I nvited Applications Paper

Music Plus One and Machine Learning

Christopher Raphael

CRAPHAELQINDIANA.EDU

School of Informatics and Computing, Indiana University, Bloomington

Abstract

A system for musical accompaniment is pre-
sented in which a computer-driven orches-
tra follows and learns from a soloist in a
concerto-like setting. The system is decom-
posed into three modules: the first com-
putes a real-time score match using a hid-
den Markov model; the second generates the
output audio by phase-vocoding a preexisting
audio recording; the third provides a link be-
tween these two, by predicting future timing
evolution using a Kalman filter-like model.
Several examples are presented showing the
system in action in diverse musical settings.
Connections with machine learning are high-
lighted, showing current weaknesses and new
possible directions.

1. Musical Accompaniment Systems

Musical accompaniment systems are computer pro-
grams that serve as musical partners for live musi-
cians, usually playing a supporting role for music cen-
tering around the live player. The types of possi-
ble interaction between live player and computer are
widely varied. Some approaches create sound by pro-
cessing the musician’s audio, often driven by analysis
of the audio content itself, perhaps distorting, echo-
ing, harmonizing, or commenting on the soloist’s au-
dio in largely predefined ways, (Lippe, 2002), (Rowe,
1993). Other orientations are directed toward impro-
visatory music, such as jazz, in which the computer
follows the outline of a score, perhaps even compos-
ing its own musical part “on the fly” (Dannenberg &
Mont-Reynaud, 1987), or evolving as a “call and re-
sponse” in which the computer and human alternate
the lead role (Franklin, 2002), (Pachet, 2004). Our
focus here is on a third approach that models the tra-
ditional “classical” concerto-type setting in which the

Appearing in Proceedings of the 27" International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

computer performs a precomposed musical part in a
way that follows a live soloist (Dannenberg & Mukaino,
1988),(Cont et al., 2005),(Raphael, 2009). This cate-
gorization is only meant to summarize some past work,
while acknowledging that there is considerable room
for blending these scenarios, or working entirely out-
side this realm of possibilities.

The motivation for the concerto version of the prob-
lem is strikingly evident in the Jacobs School of Mu-
sic (JSoM) at Indiana University, where most of our
recent experiments have been performed. For exam-
ple, the JSoM contains about 200 student pianists,
for whom the concerto literature is central to their
daily practice and aspirations. However, in the JSoM
the regular orchestras perform only two piano concerti
each year using student soloists, thus ensuring that
most of these aspiring pianists will never perform as
orchestral soloist while at IU. We believe this is truly
unfortunate since nearly all of these students have the
necessary technical skills and musical depth to greatly
benefit from the concerto experience. Our work in
musical accompaniment systems strives to bring this
rewarding experience to the music students, amateurs,
and many others who would like to play as orchestral
soloist, though, for whatever reason, don’t have the
opportunity.

Even within the realm of classical music, there are
a number of ways to further subdivide the accompa-
niment problem, requiring substantially different ap-
proaches. The JSoM is home to a large string peda-
gogy program beginning with students at 5 years of
age. Students in this program play solo pieces with pi-
ano even in their first year. When accompanying these
early-stage musicians, the pianist’s role is not simply
to follow the young soloist, but to teach as well, by
modeling good rhythm, steady tempo where appro-
priate, while introducing musical ideas. In a sense,
this is the hardest of all classical music accompaniment
problems, since the accompanist must be expected to
know more than the soloist, thus dictating when the
accompanist should follow, as well as when and how
to lead. A coarse approximation to this accompanist

Music Plus One and Machine Learning

role is to provide a rather rigid accompaniment that
is not overly responsive to the soloist’s interpretation
(or errors) — there are several commercial programs
that take this approach. The more sophisticated view
of the pedagogical music system — one that follows
and leads as appropriate — is almost completely un-
touched, possibly due to the difficulty of modeling the
objectives. However, we see this area as fertile for
lasting research contributions and hope that we, and
others, will be able to contribute to this cause.

