
Model-based reinforcement learning
with nearly tight exploration complexity bounds

István Szita szityu@gmail.com
Csaba Szepesvári szepesva@cs.ualberta.ca

University of Alberta, Athabasca Hall, Edmonton, AB T6G 2E8 Canada

Abstract

One might believe that model-based algo-
rithms of reinforcement learning can propa-
gate the obtained experience more quickly,
and are able to direct exploration better.
As a consequence, fewer exploratory actions
should be enough to learn a good policy.
Strangely enough, current theoretical results
for model-based algorithms do not support
this claim: In a finite Markov decision pro-
cess with N states, the best bounds on the
number of exploratory steps necessary are
of order O(N2 logN), in contrast to the
O(N logN) bound available for the model-
free, delayed Q-learning algorithm. In
this paper we show that Mormax, a modi-
fied version of the Rmax algorithm needs to
make at most O(N logN) exploratory steps.
This matches the lower bound up to logarith-
mic factors, as well as the upper bound of the
state-of-the-art model-free algorithm, while
our new bound improves the dependence on
other problem parameters.

In the reinforcement learning (RL) framework, an
agent interacts with an unknown environment and
tries to maximize its long-term profit. A standard way
to measure the efficiency of the agent is sample com-
plexity or exploration complexity. Roughly, this quan-
tity tells how many non-optimal (exploratory) steps
does the agent make at most.

The best understood and most studied case is when the
environment is a finite Markov decision process (MDP)
with the expected total discounted reward criterion.
Since the work of Kearns & Singh (1998), many algo-
rithms have been published with bounds on their sam-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

ple complexity. Some of these algorithms like Rmax,
MBIE, OIM build an approximate model of the envi-
ronment, while others, like delayed Q-learning, do
not, but rather approximate an action value function
directly.

Intuitively, keeping a model should help: whenever
some information is gained from an exploratory move,
a model-based algorithm can immediately propagate
that information throughout the state space. More ef-
ficient use of information means that, at least in prin-
ciple, less exploration is needed.

In this light, it seems surprising that the best known
sample complexity bounds are better for model-free
methods than for the model-based ones: the sample
complexity of delayed Q-learning scales linearly
with the number of states, while the previously best
known bounds for model-based methods scale quadrat-
ically. One may speculate that this is because in a
model the number of transitions that need to be stored
(and thus estimated) is quadratic in the number of
states.

Here we show that this is not the case: The quadratic
bounds of earlier results were not due to the inher-
ent limitations of the model-based approach. Specifi-
cally, we present a slight modification of the Rmax al-
gorithm and show that (disregarding logarithmic fac-
tors) its sample complexity scales only linearly with
the number of states, and has better dependence on
the value upper bound Vmax and the required precision
ε than the previous best bound, which was available
for a model-free algorithm.

1. Markov decision processes

A standard assumption of RL is that the environment
is (discounted-reward, finite) MDP. Here we only in-
troduce the notational framework used in the paper,
for detailed explanations we refer the reader to Bert-
sekas & Tsitsiklis (1996). Technically, a finite MDP M



Model-based reinforcement learning – exploration complexity bounds

is a triple (X,A,P), where X is a finite set of states;
A is a finite set of possible actions; and P, determin-
ing the evolution of the decision process, maps X ×A
into distributions over X × R (states and rewards).
We assume that all the (random) immediate rewards
are nonnegative and are upper-bounded by a constant
Rmax ≥ 0. By slightly abusing the notation when the
stochasticity of the rewards is not a concern, we can
identify M with the 4-tuple (X,A,P,R) for an MDP,
where P : X × A × X is the transition kernel and
R : X × A → [0, Rmax] is the immediate expected re-
ward function underlying P.

