
ing example), using loss-augmented inference, and, if
found, adds it to the constraint set. The algorithm ter-
minates when no more violated constraints are found
(see Algorithm 1).

Transforming Between Representations. The
max-margin formulation (see Equation 6) requires that
the energy function be expressed as a linear combina-
tion of features and weights, however, our higher-order
potential is represented as the minimum over a set of
linear functions. One simple way to re-parameterize
the energy function for learning is to sample the
higher-order potential at each possible x =

∑n

i=1 yi,
i.e., at points 0, 1, . . . , n. Let θ = (θ0, . . . , θn) ∈ R

n+1

be the sampled values. Then, we can retrieve the lower
linear envelope representation as ak = θk − θk−1 and
bk = θk − akk for k = 1, . . . , n as illustrated in Fig-
ure 3.3 The corresponding feature vector φ(y) ∈ R

n+1,
under this representation, has the m-th element one if∑

i∈C yi = m and zero otherwise.

It remains to ensure that θ represents a concave func-
tion. We do this by adding the second-order curvature
constraint D2θ ≥ 0 where D2 ∈ R

(n−2)×n is the (neg-
ative) discrete second-derivative operator:

D2 =



−1 2 −1 0 · · ·

. . .

· · · 0 −1 2 −1


 . (7)

3Note that if ak = ak−1 then the k-th linear function is
redundant and can be omitted from the energy function.

Algorithm 1 Learning lower linear envelope MRFs.

1: input training set {yt}
T
t=1, regularization con-

stant C > 0, and tolerance ǫ ≥ 0
2: initialize constraints set At = {} for all t
3: repeat
4: solve MaxMarginQP

(
{yt,At}

T
t=1,D

2,0
)

to

get θ̂ and ξ̂

5: convert from θ̂ to (ak, bk) representation
6: for each training example, t = 1, . . . , T do
7: compute y⋆

t = argmin
y
E(y; θ̂)−∆(y,yt)

8: if ξ̂t+ǫ<∆(y⋆
t ,yt)−E(y⋆

t ; θ̂)+E(yt; θ̂) then
9: At ← At ∪ {y

⋆
t }

10: end if
11: end for
12: until no more violated constraints
13: return parameters θ̂

Our optimization follows the standard max-margin ap-
proach and is summarized in Algorithm 1.4

Theorem 4.1. For ǫ = 0, Algorithm 1 ter-

minates with the optimal parameters θ⋆ for

MaxMarginQP
(
{yt,Yt}

T
t=1,D

2,0
)
.

Proof. By Theorem 3.6, our test for the most violated
constraints (lines 7 and 8) can be performed exactly
(∆(y,yt) decomposes as a sum of unary terms). If the
test succeeds, then y⋆

t cannot already be in At. It is
now added (line 9). Since there are only finitely many
constraints, this happens at most 2n − 1 times (per
training example), and the algorithm must eventually
terminate. On termination there are no more violated
constraints, hence the parameters are optimal.

Unfortunately, as our proof suggests, it may take ex-
ponential time for the algorithm to reach convergence
with ǫ = 0. Tsochantaridis et al. (2005) showed, how-
ever, that for ǫ > 0 and no additional linear constraints
(i.e., G = 0, h = 0) max-margin learning will termi-
nate in a polynomial number of iterations. Their result
can be extended to the case of additional linear con-
straints (details omitted due to space restrictions).

Clique-size Invariance. For many applications,
the number of variables in the higher-order clique
is extremely large. Furthermore, we may wish to

4To jointly learn the unary and pairwise weights, we
augment the parameter vector θ with a weight θunary for
the unary terms and non-negative weight θpair for the pair-
wise terms, and add the corresponding features φunary =∑

i
ψU

i (yi) and φ
pair =

∑
ij
ψP

ij(yi, yj) to the feature vector

φ(y). The non-negativity of θpair ensures that the energy
function remains submodular.
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learn and apply our models on problems with varying
clique sizes. These issues can be addressed by under-
sampling the lower linear envelope to give a piecewise
linear approximation to the envelope.

Assume that we are learning a lower linear envelope
parameterized by samples θ ∈ R

n+1. We can construct
a feature vector that interpolates between samples of
the linear envelope for any clique of size m ≥ n as
follows. Let p = 1

m

∑m

i=1 yi. Then the k-th element of
φ(y) ∈ R

n+1 is

(φ(y))k =





k − pn if k−1
n
≤ p < k

n

pn− k + 2 if k−2
n
≤ p < k−1

n

0 otherwise.
(8)

For example, if n = 3 and p = 1
2 + ǫ then φ(y) =

(0, 12 − 3ǫ, 12 + 3ǫ, 0). Note that 1Tφ(y) = 1.