An entirely different scenario deals with music that
evolves largely without a sense of rhythmic flow,
such as in some compositions of Penderecki, Xenakis,
Boulez, Cage, and Stockhausen, to name some of the
more famous examples. Such music is often notated
in terms of seconds, rather than beats or measures,
to emphasize the irrelevance of traditional pulse. For
works of this type involving soloist and accompani-
ment, the score can indicate points of synchronicity,
or time relations, between various points in the solo
and accompaniment parts. If the approach is based
solely on audio, a natural strategy is simply to wait
until various solo events are detected, and then to re-
spond to these events. This is the approach taken by
the IRCAM score follower, with some success in a va-
riety of pieces of this type (Cont et al., 2005).

A third scenario, which includes our system, treats
works for soloist and accompaniment having a contin-
uing musical pulse, including the overwhelming ma-
jority of “common practice” art music. This music is
the primary focus of most of our performance-oriented
music students at the JSoM, and is the music where
our accompaniment system is most at home. Music
containing a regular, though not rigid, pulse requires
close synchronization between the solo and accompa-
nying parts, as the overall result suffers greatly as this
synchrony degrades.

Our system is known interchangeably as the “Infor-
matics Philharmonic,” or “Music Plus One” (MPO),
due to its alleged improvement on the play-along ac-
companiment records from Music Minus One that
inspired our work. For several years we have
been collaborating with faculty and students in
the JSoM on this traditional concerto setting, in
an ongoing effort to improve the performance of
our system while exploring variations on this sce-
nario. A video of such a collaboration is con-
tained in http://www.music.informatics.indiana.
edu/papers/icml10, while also providing further ex-
amples relevant to our discussion here. We will present
a description of the overall architecture of our system
in terms of its three basic components: Listen, Predict,

and Play, including several illuminating examples. We
also identify open problems or limitations of proposed
approaches that are likely to be interesting to the Ma-
chine Learning community, and well may benefit from
their contributions.

The basic technology required for common practice
classical music extends naturally to the avant garde
domain. In fact, we believe one of the greatest poten-
tial contributions of the accompaniment system is in
new music composed specifically for human-computer
partnerships. The computer offers essentially unlim-
ited virtuosity in terms of playing fast notes and coor-
dinating complicated rhythms. On the other hand, at
present, the computer is comparatively weak at pro-
viding aesthetically satisfying musical interpretations.
Compositions that leverage the technical ability of the
accompaniment system, while humanizing the perfor-
mance through the human soloist’s leadership, pro-
vide a open-ended musical meeting place for the 21st-
century composition and technology. Several composi-
tions of this variety, written specifically for our accom-
paniment system by Swiss composer and statistician
Jan Beran, are presented at the web page referenced
above.

2. Overview of Music Plus One

Our system is composed of three sub-tasks called “Lis-
ten,” “Predict,” and ”Play.” The Listen module inter-
prets the audio input of the live soloist as it accumu-
lates in real-time. In essence, Listen annotates the
incoming audio with a “running commentary,” identi-
fying note onsets with variable detection latency, us-
ing the hidden Markov model discussed in Section 3.
A moment’s thought here reveals that some detection
latency is inevitable since a note must be heard for
an instant before it can be identified. For this reason
we believe it is hopeless to build a purely “responsive”
system — one that waits until a solo note is detected
before playing a synchronous accompaniment event:
our detection latency is usually in the 30-90 ms. range,
enough to prove fatal if the accompaniment is consis-
tently behind by this much. For this reason we model
the timing of our accompaniment on the human mu-
sician, continually predicting future evolution, while
modifying these predictions as more information be-
comes available. The module of our system that per-
forms this task, Predict, is a Gaussian graphical model
quite close to a Kalman Filter, discussed in Section
4. The Play module uses phase-vocoding (Flanagan &
Golden, 1966) to construct the orchestral audio output
using audio from an accompaniment-only recording.
This well-known technique warps the timing of the

Music Plus One and Machine Learning

Note 1

start;

R I ICICE)
TEEEE

Figure 1. The state graph for the hidden sequence,
T1,x2,..., of our HMM.

