
An Augmented Lagrangian Approach to Constrained MAP Inference
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Abstract

We propose a new algorithm for approximate
MAP inference on factor graphs, by combin-
ing augmented Lagrangian optimization with
the dual decomposition method. Each slave
subproblem is given a quadratic penalty,
which pushes toward faster consensus than in
previous subgradient approaches. Our algo-
rithm is provably convergent, parallelizable,
and suitable for fine decompositions of the
graph. We show how it can efficiently han-
dle problems with (possibly global) structural
constraints via simple sort operations. Ex-
periments on synthetic and real-world data
show that our approach compares favorably
with the state-of-the-art.

1. Introduction

Graphical models enable compact representations of
probability distributions, being widely used in com-
puter vision, natural language processing (NLP), and
computational biology (Koller & Friedman, 2009). A
prevalent problem is the one of inferring the most prob-
able configuration, the so-called maximum a posteriori
(MAP). Unfortunately, this problem is intractable, ex-
cept for a limited class of models. This fact precludes
computing the MAP exactly in many important mod-
els involving non-local features or requiring structural
constraints to ensure valid predictions.

A significant body of research has thus been placed on
approximate MAP inference, e.g., via linear program-
ming relaxations (Schlesinger, 1976). Several message-
passing algorithms have been proposed that exploit
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the graph structure in these relaxations (Wainwright
et al., 2005; Kolmogorov, 2006; Werner, 2007; Glober-
son & Jaakkola, 2008; Ravikumar et al., 2010). In the
same line, Komodakis et al. (2007) proposed a method
based on the classical dual decomposition technique
(DD; Dantzig & Wolfe 1960; Everett III 1963; Shor
1985), which breaks the original problem into a set
of smaller (slave) subproblems, splits the shared vari-
ables, and tackles the Lagrange dual with the subgra-
dient algorithm. Initially applied in computer vision,
DD has also been shown effective in NLP (Koo et al.,
2010). The drawback is that the subgradient algorithm
is very slow to converge when the number of slaves is
large. This led Jojic et al. (2010) to propose an accel-
erated gradient method by smoothing the objective.

In this paper, we ally the simplicity of DD with
the effectiveness of augmented Lagrangian methods,
which have a long-standing history in optimization
(Hestenes, 1969; Powell, 1969; Glowinski & Marroco,
1975; Gabay & Mercier, 1976; Boyd et al., 2011). The
result is a novel algorithm for approximate MAP infer-
ence: DD-ADMM (Dual Decomposition with the Al-
ternating Direction Method of Multipliers). Rather
than placing all efforts in attempting progress in
the dual, DD-ADMM looks for a saddle point of
the Lagrangian function, which is augmented with a
quadratic term to penalize slave disagreements. Key
features of DD-ADMM are:

• It is suitable for heavy parallelization (many slaves);

• it is provably convergent, even when each slave sub-
problem is only solved approximately;

• consensus among slaves is fast, by virtue of the
quadratic penalty term, hence it exhibits faster con-
vergence in the primal than competing methods;

• in addition to providing an optimality certificate for
the exact MAP, it also provides guarantees that the
LP-relaxed solution has been found.
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After providing the necessary background (Sect. 2)
and introducing and analyzing DD-ADMM (Sect. 3),
we turn to the slave subproblems (Sect. 4). Of partic-
ular concern to us are problems with structural con-
straints, which arise commonly in NLP, vision, and
other structured prediction tasks. We show that, for
several important constraints, each slave can be solved
exactly and efficiently via sort operations. Experi-
ments with pairwise MRFs and dependency parsing
(Sect. 5) testify to the success of our approach.

2. Background

2.1. Problem Formulation

Let X , (X1, . . . , XN ) ∈ X be a vector of discrete
random variables, where each Xi ∈ Xi, with Xi a fi-
nite set. We assume that X has a Gibbs distribution
associated with a factor graph G (Kschischang et al.,
2001), composed of a set of variable nodes {1, . . . , N}
and a set of factor nodes A, with each a ∈ A linked to
a subset of variables N(a) ⊆ {1, . . . , N}:

Pθ,φ(x) ∝ exp
(∑N

i=1 θi(xi) +
∑
a∈A φa(xa)

)
. (1)

Above, xa stands for the subvector indexed by the el-
ements of N(a), and θi(.) and φa(.) are, respectively,
unary and higher-order log-potential functions. To ac-
commodate hard constraints, we allow these functions
to take values in R ∪ {−∞}. For simplicity, we write
θi , (θi(xi))xi∈Xi and φa , (φa(xa))xa∈Xa .