At inference time, we can convert (ak, bk) for cliques
of size n to ( n

m
ak, bk) for cliques of size m. This acts

to scale the linear envelope so that it depends on the
proportion (not the absolute number) of variables that
are assigned one and is therefore clique-size invariant.

Figure 4. Illustration of interpolating between samples to
construct features independent of clique size.

Alternative QP Formulations. Our quadratic pro-
gram above is just one possible formulation that is
based on a particular choice for representing the lower
linear envelope and corresponding feature vectors. An
alternative representation may encode the slope of the
lower linear envelope directly, that is,

θ̃i =

{
b1 for i = 0
ai = θi − θi−1 for i = 1, . . . ,K

(9)

The i-th component in the corresponding feature vec-
tor is then (φ̃(y))i =

∑
j≥i (φ(y))j . And instead of a

second-order constraintD2θ ≥ 0, we have a first-order
constraint Dθ̃ ≥ 0.

One of the advantages of this formulation is that it
does not penalize constant envelopes (i.e., θ̃ = 0). In-
terestingly, under this formulation the optimal θ0 is
always zero, i.e., b1 = 0, which is not surprising since
from Equation 3 we see that b1 only acts to offset the
energy function.

We can take this process one step further and represent
the higher-order potential as

θ̃k =





b1 for k = 0
a1 for k = 1
ak − ak−1 for k = 2, . . . ,K

(10)

with appropriate feature vectors. Here we are encoding
the coefficients of the pseudo-Boolean function used
during inference directly and learning now resembles
a latent-variable SVM formulation (Yu and Joachims,
2009) with constraints on the latent variables (namely,
zk+1 ≤ zk).

5. Experimental Results

We conduct experiments on synthetic and real-world
data, comparing baseline MRF models with ones that
include higher-order terms learned by our method.

Synthetic Checkerboard. Our synthetic experi-
ments involve an 8 × 8 checkerboard pattern of alter-
nating white (yi = 1) and black (yi = 0) squares. Each
square contains 256 variables, giving our MRF a total
of 8×8×256 = 16, 384 variables. We generate a noisy
version of the checkerboard as input to our model. Let
y⋆ be the ground-truth checkerboard, then our input
is generated as xi = η0[[y

⋆
i = 0]]−η1[[y

⋆
i = 1]]+δi where

η0 and η1 are the signal-to-noise ratios for the black
and white squares, respectively, and δi ∼ U(−1, 1) is
additive i.i.d. uniform noise. Our unary terms are
constructed for each pixel as ψU

i (yi) = θunaryxi. We
add one lower linear envelope potential term for each
square in the checkerboard, so each higher-order po-
tential contains 256 variables and the terms are dis-
joint. Intuitively, we would like the potential to favour
label consistency within the square. Our higher-order
model does not contain any pairwise terms. We learn
θunary and {(ak, bk)}

K
k=1 for K = 10 linear functions

using Algorithm 1.

We report results on two different problem instances:
The first has symmetric signal-to-noise ratios η0 =
η1 = 0.1, and the second has five times less noise
on the black squares (η0 = 0.5) than on the white
(η1 = 0.1). Figure 5 shows the ground-truth checker-
board patterns and the noisy input. For both instances
we set C = 1000 in Equation 6. Learning is run to con-
vergence, taking 48 iterations for the first instance and
43 iterations for the second. Each training iteration
took under 1s with inference taking about 120ms.

As a baseline, we compare our results against those
from a pairwise MRF model. The unary terms are
the same as above and the pairwise terms take the
form ψP

ij(yi, yj) = θpair[[yi 6= yj ]], where i and j are
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(a) (b) (c) (d) (e)
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(f) learned θ

Figure 5. Results from our synthetic experiments. Panels
(a)-(e) show the ground-truth, noisy input, predicted la-
bels with unary and pairwise terms only, and using a model
with higher-order terms for the third and final learning it-
erations, respectively. Two separate problem instances are
shown (one per row). Panel (f) shows learned linear en-
velopes (parameters are normalized by the unary weight).
Matlab source code for reproducing these results is avail-
able from the author’s homepage.

neighbouring pixels. Here we set θunary = 1 and choose
θpair to give best the Hamming loss.