Note 3

Starty

€etc.

original audio without introducing pitch distortions,
thus retaining much of the original musical intent in-
cluding balance, expression, and tone color. The Play
process is driven by the output of the Predict module,
in essence by following an evolving sequence of future
targets like a trail of breadcrumbs.

While the basic methodology of the system relies on
old standards from the ML community — HMMs and
Gaussian graphical models — the computational chal-
lenge of the system should not be underestimated, re-
quiring accurate real-time two-way audio computation
in musical scenarios complex enough to be of interest
in a sophisticated musical community. The system was
implemented for off-the-shelf hardware in C and C++
over a period of about fifteen years by the author, re-
sulting in more than 100,000 lines of code. Both Listen
and Play are implemented as separate threads which
both make calls to the Predict module when either a
solo note is detected (Listen) or an orchestra note is
played (Play). What follows is a more detailed look at
Listen and Predict.

3. Listen: HMM-Based Score Following

Blind music audio recognition treats the automatic
transcription of music audio into symbolic music rep-
resentations, using no prior knowledge of the music
to be recognized. This problem remains completely
open, especially with polyphonic (several independent
parts) music, where the state of the art remains prim-
itive. While there are many ways one can build rea-
sonable data models quantifying how well a particu-
lar audio snippet matches a hypothesized collection of
pitches, what seems to be missing is the musical lan-
guage model. If phonemes and notes are regarded as
the atoms of speech and music, there does not seem
to be a musical equivalent of the word. Furthermore,
while music follows simple logic and can be quite pre-
dictable, this logic is often cast in terms of higher-level

constructs such as meter, harmony and motivic trans-
formation. Computationally tractable models such
as note n-grams seem to contribute very little here,
while a computationally useful music language model
remains uncharted territory.

Our Listen module deals with the much simpler sit-
uation in which the music score is known, giving the
pitches the soloist will play along with their approxi-
mate durations. Thus the score following problem is
one of alignment rather than recognition. Score fol-
lowing, otherwise known as on-line alignment, is more
difficult than its off-line cousin, since an on-line algo-
rithm cannot consider future audio data in estimating
the times of audio events. Thus, one of the principal
challenges of on-line alignment is the trade-off between
accuracy — reporting the correct times of note events
— and latency — the lag in time between the esti-
mated note event time and the time the estimate is
made. (Schwarz, 2003) gives a nice annotated bibliog-
raphy of the many contributions to score following.

3.1. The Listen Model

Our HMM approach views the audio data as a se-
quence of “frames,” y1,¥s2,...,yr, with about 30
frames per second, while modeling these frames as the
output of a hidden Markov chain, x1,xs,...,x7. The
state graph for the Markov chain, described in Figure
1, models the music as a sequence of sub-graphs, one
for each solo note, which are arranged so that the pro-
cess enters the start of the n + 1st note as it leaves
the nth note. From the figure, one can see that each
note begins with a short sequence of states meant to
capture the attack portion of the note. This is followed
by another sequence of states with self-loops meant to
capture the main body of the note, and to account
for the variation in note duration we may observe, as
follows.

If we chain together m states which each either move
forward, with probability p, or remain in the current
state, with probability ¢ = 1—p, then the total number
of state visits, L, (audio frames) spent in the sequence
of m states has a negative binomial distribution

-1 m l—m
P(L=1)=<ﬂ;1)p q

for I = m,m + 1,.... While convenient to represent
this distribution with a Markov chain, the asymmetric
nature of the negative binomial is also musically rea-
sonable: while it is common for an inter-onset interval
(IOI) to be much longer than its nominal length, the
reverse is much less common. For each note we choose
the note parameters m and p so that E(T) = m/p

Music Plus One and Machine Learning

and Var(T') = mq/p?* reflect our prior beliefs. If we
have seen several performances of the piece in ques-
tion, we choose m and p according to the method of
moments — so that the empirical mean and variance
agree with the true mean and variance. Otherwise,
we choose the mean according to what the score pre-
scribes, while choosing the variance to capture our lack
of knowledge.