We are interested in the task of finding the most prob-
able assignment (the MAP), x̂ , arg maxx∈X Pθ,φ(x).
This (in general NP-hard) combinatorial problem can
be transformed into a linear program (LP) by in-
troducing marginal variables µ , (µi)

n
i=1 and ν ,

(νa)a∈A, constrained to the marginal polytope of G,
i.e., the set of realizable marginals (Wainwright & Jor-
dan, 2008). Denoting this set by M(G), this yields

OPT , max
(µ,ν)∈M(G)

∑
i θ
>
i µi +

∑
a φ
>
a νa, (2)

which always admits an integer solution. Unfortu-
nately, M(G) often lacks a concise representation,
which renders (2) intractable. A common workaround
is to replace M(G) by the outer bound L(G) ⊇M(G)—
the so-called local polytope, defined as

L(G) =

(µ,ν)

∣∣∣∣∣ 1>µi = 1,∀i ∧
Hiaνa = µi,∀a, i ∈ N(a) ∧
νa ≥ 0,∀a

 ,

(3)
where Hia(xi,xa) = 1 if [xa]i = xi, and 0 otherwise.
This yields the following LP relaxation of (2):

OPT′ , max
(µ,ν)∈L(G)

∑
i θ
>
i µi +

∑
a φ
>
a νa, (4)

which will be our main focus throughout. Obviously,
OPT′ ≥ OPT, since L(G) ⊇M(G).

2.2. Dual Decomposition

Several message passing algorithms (Wainwright et al.,
2005; Kolmogorov, 2006; Globerson & Jaakkola, 2008)
are derived via some reformulation of (4) followed by
dualization. The DD method (Komodakis et al., 2007)
reformulates (4) by adding new variables νai (for each
factor a and i ∈ N(a)) that are local “replicas” of
the marginals µi. Letting N(i) , {a|i ∈ N(a)} and
di = |N(i)| (the degree of node i), (4) is rewritten as

max
ν,µ

∑
a

(∑
i∈N(a) d

−1
i θ

>
i ν

a
i + φ>a νa

)
(5)

s.t. (νaN(a),νa) ∈M(Ga), ∀a
νai = µi, ∀a, i ∈ N(a),

where Ga is the subgraph of G comprised only of
factor a and the variables in N(a), M(Ga) is the
corresponding marginal polytope, and we denote
νaN(a) , (νai )i∈N(a). (Note that by definition, L(G) =

{(µ,ν) | (µNa
,νa) ∈ M(Ga), ∀a ∈ A}.) Problem (5)

would be completely separable (over the factors) if it
were not the “coupling” constraints νai = µi. Intro-
ducing Lagrange multipliers λai for these constraints,
the dual problem (master) becomes

min
λ

L(λ) ,
∑
a sa

((
d−1i θi + λai

)
i∈N(a)

,φa

)
s.t. λ ∈ Λ ,

{
λ
∣∣ ∑

a∈N(i) λ
a
i = 0, ∀i

}
, (6)

where each sa corresponds to a slave subproblem

sa(ωaN(a),φa) , max
(νa

N(a),νa)

∈M(Ga)

∑
i∈N(a)

ω>i ν
a
i + φ>a νa. (7)

Note that the slaves (7) are MAP problems of the same
kind as (2), but local to each factor a. Denote by
(ν̂aN(a), ν̂a) = map(ωaN(a),φa) the maximizer of (7).

The master problem (6) can be addressed elegantly
with a projected subgradient algorithm: note that a
subgradient ∇λa

i
L(λ) is readily available upon solving

the ath slave, via ∇λa
i
L(λ) = ν̂ai . These slaves can

be handled in parallel and then have their solutions
gathered for computing a projection onto Λ, which is
simply a centering operation. This results in Alg. 1.