A policy π is a mapping that assigns to every history
h a probability mass function over the actions A. Fol-
lowing a policy in the MDP means that at ∼ π(·|ht).
A stationary policy is identified with a mapping π :
X × A → [0, 1]. We assume that future rewards are
discounted by a multiplicative factor γ ∈ [0, 1). The
discounted state- and action-value functions will be
denoted by V π and Qπ, respectively, for any (not nec-
essarily stationary) policy π. The optimal state- and
action-value functions will be denoted by V ∗ and Q∗.

If the parameters of the MDP, P and R are known,
then the optimal value function (and thus the optimal
policy) can be found by an iterative solution of the
Bellman-equations (Bertsekas & Tsitsiklis, 1996). In
the reinforcement learning setting, however, P and R
are unknown, and the agent has only access to direct
experience: being in state xt and taking action at, it
can observe the next state xt+1 and the reward rt. For
simplicity, in this paper we assume that the reward
function is known, while the transition probabilities
are not.1

Exploration. In an unknown environment, the agent
has to make exploratory actions to learn the effects
of its actions, and thus learn how to get to the most
rewarding parts of the state space. This means that
from time to time, the agent has to take actions other
than the ones that seem best for the moment, in the
hope that it finds something better. Failing to do that,
the agent may never find the optimal policy. On the
other hand, too much exploration reduces the amount
of collected rewards unnecessarily. Finding the right
balance is non-trivial.

Model-based and model-free learning. There are
three main branches of RL methods for learning in
MDPs. Of course, the boundaries of these three cate-
gories are somewhat blurred.

Model-based methods approximate the transition

1The results would continue to hold in the more general
case with some obvious modifications.

probabilities and the reward function, then derive
a value function from the approximate MDP. The
policy of the agent is then derived from the value
function. Model-free methods directly learn a value
function (and from that, a policy). The third branch
consists of policy search algorithms which aim at
finding a policy without resorting to estimating value
functions. As no sample complexity results are known
about policy search methods, we will not discuss them
in this paper.

1.1. Sample complexity of reinforcement
learning

One natural evaluation criterion for RL algorithms
is to count the number of non-optimal actions taken
(these are the exploratory actions or those that the
agent mistakenly believes to be optimal). Before giv-
ing the precise definition, we need the concept of MDP
learning algorithms. An MDP learning algorithm
(in short, algorithm) is a procedure which gets as in-
put the number of states, actions, γ, Rmax (and pos-
sibly other parameters) of some MDP M and then in-
teracts with M by sequentially observing states and
rewards and sending actions to M . Actions must
still be chosen based on past observations. Given
x0, a0, r0, x1, a1, r1, . . ., a stream of experience gener-
ated when algorithm A interacts with M , we define
its (expected future) value at time t, conditioned on
the past ht as V At,M = E [

∑∞
s=0 γ

srt+s |ht]. Note that

V At,M is a random variable. Let Vmax be an upper
bound on the state values in the MDP. (Clearly, we
can choose Vmax = Rmax/(1−γ), but sometimes much
better bounds are available.)

Definition 1 (Kakade, 2003) Let ε > 0 be a pre-
scribed accuracy and δ > 0 be an allowed probability of
failure. The expression ζ(ε, δ,N,K, γ,Rmax) is a sam-
ple complexity bound for algorithm A, if the following
holds: Take any ε > 0, δ ∈ (0, 1), N > 0, K > 0,
γ ∈ [0, 1), Rmax > 0 and any MDP M with N states,
K actions, discount factor γ, and rewards bounded by
Rmax. Let A interact with M , resulting in the pro-
cess x0, a0, r0, x1, a1, r1, . . .. Then, independently of
the choice of x0, with probability at least 1 − δ, the
number of timesteps such that V At,M < V ∗(xt)− ε is at

most ζ(ε, δ,N,K, γ,Rmax).2

An algorithm with sample complexity that is poly-
nomial in 1/ε, log(1/δ), N , K, 1/(1 − γ), Rmax is

2 An alternative way for measuring sample complexity
is to count the number of timesteps when Q∗(xt, at) <
V ∗(xt) − ε. If ζ′ is a uniform bound on this count, and ζ
is as above then one can show that ζ′ ≤ ζ.