In reality, we use a wider variety of note models than
depicted in the figure, with variants on the above
model for short notes, notes ending with optional rests,
notes that are rests, etc, though all following the same
essential idea. The result is a network of thousands of
states.

Our data model is composed of three features
be(yt), et(ye), s¢(yt) assumed to be conditionally inde-
pendent given the state

P(by, e, se|xe) = P(be|ay) Pleg|x) P(s|zy).

The first feature, b;, measures the local “burstiness”
of the signal, particularly useful in distinguishing be-
tween note attacks and steady state behavior — ob-
serve that we distinguished between the attack portion
of a note and and steady state portion in Figure 1. The
2nd feature, e; measures the local energy, useful in dis-
tinguishing between rests and notes. By far, however,
the vector-valued feature s; is the most important, as
it is well-suited to making pitch discriminations, as
follows.

We let f,, denote the frequency associated with the
nominal pitch of the nth score note. As with any quasi-
periodic signal with frequency f,, we expect that the
audio data from the nth note will have a magnitude
spectrum composed of “peaks” at integral multiples of
fn. This is modeled by the Gaussian mixture model
depicted in Figure 2

H
P(d) = D> wnN (it = hfn,0® = (phfn)?)
h=1

where Y, wy, = 1 and N(j; u, 02) is a discrete approx-
imation of a Gaussian distribution. We define s; to be
the magnitude spectrum of y;, normalized to sum to
constant value, C'. If we believe the nth note is sound-
ing in the tth frame, we regard s; as the histogram
of a random sample of size C'. Thus our data model
becomes the multinomial distribution

P(s¢|xy € noten) = Hi'(j)' Hpn(j)m(j) (1)

This model describes the part of the audio spectrum
due to the soloist reasonably well. However, our ac-
tual signal will receive not only this solo contribution,

0.4

0.2

N

T T T T T T
0 200 400 600 800 1000

freq

Figure 2. An idealized note spectrum modeled as a mixture
of Gaussians.

but audio generated by our accompaniment system as
well. If the accompaniment audio contains frequency
content that is confused with the solo audio, the result
is the highly undesirable possibility of the accompani-
ment system following itself — in essence, chasing its
own shadow. To a certain degree, the likelihood of this
outcome can be diminished by “turning off” the score
follower when the soloist is not playing; of course we
do this. However, there is still significant potential for
shadow-chasing since the pitch content of the solo and
accompaniment parts is often similar.

Our solution to this difficulty is to directly model the
accompaniment contribution to the audio signal we re-
ceive. Since we know what the orchestra is playing (our
system generates this audio), we add this contribution
to the data model. More explicitly, if ¢; is the magni-
tude spectrum of the orchestra’s contribution in frame
t, we model the conditional distribution of s; using
Eqn. 1, but with pg, = App, + (1 = N)g for 0 < A < 1
instead of p,,.

This addition creates significantly better results in
many situations. The surprising difficulty in actu-
ally implementing the approach, however, is that there
seems to be only weak agreement between the known
audio that our system plays through the speakers and
the accompaniment audio that comes back through the
microphone. Still, with various averaging tricks in the
estimation of ¢y, we can nearly eliminate the undesir-
able shadow-chasing behavior.

Music Plus One and Machine Learning

3.2. On-Line Interpretation of Audio

Perhaps one of the main virtues of the HMM-based
score follower is the grounding it gives to navigating
the accuracy-latency trade-off. One of the worst things
a score follower can do is report events before they
have occurred. In addition to the sheer impossibility
of producing accurate estimates in this case, the musi-
cal result often involves the accompanist arriving at a
point of coincidence before the soloist does. When the
accompanist “steps on” the soloist in this manner, the
soloist must struggle to regain control of the perfor-
mance, perhaps feeling desperate and irrelevant in the
process. Since the consequences of false positives are
so great, the score follower must be reasonably certain
that a note event has already occurred before reporting
its location. We handle this as follows.