Alg. 1 inherits the properties of subgradient algo-
rithms, hence it converges to the optimal value of
OPT′ in (4) if the stepsize sequence (ηt)t∈T is dimin-
ishing and nonsummable (Bertsekas et al., 1999). In
practice, convergence can be quite slow if the number
of slaves is large. This is because it may be hard to
reach a consensus on variables with many replicas.
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Algorithm 1 DD-Subgradient

1: input: factor graph G, parameters θ,φ, number of
iterations T , stepsize sequence (ηt)

T
t=1

2: Initialize λ = 0
3: for t = 1 to T do
4: for each factor a ∈ A do
5: Set ωai = d−1

i θi + λai , for i ∈ N(a)
6: Compute (ν̂aN(a), ν̂a) = map

(
ωaN(a),φa

)
7: end for
8: Compute average µi = di

−1∑
a:i∈N(a) ν̂

a
i

9: Update λai ← λai − ηt (ν̂ai − µi)
10: end for

11: output: λ

3. Augmented Lagrangian Method

In this section we introduce a faster method, DD-
ADMM, which replaces the MAP computation at
each factor a by a (usually simple) quadratic prob-
lem (QP); this method penalizes disagreements among
slaves more aggressively than the subgradient method.

Given an optimization problem with equality con-
straints, the augmented Lagrangian (AL) function is
the Lagrangian augmented with a quadratic constraint
violation penalty. For the constraint problem (5), it is

Aη(µ,ν,λ) ,
∑
a

( ∑
i∈N(a)

(
d−1i θi + λai

)>
νai + φ>a νa

)
−
∑
a

∑
i∈N(a)

λai
>
µi −

η

2

∑
a

∑
i∈N(a)

‖νai − µi‖2, (8)

where η controls the weight of the penalty. Applied
to our problem, a traditional AL method (Hestenes,
1969; Powell, 1969) would alternate between the joint
maximization of Aη(µ,ν,λ) w.r.t. µ and ν, and an up-
date of the Lagrange multipliers λ. Unfortunately, the
quadratic term in (8) breaks the separability, making
the joint maximization w.r.t. µ and ν unappealing.

We bypass this problem by using the alternating direc-
tion method of multipliers (ADMM; Gabay & Mercier
1976; Glowinski & Marroco 1975), in which the joint
maximization is replaced by a single Gauss-Seidel step.
This yields the following updates:

ν(t) ← argmax
ν

Aηt(µ
(t−1),ν,λ(t−1)), (9)

µ(t) ← argmax
µ

Aηt(µ,ν
(t),λ(t−1)), (10)

λ
a(t)
i ← λ

a(t−1)
i − τηt

(
ν
a(t)
i − µ

(t)
i

)
,∀a, i ∈ N(a). (11)

Crucially, the maximization w.r.t. µ (10) has a closed
form, while that w.r.t. ν (9) can be carried out in
parallel at each factor, as in Alg. 1. The only difference
is that, instead of computing the MAP, each slave now

Algorithm 2 DD-ADMM

1: input: factor graph G, parameters θ,φ, number of
iterations T , sequence (ηt)

T
t=1, parameter τ

2: Initialize µ uniformly, λ = 0
3: for t = 1 to T do
4: for each factor a ∈ A do
5: Set ωai = d−1

i θi + λai + ηtµi, for i ∈ N(a)
6: Update (νaN(a),νa)← quadηt

(
ωaN(a),φa

)
7: end for
8: Update µi ← di

−1∑
a:i∈N(a)

(
νai − η−1

t λai
)

9: Update λai ← λai − τηt (νai − µi)
10: end for

11: output: µ,ν,λ

needs to solve a QP of the form

min
(νa

N(a)
,νa)∈M(Ga)

ηt
2

∑
i∈N(a)

‖νai − η−1t ωai ‖2 − φ
>
a νa. (12)

The resulting algorithm is DD-ADMM (Alg. 2). Let
quadηt(ωN(a),φa) denote the solution of (12); as ηt →
0, quadηt(ωN(a),φa) approaches map(ωN(a),φa),
hence Alg. 2 approaches Alg. 1. However, DD-ADMM
converges without the need of decreasing ηt:

Proposition 1 Let (µ(t),ν(t),λ(t))t be the sequence
of iterates produced by Alg. 2 with a fixed ηt = η and
0 < τ ≤ (

√
5 + 1)/2 ' 1.61. Then the following holds:

1. Primal feasibility of (5) is achieved in the limit,

i.e., ‖νa(t)i − µ(t)
i ‖ → 0,∀a ∈ A, i ∈ N(a);

2. (µ(t),ν(t)) converges to an optimal solution of (4);

3. λ(t) converges to an optimal solution of (6);

4. λ(t) is always dual feasible; hence the objective of
(6) evaluated at λ(t) approaches OPT′ from above.