Figure 5 shows the inferred pattern for the pairwise
MRF baseline, and for our higher-order model after
the third and after the final training iterations ((c),
(d), and (e), respectively). We see that after just three
iterations our higher-order model is already perform-
ing well on both instances, and by the final iteration
we can perfectly recover the checkerboard, unlike the
pairwise model. The learned linear envelope parame-
ters (relative to the unary weight) are shown in Fig-
ure 5(f). Note that for the second instance, our algo-
rithm is able to learn an asymmetric potential.

Figure-Ground Segmentation. We also ran
experiments on the real-world “GrabCut” prob-
lem (Rother et al., 2004), which aims to segment an
object from an image given a user-annotated bound-
ing box of the object (see Figure 6 for an example).
Each pixel in the image is associated with a binary ran-
dom variable indicating “background” or “foreground
(i.e., object). Variables associated with pixels outside
of the user-annotated bounding box are automatically
assigned a label of zero (i.e., background). The assign-
ment for the remaining variables is inferred.

We compare a model with learned higher-order terms
against a baseline GrabCut model by performing
leave-one-out cross-validation on a 50 image dataset
from Lempitsky et al. (2009). Following Rother et al.
(2004), our baseline model contains unary and pair-
wise terms. The unary terms are defined as the log-
likelihood from foreground and background Gaussian
mixture models (GMMs) over pixel colour and are
image-specific. Briefly, the GMMs are initialized by
learning a foreground and background model from pix-
els inside and outside the user-annotated bounding
box, respectively. Next, the GMMs are used to relabel

pixels as foreground or background, and their param-
eters re-estimated. This loop runs until convergence
(or a maximum number of iterations is reached), and
the final GMMs used to construct the unary terms.

The pairwise terms encode smoothness between each
pixel and its eight neighbours, and are defined as

ψP
ij(yi, yj) =

λ

dij
[[yi 6= yj ]] exp

{
−
‖xi − xj‖

2

2β

}
(11)

where dij is the distance between pixels i and j, xi
and xj are the RGB colour vectors for pixels i and
j, β is the average squared-distance between adjacent
RGB colour vectors in the image, and λ determines
the strength of the pairwise smoothness term. It is the
only free parameter in the baseline model and learned
by cross-validation.

To construct the higher-order terms, we adopt a simi-
lar superpixel-based approach as Ladicky et al. (2009).
First, we over-segment the image into a few hundred
superpixels. The pixels within each superpixel then
define a higher-order term, much like the checkerboard
squares in our synthetic experiments. Here, however,
the higher-order terms are over different sized cliques.

We learn the weights for the unary and pairwise po-
tentials and the parameters for a lower linear envelope
potential with K = 10 terms using Algorithm 1. We
set C = 1000 and ran for a maximum of 100 iterations,
however, for most folds, the algorithm converged be-
fore the maximum number of iterations was reached.
The parameters determined at the last iteration were
used for testing. Learning took approximately 3 hours
per cross-validation fold with the majority of the time
spent generating violated constraints for the 49 train-
ing images (each typically containing 640×480 pixels).

Some example results are shown in Figure 6. The first
row shows that that our higher-order terms can cap-
ture some fine structure such as the cheetah’s tail but
it also segments part of the similarly-appearing rock.
In the second example, we are able to correctly seg-
ment the person’s legs. The third example shows that
we are able to segment the petals at the lower part of
the rightmost flower, which the baseline model does
not. Quantitatively, our method achieves 91.5% accu-
racy compared to 90.0% for the strong baseline.

6. Discussion

This paper has shown how to perform efficient in-
ference and learning for lower linear envelope bi-
nary MRFs, which are becoming popular for enforcing
higher-order consistency constraints over large sets of
random variables, particularly in computer vision.
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(a) (b) (c) (d)

Figure 6. Example results from our GrabCut experiments.
Shown are: (a) the image and bounding box, (b) ground-
truth segmentation, (c) baseline model output, and (d)
output from model with higher-order terms.

Our work suggests a number of directions for future
research. Perhaps the most obvious is extending our
approach to multi-label MRFs. We can already use our
inference method inside move-making algorithms such
as α-expansion or αβ-swap (Boykov et al., 1999), how-
ever, the question of efficient learning remains open
since inference in this regime is only approximate.

More interesting is the implicit relationship between
structured higher-order models and latent-variable
SVMs (Yu and Joachims, 2009) as suggested by the in-
troduction of auxiliary variables for inference and our
alternative QP formulations. Exploring this relation-
ship further may provide insights into both models.
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