Model-based reinforcement learning – exploration complexity bounds

called PAC-MDP (probably approximately correct in
MDPs).

1.2. Previous sample complexity results

The above definition of sample complexity is due to
Kakade (2003), though algorithms with polynomial
sample complexity existed before. The first such al-
gorithm was E3 (Kearns & Singh, 2002), which was
followed by other, simpler algorithms like Rmax (Braf-
man & Tennenholtz, 2002), model-based interval-
estimation (MBIE) (Strehl & Littman, 2005) and
optimistic initial model (OIM) (Szita & Lőrincz,
2008), all of which are model-based. The state-
of-the-art complexity bound for model-based learn-
ing in MDPs is due to Li (2009), who showed that

Rmax takes at most Õ
(
N2KV 3

max

ε3(1−γ)3

)
exploratory ac-

tions.3 The only model-free method with known com-
plexity bounds is for delayed Q-learning (Strehl

et al., 2006), which requires at most Õ
(
NKV 4

max

ε4(1−γ)4

)
ex-

ploratory actions.

It is worth mentioning that if the agent has access to
an oracle that can draw samples from P (x, a, y) for

any (x, a) pair, then Õ
(
NKV 2

max

ε2(1−γ)2

)
samples are suffi-

cient (Kearns & Singh, 1998). The best available lower

bound is by Li (2009): at least Ω(
NKR2

max

ε2 log N
δ ) ex-

ploratory moves are necessary for any deterministic
algorithm that learns from samples.

An alternative interesting measure for the effective-
ness of an RL algorithm is regret, the total reward lost
by the algorithm in comparison to the optimal policy
(e.g., Auer et al. 2009). Discussion of regret bounds is
out of the scope of the present paper.

2. The modified Rmax algorithm

The original Rmax algorithm is an archetypical ex-
ample of a model-based RL algorithm. The model of
Rmax is not accurate (especially not at the beginning
of learning when the agent has basically no informa-
tion about the environment), but it ensures that when-
ever there is uncertainty about a state, its value will
be overestimated. Initially, the model assumes that
each state is worth Rmax immediate reward (hence
the name), and all actions self-loop, thus their value
is Vmax = Rmax/(1 − γ). As soon as enough samples
are collected about a state, the agent estimates the
transition probabilities (and rewards) from that state,
then recalculates the optimal policy according to the
current model. As the value of unknown states is over-

3The notation Õ(n) stands for O(n logn).

estimated, the agent will be drawn towards them until
they are explored.

The original algorithm needs m = O(N logN) sam-
ples (considering only N -dependency) per state-action
(SA) pairs. After collecting this many samples for an
SA-pair, Rmax considers the pair known, and stops
collecting further information. The analysis of de-
layed Q-learning (Strehl et al., 2006) and paral-
lel sampling (Kearns & Singh, 1998) suggests that
m = O(logN) samples might be enough if we keep
collecting fresh data, and when an m-element batch of
new data is collected, we re-estimate the model if nec-
essary. Obviously, if we want any benefits, the num-
ber of re-estimations cannot be too large. Let t be the
current time step and τ̂t,x,a be the last time prior to
t when an update of the model at (x, a) was consid-
ered (or 0 if no update happened yet at (x, a)). We
will show that no update is necessary, if no updates
happened elsewhere in the model between τ̂t,x,a and
t. Nor is an update necessary unless the value of a
SA-pair is decreased significantly, say, by c · ε with
some appropriate constant c > 0. Consequently, any
(x, a) pair will be updated at most Vmax/(cε) times,
which is affordable. The resulting Mormax algorithm
is listed as Alg. 1.4 To increase readability, we omit-
ted subscripts. To match with the quantities used in
the proofs, set a ← at, x ← xt, y ← xt+1. Other
than that, all left-hand side quantities should be as-
signed index t + 1, right-hand side ones index t. One
exception is Q̂prev(x, a), which refers to Q̂τ̂x,a

(x, a).
Note that if we simplify the condition in line 14 to
‘if (τ̂x,a = 0) then. . . ’ and increase m, we get back the
original Rmax algorithm.