Proof: 1, 2, and 3 are general properties of ADMM al-
gorithms (Glowinski & Le Tallec, 1989, Thm. 4.2). All
necessary conditions are met: problem (5) is convex
and the coupling constraint can be written in the form
(νaN(a))a∈A = Mµ where M has full column rank. To

show 4, use induction: λ(0) = 0 ∈ Λ; if λ(t−1) ∈ Λ,

i.e.,
∑
a∈N(i) λ

a(t−1)
i = 0, ∀i, then, after line 9,

∑
a∈N(i)

λ
a(t)
i =

∑
a∈N(i)

λ
a(t−1)
i − τηt

 ∑
a∈N(i)

ν
a(t)
i − diµ(t)

i


= (1− τ)

∑
a∈N(i)

λ
a(t−1)
i = 0 ⇒ λ(t) ∈ Λ. �

Prop. 1 reveals yet another important feature of DD-
ADMM: after a sufficient decrease of the residual term,
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say
∑
a

∑
i∈N(a) ‖νai − µi‖2 < ε, we have at hand a ε-

feasible primal-dual pair. If, in addition, the duality
gap (difference between (4) and (6)) is < δ, then we
are in possession of an (ε, δ)-optimality certificate for
the LP relaxation. Such a certificate is not readily
available in Alg. 1, unless the relaxation is tight.

The next proposition, based on results of Eckstein
& Bertsekas (1992), states that convergence may still
hold if (12) is solved approximately.

Proposition 2 Let ηt = η be fixed and τ = 1. Con-

sider the sequence of residuals r(t) , (r
(t)
a )a∈A, where

r(t)a , ‖(ν
a(t)
N(a),ν

(t)
a )− quadηt(ω

(t)
N(a),φa)‖.

Then, Prop. 1 still holds provided
∑∞
t=1 ‖r(t)‖ <∞.

4. Solving the Slave Subproblems

We next show how to efficiently solve (12). Several
cases admit closed-form solutions: binary pairwise fac-
tors, some factors expressing hard constraints, and fac-
tors linked to multi-valued variables, once binarized.
In all cases, the asymptotic computational cost is the
same as that of MAP computations, up to a logarith-
mic factor. Detailed proofs of the following facts are
included as supplementary material.

4.1. Binary pairwise factors

If factor a is binary and pairwise (|N(a)| = 2), problem
(12) can be re-written as the minimization of 1

2 (z1 −
c1)2 + 1

2 (z2− c2)2− c12z12, w.r.t. (z1, z2, z12) ∈ [0, 1]3,
under the constraints z12 ≤ z1, z12 ≤ z2, and z12 ≥
z1+z2−1, where c1, c2 and c12 are functions of ωai and
φa. Considering c12 ≥ 0, without loss of generality (if
c12 < 0, we recover this case by redefining c′1 = c1+c12,
c′2 = 1 − c2, c′12 = −c12, z′2 = 1 − z2, z′12 = z1 − z12),
the lower bound constraints z12 ≥ z1 + z2 − 1 and
z12 ≥ 0 are always innactive and can be ignored. By
inspecting the KKT conditions we obtain the following
closed-form solution: z∗12 = min{z∗1 , z∗2} and

(z∗1 , z
∗
2) =


([c1]U, [c2 + c12]U) if c1 > c2 + c12
([c1 + c12]U, [c2]U) if c2 > c1 + c12
([(c1 + c2 + c12)/2]U ,
[(c1 + c2 + c12)/2]U) otherwise,

where [x]U = min{max{x, 0}, 1} denotes the projec-
tion (clipping) onto the unit interval.