Every time we process a new frame of audio we re-
compute the “forward” probabilities, p(z¢|y1, ..., yt),
for our current frame, t. Listen waits to detect note n
until we are sufficiently confident that its onset is in
the past. That is, until

P(zy > starty|yr,...,y4) > 7

In this expression, start,, represents the initial state of
the nth note model, as indicated in Figure 1, which
is either before, or after all other states in the model.
Suppose that t* is the first frame where the above in-
equality holds. When this occurs, our knowledge of the
note onset time can be summarized by the function of
t:
P(x, = start,|y1, ..., ye-)

which we compute using the forward-backward algo-
rithm. Occasionally this distribution conveys uncer-
tainty about the onset time of the note, say, for in-
stance, if it has high variance or is bimodal. In such
a case we simply do not report the onset time of the
particular note, believing it is better to remain silent
than provide bad information. Otherwise, we estimate
the onset as

t, = arg Itlgx P(x; = start,|y1, ..., ye=) (2)

and deliver this information to the Predict module.

Several videos demonstrating the ability of our score
following can be seen at the aforementioned web site.
One of these simply plays the audio while highlight-
ing the locations of note onset detections at the times
they are made, thus demonstrating detection latency
— what one sees lags slightly behind what one hears.
A second video shows a rather eccentric performer
who ornaments wildly, makes extreme tempo changes,
plays wrong notes, and even repeats a measure, thus
demonstrating the robustness of the the score follower.

4. Predict: Modeling Musical Timing

As discussed in Section 2, we believe a purely respon-
stwe accompaniment system can not achieve acceptable
coordination of parts in the range of common practice
“classical” music we treat, thus we choose to schedule
our accompaniment through prediction rather than re-
sponse. Our approach is based on a model for musical
timing. In developing this model, we begin with three
important traits we believe such a model must have.

1. Since our accompaniment must be constructed in
real time, the computational demand of our model
must be feasible in real time.

2. Our system must improve with rehearsal. Thus
our model must be able to automatically train its
parameters to embody the timing nuances demon-
strated by the live player in past examples. This
way our system can better anticipate the future
musical evolution of the current performance.

3. If our rehearsals are to be successful in guiding the
system toward the desired musical end, the system
must “sightread” (perform without rehearsal) rea-
sonably well. Otherwise, the player will become
distracted by the poor ensemble and not be able to
demonstrate what she wants to hear. Thus there
must be a neutral setting of parameters that al-
lows the system to perform reasonably well “out
of the box.”

4.1. The Timing Model

We first consider a timing model for a single musical
part. Our model is expressed in terms of two hidden
sequences, {t,} and {s,} where t,, is the time, in sec-
onds, of nth note onset and s, is the tempo, in seconds
per beat, for the nth note. These sequences evolve ac-
cording to

Sn+1 Sn + On (3)
the1 = tn+ lpsn + Ty (4)

where [,, is the length of the nth event, in beats.

With the “update” variables, {0, } and {7,}, set to 0,
this model gives a literal and robotic musical perfor-
mance with each inter-onset-interval, ¢, 11 — t,, con-
suming an amount of time proportional to its length in
beats, l,,. The introduction of the update variables al-
low time-varying tempo through the {,,}, and elonga-
tion or compression of note lengths with the {7,}. We
further assume that the {(o,,7,)¢} are independent
with (0, 7)) ~ N(pin,) and (s1,t1)" ~ N (o, To),
thus leading to a joint Gaussian model on all model

Music Plus One and Machine Learning

Listen

Updates
Composite

Accomp

Figure 3. Top: Two musical parts generate a composite
rhythm when superimposed. Bot: The resulting graphical
model arising from the composite rhythm.

variables. The rhythmic interpretation embodied by
the model is expressed in terms of the {u,,T',} pa-
rameters. In this regard, the {u,} vectors represent
the tendencies of the performance — where the player
tends to speed up (o, < 0), slow down (o, > 0), and
stretch (7, > 0), while the {I',,} matrices capture the
repeatability of these tendencies.