We note that the naive representation of P̂ requires
O(N2K) space. Using a more effective implementa-
tion, such as the one used by Kearns & Singh (1998),
does not store the full transition probability table, only
the m = O(log(NK)) samples for each SA-pair, so the

total space complexity can be cut down to Õ(NK).

Theorem 1 Fix some prescribed accuracy ε > 0, fail-
ure probability δ ∈ (0, 1), and discount factor γ ∈
[0, 1). Let M = (X,A,P,R) be an MDP with |X| = N
states and |A| = K actions, with nonnegative rewards,
and a value Vmax ∈ R that is an upper bound on all dis-
counted cumulated rewards. If the Mormax algorithm
runs on MDP M then with probability at least 1−δ, the
number of time steps t for which V Mormax

M,t < V ∗M (x)−ε
is bounded by Õ

(
NKV 2

max

(1−γ)4ε2

)
.

4Mormax stands for modified Rmax.



Model-based reinforcement learning – exploration complexity bounds

Algorithm 1 The Mormax algorithm

1: Input: discount γ, accuracy ε, allowed failure prob. δ, value upper bound Vmax

2: Initialization:
3: t := 0; τ∗ := 0; ε2 := (1− γ)ε/(15γ); m :=

1800γ2V 2
max

ε2(1−γ)2 log 144γN2K2Vmax

δε(1−γ)
4: for all (x, a, y) ∈ X ×A×X do

5: n(x, a, y) := 0; n(x, a) := 0 P̂ (x, a, y) := I {x = y}; R̂(x, a) := (1− γ)Vmax; τ̂x,a := 0;

6: Q̂ := SolveMDP(P̂ , R̂, γ)
7: Receive x from the environment
8: repeat
9: a := arg maxa′ Q̂(x, a′) //greedy action w.r.t. current optimistic model

10: interact: Apply a and observe r and y
11: n(x, a) := n(x, a) + 1; n(x, a, y) := n(x, a, y) + 1 // update counters
12: if n(x, a) = m then
13: // if (x, a) is not yet known or change is significant, we update the model

14: if (τ̂x,a = 0) ∨ [(τ∗ > τ̂x,a) ∧ (Q̂prev(x, a)− Q̂(x, a) > γε2)] then

15: P ′ := P̂ , R′ := R̂; P ′(x, a, ·) = n(x, a, ·)/m; R′(x, a) = R(x, a)
16: Q′ = SolveMDP(P ′, R′, γ) // calculate trial model

17: if Q′(x, a) ≤ Q̂(x, a) then

18: P̂ := P ′; R̂ := R′; Q̂ := Q′ // model update

19: τ̂x,a := t; τ∗ := t; Q̂prev(x, a) := Q̂(x, a)
20: n(x, a) := 0, n(x, a, ·) := 0 // restart sample collection at (x, a)
21: t := t+ 1; x := y
22: until interaction lasts

3. Bounding sample complexity

For a reader familiar with RL sample complexity
bounds, most of the following proof may look famil-
iar: the logic of the proof is fairly standard. Ele-
ments of the proof appear in the works of Kearns &
Singh (1998); Kakade (2003); Szita & Lőrincz (2008);
Li (2009) and Strehl et al. (2006). Nevertheless, we
provide a detailed sketch of the proof because our im-
provement on the key lemma induces changes in all
other parts of the proof, so citing the original versions
of various lemmas from the abovementioned papers
would inevitably lead to confusion and loss of rigour.
For lack of space, easy and/or well-known results are
stated as lemmas without proofs.