4.2. Hard constraint factors

Many applications, e.g., in error-correcting coding
(Richardson & Urbanke, 2008) and NLP (Smith & Eis-
ner, 2008; Martins et al., 2010; Tarlow et al., 2010)

involve hard constraint factors—these are factors with
indicator log-potential functions: φa(xa) = 0, if xa ∈
Sa, and −∞ otherwise, where Sa is an acceptance set.
For binary variables, these factors impose logical con-
straints; e.g.,

• the one-hot xor factor, for which Sxor =
{(x1, . . . , xn) ∈ {0, 1}n|

∑n
i=1 xi = 1},

• the or factor, for which Sor = {(x1, . . . , xn) ∈
{0, 1}n|

∨n
i=1 xi = 1},

• the or-with-output factor, for which Sor-out =
{(x1, . . . , xn) ∈ {0, 1}n|

∨n−1
i=1 xi = xn}.

Variants of these factors (e.g., with negated in-
puts/outputs) allow computing a wide range of other
logical functions. It can be shown that the marginal
polytope of a hard factor with binary variables and
acceptance set Sa is defined by z ∈ conv Sa, where
z , (µ1(1), . . . , µn(1)) and conv denotes the convex
hull. Letting c , (ωia(1) + 1 − ωia(0))i∈N(a), problem
(12) is that of minimizing ‖z − c‖2 s.t. z ∈ conv Sa,
which is a Euclidean projection onto a polyhedron:

• conv Sxor is the probability simplex; the projection
is efficiently obtained via a sort (Duchi et al., 2008).

• conv Sor is a “faulty” hypercube with a vertex re-
moved, and conv Sor-out is a pyramid whose base is a
hypercube with a vertex removed; both projections
can be efficiently computed with sort operations.

The algorithms and proofs of correctness are provided
as supplementary material. In all cases, complexity is
O(|N(a)| log |N(a)|) and can be improved to O(|N(a)|)
using a technique similar to Duchi et al. (2008).

4.3. Larger slaves and multi-valued variables

For general factors, a closed-form solution of problem
(12) is not readily available. One possible strategy (ex-
ploiting Prop. 2) is to use an inexact algorithm that
becomes sufficiently accurate as Alg. 2 proceeds; this
can be achieved by warm-starting with the solution ob-
tained in the previous iteration. This strategy can be
useful for handling coarser decompositions, in which
each factor is a subgraph such as a chain or a tree.
However, unlike the map problem in DD-subgradient,
in which dynamic programming can be used to com-
pute an exact solution for these special structures, that
does not seem possible in quad.

Yet, there is an alternative strategy for handling multi-
valued variables, which is to binarize the graph and
make use of the results established in Sect. 4.2 for hard
constraint factors. We illustrate this procedure for
pairwise MRFs (but the idea carries over when higher
order potentials are used): let X1, . . . , XN be the vari-
ables of the original graph, and E ⊆ {1, . . . , N}2 be
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Figure 1. Results for 30× 30 random Ising models with several edge couplings. We plot the dual objectives and the best
primal feasible solution at each iteration. For DD-subgradient, we set ηt = η0/t, with η0 yielding the maximum dual
improvement in 10 iterations, with halving steps (those iterations are not plotted). For DD-Acc we plot the most favorable
ε ∈ {0.1, 1, 10, 100}. For DD-ADMM, we set η = 5.0 and τ = 1.0. All decompositions are edge-based.

the set of edges. Let M = |E| be the number of edges
and L = |Xi|,∀i the number of labels. Then:

• For each node i, define binary variables Uik for each
possible k ∈ {1, . . . , L} of Xi. Link these variables

to a xor factor, imposing
∑L
k=1 µi(k) = 1, ∀i.

• For each edge (i, j) ∈ E, define binary variables
Uijkk′ for each value pair (k, k′) ∈ {1, . . . , L}2. Link
variables {Uijkk′}Lk′=1 and ¬Uik to a xor factor, for
each k ∈ {1, . . . , L}; and link variables {Uijkk′}Lk=1

and ¬Ujk′ to a xor factor for each k′ ∈ {1, . . . , L}.
These impose constraints µi(k) =

∑L
k′=1 µij(k, k

′),

∀k, and µj(k
′) =

∑l
k=1 µij(k, k

′), ∀k′.