It is simplest to think of Eqns. 3-4 as a timing model
for single musical part. However, it just as reasonable
to view these Eqns. as a timing model for the composite
rhythm of the solo and orchestra. That is, consider
the situation, depicted in Figure 3, in which the solo,
orchestra, and composite rhythms have the following
musical times (in beats):

solo 0 1/3 2/3 1 4/3 5/3 2
accomp 0 1/2 1 3/2 2
comp. 0 1/3 1/2 2/3 2 4/3 3/2 5/3 2

The {l,,} for the composite would be found by sim-
ply taking the differences of rational numbers forming
the composite rhythm: [y = 1/3,lo = 1/6, etc. In
what follows we regard Eqns. 3-4 as a model for this
composite rhythm.

The observable variables in this model are the solo note
onset estimates produced by Listen and the known
note onsets of the orchestra (our system constructs
these during the performance). Suppose that n in-
dexes the events in the composite rhythm having asso-
ciated solo notes, estimated by the {f,}. Additionally,
suppose that n’ indexes the events having associated
orchestra notes with onset times, {0,/ }. We model

fn = t,+e€,

Figure 4. A “spectrogram” of the opening of the 1st move-
ment of the Dvotdk Cello concerto. The horizontal axis of
the figure represents time while the vertical axis represents
frequency. The vertical lines show the note times for the
orchestra.

Ot = tp+ 671’

where €, ~ N(0,p?) and 6, ~ N(0,p?). The result
is the Gaussian graphical model depicted in the bot-
tom panel of Figure 3. In this figure the row labeled
“Composite” corresponds to the {(sn,t,)} variables
of Eqns. 3-4, while the row labeled “Updates” corre-
sponds to the {(o,, 7,)} variables. The “Listen” row is
the collection of estimated solo note onset times, {f,}
while the “Accompaniment” row corresponds to the
orchestra times, {o,}.

4.2. The Model in Action

With the model in place we are ready for real-time ac-
companiment. In our first rehearsal we initialize the
model so that p, = 0 for all n. This assumption does
not preclude the possibility of the model correctly in-
terpreting and following tempo changes or other rhyth-
mic nuances of the soloist; rather, it states that we
ezxpect the timing to evolve strictly according to the
tempo when looking forward.

In real-time accompaniment, our system is concerned
only with scheduling the currently pending orchestra
note time, 0,. The time of this note is initially sched-
uled when we play the previous orchestra note, 0,/ _1.
At this point we compute the new mean of 0,, condi-
tioning 0,1 and whatever other variables have been
observed, and schedule o, accordingly. While we wait
for the currently-scheduled time to occur, the Listen
module may detect various solo events, t,. When this
happens we recompute the mean of o,,/, conditioning on
this new information. Sooner or later the actual clock
time will catch up to the currently-scheduled time, at
which point the orchestra note is played. Thus an or-

Music Plus One and Machine Learning

chestra note may be rescheduled many times before
it is actually played. A particularly instructive exam-
ple involves a run of many solo note culminating in a
point of coincidence with the orchestra. As each solo
note is detected we refine our estimate of the desired
point of coincidence, thus gradually “honing in” on
the this point of arrival. It is worth noting that very
little harm is done when Listen fails to detect a solo
note. We simply predict the pending orchestra note
conditioning on the variables we have observed.

The web page given before contains a video that
demonstrates this process. The video shows the es-
timated solo times from our score follower appearing
as green marks on a spectrogram. Predictions of our
accompaniment system are shown as analogous red
marks. One can see the pending accompaniment event
“jiggling” as new solo notes are estimated, until finally
the currently-predicted time passes.