3.1. Definitions

Let us fix ε1 = O(ε) and δ1 = O(δ), with their exact
values defined later. For any time step t, let xt be the
actual state and at be the action of the agent; and let
Ft be the σ-algebra defined by the history up to t, that
is, Ft = σ{x0, a0, r0, . . . , xt, at, rt, xt+1}. 5

Update times, phase end times, known SA-
pairs. Given t ≥ 1, we define the phase end times

5 Readers not experienced with measure theory can read
“quantity X is Ft measurable” as “if we know the history
up to t, then we can also compute quantity X”.

τt,x,a as the last time step before t when m new sam-
ples for (x, a) were collected. Furthermore, we have al-
ready defined the update times τ̂t,x,a as the last time a
model update was considered. A model update is con-
sidered whenever Q̂t(x, a) has decreased significantly
since the last update time. It generally means that
the model is updated—unless that would cause an in-
crease of Q̂t (in this case only τ̂ is updated). Let Kt

be the set of SA-pairs that are “known” at time t, that
is, where the agent has a reasonable approximation to

P (x, a, ·): Kt
def
= {(x, a) ∈ X ×A : τ̂t,x,a > 0}.

Approximate model. The approximate model M̂t =
(X,A, P̂t, R̂t) is defined with

P̂t(x, a, y)
def
=

{
nτ̂t,x,a

(x, a, y)/m, if (x, a) ∈ Kt;

I {x = y} , if (x, a) 6∈ Kt,
6

R̂t(x, a)
def
=

{
R(x, a), if (x, a) ∈ Kt;

Rmax, if (x, a) 6∈ Kt.

Let π̂t be the optimal policy of the MDP M̂t and Qπ̂t

M̂t

be its action-value function.

Truncation, ε1-horizon. Fix an MDP M , discount
factor γ, and a (not necessarily memoryless) policy
π. Let R0,R1, . . . be the random sequence of re-

6I {·} is the indicator function.



Model-based reinforcement learning – exploration complexity bounds

wards generated by M and π when the initial state
is chosen uniformly at random from X. For any
H ∈ N and x ∈ X, define the H-step truncated value

V πM (x;H)
def
= E

[∑H−1
i=0 γiRi|x0 = x

]
. Define the ef-

fective ε1-horizon H = H(ε1)
def
= 1

1−γ ln Vmax

ε1
.

The “nice” set. Let ε2 = ε(1 − γ)/(15γ) and let Lt
be the set of SA-pairs where the effect of using the
approximate model is small:

Lt
def
= {(x, a) ∈ Kt :

∑
y∈X

(P̂t−P )(x, a, y)V π̂t

M̂t
(y) ≤ 3ε2}.

Note that all nice SA-pairs are known, but the set
can be much smaller: we will prove later that (x, a)
is nice if no model update is likely to happen in H
steps, if the agent starts form (x, a) with its current
knowledge. The Idea of nice sets appears first in the
analysis of delayed Q-learning (Strehl et al., 2006), but
in our case, the situation is more complex, because
model updates in a single (x, a) may affect the whole
state space.

Escape event. Define Et as the event that the ap-
proximate model of the agent will change within the
next H steps, either because a state becomes known
or because the transition probabilities of an SA-pair
are updated. Formally,

Et
def
=
⋃H−1
i=0 {Q̂t+i+1 6= Q̂t+i} ∪ {xt+i 6∈ Lt+i} .

Let et be the conditional probability that Et happens:

et
def
= P(Et|Ft) .

Auxiliary MDP. We define an MDP M t =
(X,A, P t, Rt) which is the same as M on Lt; all
states in X \ Kt are absorbing with value Vmax, and
the states in Kt \ Lt are also absorbing, but have the

same value as in M̂t for policy π̂t:

P t(x, a, y)
def
=

{
P (x, a, y), if (x, a) ∈ Lt;
I {x = y} , otherwise,

Rt(x, a)
def
=

{
R(x, a), if (x, a) ∈ Lt;
(1− γ)Q̂t(x, a), otherwise.