The constraints above define a local polytope which
is equivalent to the one of the original graph, hence
problem (4) is the same for both graphs. This process
increases the number of factors to N + 2ML, where
each is a xor of size L or L + 1. However, solving
quad for each of these factors only costs O(L logL)
(see Sect. 4.2), hence the overall cost per iteration of
Alg. 2 is O(ML2 logL) if the graph is connected. Up
to a log factor, this is the same as message-passing
algorithms or DD-subgradient when run in the original
graph, which have O(ML2) cost per iteration.

5. Experiments

We compare DD-ADMM (Alg. 2) with four other ap-
proximate MAP inference algorithms:

• Star-MSD (Sontag et al., 2011), an acceleration of
the max-sum diffusion algorithm (Kovalevsky & Ko-
val, 1975; Werner, 2007) based on star updates;

• Generalized MPLP (Globerson & Jaakkola, 2008);

• DD-subgradient (Komodakis et al. 2007, Alg. 1);

• DD-Acc (accelerated DD, Jojic et al. 2010).

All these algorithms address problem (4) with the
same cost per iteration: the first two use message-
passing, performing block coordinate descent in the
dual; DD-Acc uses a smoothed dual objective by
adding an entropic term to each subproblem, and then
applies optimal first-order methods (Nesterov, 1983),
yielding O(1/ε) complexity. The primal and dual ob-
jectives are the same for all algorithms.

5.1. Binary Pairwise MRFs

Fig. 1 shows typical plots for an Ising model (binary
pairwise MRF) on a random grid, with single node log-
potentials chosen as θi(1)−θi(0) ∼ U[−1, 1] and mixed
edge couplings in U[−ρ, ρ], where ρ ∈ {0.5, 1, 1.5, 2}.
Decompositions are edge-based for all methods. For
MPLP and Star-MSD, primal feasible solutions (x̂i)

N
i=1

were obtained by decoding the single node messages, as
in Globerson & Jaakkola (2008); for the DD methods
we use x̂i = argmaxxi

µi(xi).

We observe that DD-subgradient is the slowest, taking
a long time to find a “good” primal feasible solution,
arguably due to the large number of slave subprob-
lems. Surprisingly, DD-Acc is also not competitive
in this setting, as it consumes many iterations before
it reaches a near-optimal region.1 MPLP performs
slightly better than Star-MSD and both are compa-
rable to DD-ADMM in terms of convergence of the
dual objective. However, DD-ADMM outperforms all
competitors at obtaining a “good” feasible primal so-
lution in early iterations (it retrieved the true MAP
in all cases, in ≤ 200 iterations). We conjecture that
this rapid progress in the primal is due to the penalty
term in the AL (8), which is very effective at pushing

1It is conceivable that the early iterations of DD-Acc
could make faster progress by annealing ε. Here we have
just used the variant described by Jojic et al. (2010).
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Figure 2. Results for a 20 × 20 random Potts model with
8-valued nodes and coupling factor ρ = 10. We plot the
dual objectives, and the value of the true dual optimum.
For DD-Acc, ε = 1.0; for DD-ADMM, η = 0.5, τ = 1.0.

for a feasible primal solution of the relaxed LP.

5.2. Multi-valued Pairwise MRFs

To assess the effectiveness of DD-ADMM in the non-
binary case, we evaluated it against DD-Acc and
MPLP in a Potts model (multi-valued pairwise MRF)
with single node log-potentials chosen as θi(xi) ∼
U[−1, 1] and edge log-potentials as θij(xi, xj) ∼
U[−10, 10] if xi = xj and 0 otherwise. For DD-Acc
and MPLP, we used the same edge decomposition as
before, since they can handle multi-valued variables;
for DD-ADMM we binarized the graph as described in
Sect. 4.3. Fig. 2 shows the best dual solutions obtained
at each iteration for the three algorithms. We observe
that MPLP decreases the objective very rapidly in the
beginning and then slows down. DD-Acc manages to
converge faster, but it is relatively slow to take off.
DD-ADMM has the best features of both methods.

5.3. Dependency Parsing

A third set of experiments aims at assessing the abil-
ity of DD-ADMM for handling problems with heavily
constrained outputs. The task is non-projective depen-
dency parsing of natural language sentences, to which
DD approaches have recently been applied (Koo et al.,
2010). Fig. 3 depicts an example of a sentence (the
input) and its dependency tree (the output to be pre-
dicted). Second-order models are state-of-the-art for
this task: they include scores for each possible arc and
for certain pairs of arcs (e.g., siblings and grandpar-
ents); the goal is to find a directed spanning tree max-
imizing the overall score.