The role of Predict is to “schedule” accompaniment
notes, but what does this really mean in practice? Re-
call that our program plays audio by phase-vocoding
(time-stretching) an orchestra-only recording. A time-
frequency representation of such an audio file for the
1st movement of the Dvorak Cello concerto is shown in
Figure 4. In preparing this audio for our accompani-
ment system, we perform an off-line score alignment to
determine where the various orchestra notes occur, as
marked with vertical lines in the figure. Scheduling a
note simply means that we change the phase-vocoder’s
play rate so that it arrives at the appropriate audio file
position (vertical line) at the scheduled time. Thus the
play rate is continually modified as the performance
evolves.

After one or more “rehearsals,” we adapt our timing
model to the soloist to better anticipate future perfor-
mances. To do this we first perform an off-line estimate
of the solo note times using Eqn. 2, only conditioning
on the entire sequence of frames, y1, ..., yr, using the
forward-backward algorithm. Using one or more such
rehearsals we can iteratively reestimate the model pa-
rameters {u,} using the EM algorithm, resulting in
both measurable and perceivable improvment of pre-
diction accuracy. While, in principle, we can also esti-
mate the {T',,} parameters, we have observed little or
no benefit from doing so.

In practice we have found the soloist’s interpretation
to be a bit of a “moving target.” At first this is be-
cause the soloist tends to compromise somewhat in the
initial rehearsals, pulling the orchestra in the desired
direction, while not actually reaching the target inter-
pretation. But even after the soloist seems to settle
down to a particular interpretation on a given day, we

often observe further “drift” of the interpretation over
subsequent meetings, due to the changeable nature of
musical ideas. For this reason we train the model using
the most recent several rehearsals, thus facilitating the
continually evolving nature of musical interpretation.

5. Musical Expression and Machine
Learning

Our system learns its musicality through “osmosis.”
If the soloist plays in a musical way and the orchestra
manages to closely follow the soloist, then we hope the
orchestra will inherit this musicality. This manner of
learning by imitation works well in the concerto set-
ting, as the division of authority between the players
is rather extreme, mostly granting the “right of way”
to to the soloist. However, many other musical scenar-
ios do not so clearly divide the roles into leader and
follower. Our system is least at home in this middle
ground.

Our timing model of Eqns. 3-4 is over-parametrized,
with more degrees of freedom than there are notes.
We make this modeling choice because it is hard know
exactly which degrees of freedom are needed ahead
of time, so we use the training data from the soloist
to help sort this out. Unnecessary learned parame-
ters may contribute some noise to the resulting timing
model, but the overall result is acceptable.

While this approach works reasonably well in the con-
certo setting, it is less reasonable when our system
needs a sense of musicality that acts independently, or
perhaps even in opposition, to what other players do.
Such a situation occurs with the early-stage accompa-
niment problem discussed in Section 1, as here one can-
not learn the desired musicality from the live player.
Perhaps the accompaniment antithesis of the concerto
setting is the opera orchestra, in which the “accom-
panying” ensemble is often on equal footing with the
soloists. We observed the nadir of our system’s perfor-
mance in an opera rehearsal where our system served
as rehearsal pianist. What these two situations have
in common is that they require an accompanist with
independent musical knowledge and goals.

One possible line of improvement is simply decreasing
the model’s freedom — surely the player does not wish
to change the tempo and apply tempo-independent
note length variation on every note. One possibility
adds a hidden discrete process that “chooses,” for each
note, between three possibilities: no variation of either
kind, or variation of either tempo or note length. Of
these, the choice of neither variation would be the most
likely, thus biasing the model toward simpler musical

Music Plus One and Machine Learning

interpretations, adopting the point of view of “Ock-
ham’s razor” with regard to interpretation. While ex-
act inference is no longer possible with such a model,
we expect that one can make approximations that will
be good enough to realize the full potential of the
model, whatever that is.