We experimented with two factor graphs that repre-
sent this problem (see Fig. 3). Both models have hard
constraints on top of a binary pairwise MRF whose
nodes represent arc candidates and whose edges link
pairs of arcs which bear a sibling or grandparent rela-
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Abstract

We formalize weighted dependency pars-

ing as searching for maximum spanning

trees (MSTs) in directed graphs. Using

this representation, the parsing algorithm

of Eisner (1996) is sufficient for search-

ing over all projective trees inO(n3) time.
More surprisingly, the representation is

extended naturally to non-projective pars-

ing using Chu-Liu-Edmonds (Chu and

Liu, 1965; Edmonds, 1967) MST al-

gorithm, yielding an O(n2) parsing al-
gorithm. We evaluate these methods

on the Prague Dependency Treebank us-

ing online large-margin learning tech-

niques (Crammer et al., 2003; McDonald

et al., 2005) and show that MST parsing

increases efficiency and accuracy for lan-

guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-

est lately for applications such as relation extrac-

tion (Culotta and Sorensen, 2004), machine trans-

lation (Ding and Palmer, 2005), synonym genera-

tion (Shinyama et al., 2002), and lexical resource

augmentation (Snow et al., 2004). The primary

reasons for using dependency structures instead of

more informative lexicalized phrase structures is

that they are more efficient to learn and parse while

still encoding much of the predicate-argument infor-

mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to

their arguments, have a long history (Hudson, 1984).

Figure 1 shows a dependency tree for the sentence

John hit the ball with the bat. We restrict ourselves

to dependency tree analyses, in which each word de-

pends on exactly one parent, either another word or a

dummy root symbol as shown in the figure. The tree

in Figure 1 is projective, meaning that if we put the

words in their linear order, preceded by the root, the

edges can be drawn above the words without cross-

ings, or, equivalently, a word and its descendants

form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-

lyze most sentence types. In fact, the largest source

of English dependency trees is automatically gener-

ated from the Penn Treebank (Marcus et al., 1993)

and is by convention exclusively projective. How-

ever, there are certain examples in which a non-

projective tree is preferable. Consider the sentence

John saw a dog yesterday which was a Yorkshire Ter-

rier. Here the relative clause which was a Yorkshire

Terrier and the object it modifies (the dog) are sep-

arated by an adverb. There is no way to draw the

dependency tree for this sentence in the plane with

no crossing edges, as illustrated in Figure 2. In lan-

guages with more flexible word order than English,

such as German, Dutch and Czech, non-projective

dependencies are more frequent. Rich inflection

systems reduce reliance on word order to express
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Figure 3. Top: a dependency parse tree, where each arc
(h,m) links a head word h to a modifier word m. Middle:
tree-based factor graph corresponding to a second-order
dependency parsing model with sibling and grandparent
features, including a tree hard constraint factor. Bottom:
the flow-based factor graph is an alternative representation
for the same model, in which extra flow and path variables
are added, and the tree factor is replaced by smaller xor,
or and or-out. See Martins et al. (2010) for details.

tionship. The “tree” model has a tree hard constraint
factor connected to all nodes enforcing the overall as-
signment to be a directed spanning tree (Smith & Eis-
ner, 2008). Unfortunately, handling this factor poses
difficulties for all methods except DD-subgradient.2

2Further information about the combinatorial tree fac-
tor can be found in Martins et al. (2010) and references
therein. Briefly, solving the map subproblem (necessary
for DD-subgradient) corresponds to finding a maximum
weighted arborescence, which can be done in O(n2) time,
where n is the number of words in the sentence (Tarjan,
1977). Computing all posterior marginals (necessary for
DD-Acc) can be done in O(n3) time invoking the matrix-
tree theorem (Smith & Smith, 2007; Koo et al., 2007; Mc-
Donald & Satta, 2007). Unfortunately, this procedure suf-
fers from severe numerical problems in the low-temperature
setting, which prevents its use in DD-Acc where the tem-
perature must be set as O(ε/(n logn)). Finally, no efficient
algorithm is currently known for the simultaneous com-
putation of all max-marginals in the tree factor (which
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The “flow” model imposes the same global constraint
by adding extra variables and several xor, or and
or-out factors (Martins et al., 2010). The two mod-
els have the same expressive power, and differ from
the one in Koo et al. (2010), which combines a tree
constraint with factors that emulate head automata
(instead of all pairs of arcs) and has fewer slaves. In
our case, both factor graphs yield O(n3) slaves (n is
the number of words in the sentence), degrading the
performance of standard DD methods.

This is illustrated in Fig. 4, which shows that DD-
subgradient converges slowly, even with the more fa-
vorable tree-based factor graph (both for synthetic and
real-world data). For this problem, MPLP and Star-
MSD also have poor performance, while DD-ADMM
manages to converge to a near-optimal solution very
fast (note the sharp decrease in relative error on the
bottom plot, compared with DD-subgradient). This
has an impact in final accuracy: setting a maximum
of 1000 iterations for all algorithms gave DD-ADMM
an advantage of > 1.5% in unlabeled attachment score
(fraction of words with the correct head attached), in
the Penn Treebank dataset.

6. Related Work and Final Remarks

DD-subgradient was first proposed for image segmen-
tation using pairwise (Komodakis et al., 2007) and
higher order factor graphs (Komodakis & Paragios,
2009). It was recently adopted for NLP (Koo et al.,
2010), with only a few slave subproblems handled with
dynamic programming or combinatorial algorithms.

Johnson et al. (2007) proposed smoothing the objec-
tive by adding an entropic term to each subproblem,
with the goal of enabling gradient-based optimization;
each subproblem becomes that of computing marginals
at a particular temperature. Jojic et al. (2010) com-
bined this with optimal first order methods to ac-
celerate DD to O(1/ε) complexity. This rate, how-
ever, relies on the ability to compute low-temperature
marginals with arbitrary precision, which poses prob-
lems for some of the hard constraint factors consid-
ered in this paper. In contrast, DD-ADMM uses exact
solutions of the corresponding slave subproblems, effi-
ciently computed using sort operations (see Sect. 4.2).

We point out that replacing the quadratic penalty of
the AL (8) by an entropic one would not lead to the
same subproblems as in Jojic et al. (2010): it would
lead to the problem of minimizing non-strictly con-

would be necessary for MPLP and Star-MSD); or for com-
puting an Euclidean projection onto the arborescence poly-
tope (which would be necessary for DD-ADMM).
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Figure 4. Dependency parsing with 2nd-order models. For
DD-subgradient, we consider both tree-based and flow-
based factor graphs, and η0 as in Fig. 1. DD-ADMM
(η = 0.05, τ = 1.5), MPLP, and Star-MSD ran only on the
flow-based factor graph (see footnote 2). DD-Acc is not
shown due to numerical problems when computing some
low-temperature marginals. Top: synthetic 10-word sen-
tences; we randomly generated (unary) arc log-potentials
from N(0, 1) and (pairwise) grandparent and sibling log-
potentials from N(0, 0.1). Bottom: §23 of the Penn Tree-
bank; the plot shows relative errors per iteration w.r.t. the
dual optimum, averaged over the 2,399 test sentences.

vex free energies with different counting numbers. Al-
though extensions of ADMM to Bregman penalties
have been considered in the literature, convergence has
been shown only for quadratic penalties.

Quadratic problems were also recently considered in a
sequential algorithm (Ravikumar et al., 2010); how-
ever, that algorithm tackles the primal formulation
and only pairwise models are considered. A similar
cyclic projection can be adopted in DD-ADMM to ap-
proximately solve quad for larger slaves.

DD-ADMM is dual decomposable, hence the slaves can
be solved in parallel, making it suitable for multi-core
architectures with obvious speed-ups. A significant
amount of computation can be saved by caching and
warm-starting the subproblems, which tend to become
more and more similar across later iterations.

In the future, we plan to experiment with larger slaves,
by using approximate ADMM steps as enabled by
Prop. 2. The encouraging results of DD-ADMM for
solving LP relaxations suggest that it can also be use-
ful for tightening these relaxations towards the true
MAP, as the MPLP algorithm in Sontag et al. (2008).
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