Perhaps a more interesting approach analyzes the mu-
sical score to choose the locations requiring additional
degrees of freedom. Omne can think of this approach
as adding “joints” to the musical structure so that it
deforms into musically-reasonable shapes as a musi-
cian applies external force. Here there is an interest-
ing connection with the work on expressive synthesis,
such as (Widmer & Goebl, 2004), in which one al-
gorithmically constructs an expressive rendition of a
previously-unseen piece of music, using ideas of ma-
chine learning. One idea here is to associate vari-
ous score situations, defined in terms of local config-
urations of measurable score features, with interpre-
tive actions. The associated interpretive actions are
learned by estimating timing and loudness parame-
ters from a performance corpus, over all “equivalent”
score locations. Such approaches are far more ambi-
tious than our present approach to musicality, as they
try to understand expression in general, rather than
in a specific musical context.

The understanding and synthesis of musical expres-
sion is surely one of the grand challenges facing
music-science researchers, and while progress has been
achieved in recent years, it would still be fair to call the
problem “open.” One of the principal challenges here
is that one cannot directly map observable surface-
level attributes of the music, such as pitch contour or
local rhythm context, into interpretive actions, such as
delay, or tempo or loudness change. Rather, there is a
murky intermediate level in which the musician comes
to some understanding of the musical meaning, and on
which the interpretive decisions are conditioned. This
meaning comes from different aspects of the music.
Some comes from structural aspects, for example, as
the way the end of a section or phrase is reflected with
a sense of closure. Some meaning comes from prosodic
aspects, analogous to speech, such as anticipation and
points of arrival. A third aspect of meaning describes
an overall character or affect of a section of music, such
as excited or calm. While there is no official taxonomy
of musical interpretation, most discussions on this sub-
ject stem from such intermediate identifications and
the interpretive actions they require.

From the machine learning point of view it is impossi-
ble to learn anything useful from a single example, thus
one must group together many examples of the same

musical situation in order to learn their associated in-
terpretive actions. Thus it seems natural to model the
music in terms of some latent variables that implicitly
categorize individual notes or sections of music. What
should the latent variables be, and how can one de-
scribe the dependency structure among them? While
we cannot answer these questions, we see in them a
good deal of depth and challenge, and recommend this
problem to the musically inclined members of the ML
community with great enthusiasm.

References

Cont, A., , Schwarz, D., and Schnell, N. From boulez
to ballads: training ircam’s score follower. In Proc.
of the International Computer Music Conference,
pp. 241-248, 2005.

Dannenberg, R. and Mukaino, H. New techniques
for enhanced quality of computer accompaniment.
In Proc. of the 1988 International Computer Music
Conference, pp. 243-249, 1988.

Dannenberg, Roger and Mont-Reynaud, Bernard. Fol-
lowing an improvisation in real time. In Proc. of the
1987 International Computer Music Conference, pp.
241-248, 1987.

Flanagan, J. L. and Golden, R. M. Phase vocoder.
Bell Systems Technical Journal, 45(Nov):1493-1509,
1966.

Franklin, Judy. Improvisation and learning. In Ad-
vances in Neural Information Processing Systems

14. MIT Press, Cambridge, MA, 2002.

Lippe, C. Real-time interaction among composers,
performers, and computer systems. Information
Processing Society of Japan, SIG Notes, 123:1-6,
2002.

Pachet, Francois. Beyond the cybernetic jam fantasy:
The continuator. IEEE Computer Graphics and Ap-
plications, 24(1):31-35, 2004.

Raphael, C. Current directions with music plus one. In
Proc. of the 6th Sound and Music Computing Con-
ference, pp. 71-76, 2009.

Rowe, Robert. Interactive Music Systems. MIT Press,
1993.

Schwarz, D. Score following commented bibliogra-
phy, 2003. URL http://www.ircam.fr/equipes/
temps-reel/suivi/bibliography.html.

Widmer, G. and Goebl, W. Computational models for
expressive music performance: The state of the art.
Journal of New Music Research, 2004.