Note that the agent does not know M t (as it does not
know the true transition probabilities and Lt), but M t

will be useful in the proof to connect policy values in
M̂t and M .

3.2. The fundamental approximation lemma

We begin the proof with a lemma that bounds the dis-
tance of the empirical transition probability estimates
to their true values. This lemma is responsible for de-
termining the complexity bound of the algorithm.

Lemma 2 Fix δ ∈ (0, 1), ε > 0, Vmax > 0,
m ∈ N, an arbitrary MDP M = (X,A, P,R), and
a (possibly history dependent) policy π of M . Let
x0, a0, r0, x1, a1, r1, . . . , xt−1, at−1, rt−1, xt, . . . be the
sequence of state-action-reward triplets generated by
following π in M from a random initial state x0.
Let Ft = σ{x0, a0, r1 . . . , xt, at, rt+1, xt+1}, and τ
be a stopping time w.r.t. {Ft}. Fix (x, a) ∈ X × A
and let tk be the kth time step such that t ≥ τ and
(xt, at) = (x, a) (possibly infinity). Let V : X → R
be any Fτ -measurable value function satisfying
0 ≤ V (z) ≤ Vmax for all z ∈ X. Define the
approximate transition probabilities for all y ∈ X:

P̂∞(y)
def
=

1

m

m∑
i=1

I {ti<∞;xti+1=y}+I(ti=∞)P (x, a, y) .

If m ≥ 8V 2
max

ε2 log 2
δ then with probability 1 − δ,∣∣∑

y∈X(P (x, a, y)− P̂∞(y))V (y)
∣∣ < ε .

Similar versions of the lemma can be found in the re-
lated literature, e.g. Lemma 9.1.1. of Kakade (2003).
There are two significant differences: (1) Previous vari-
ants of the lemma did not consider the possibility
ti = ∞ (which may happen with nonzero probabil-
ity, for example, if the algorithm decides that no path
containing x can be optimal, so it stops visiting it).
Therefore, it is not correct to apply the previous vari-
ants unless under all policies the visit probabilities of
all states are uniformly bounded away from zero. (2)
We allow the value function V to be random as long
as it is Fτ -measurable. Therefore, we do not need to
get a good approximation on all possible instances of
the N -dimensional space of value functions, only the
polynomially many (random) value functions Vt that
we encounter during the run of the algorithm. This
allows us to use fewer samples, but the improvement
comes at a price: we need to make some changes to
the algorithm itself so that the lemma becomes ap-
plicable. So, understanding the assumptions of the
lemma is necessary to understand why the changes in
the algorithm are necessary.

3.3. The number of non-optimal steps

Let V̂t be the shorthand notation for V π̂t

M̂t
, the optimal

value function in the approximate model. We fix an
(x, a) pair, then use the shorthands p(y) = P (x, a, y)

and p̂t(y) = P̂t(x, a, y).

Bounding the number of updates. The τ̂ for an
SA-pair (x, a) can be updated once when it is added
to the set Kt, and Vmax/ε2 times when the probabili-
ties are updated. To see the latter, let t > t1 be two
consecutive update times (with the possibility t1 = 0),



Model-based reinforcement learning – exploration complexity bounds

and note that the update condition can be written as∑
y∈X p̂t1(y)V̂t1(y)− p̂t(y)V̂t(y) ≥ ε2 .

Therefore, the quantity
∑
y∈X p̂tk(y)V̂tk(y),

k = 0, 1, 2, . . ., decreases by at least ε2 on every
update (maybe more, if Q′(x, a) ≤ Q̂t(x, a)). It
is at most Vmax, and is always nonnegative, so at
most Vmax/ε2 updates can happen because of each
SA-pair. Thus, the total number of updates is at

most κ
def
= NK(Vmax/ε2 + 1).

The value function is monotonous. V̂t is
monotonously decreasing: if there is no update at
time t+ 1, then V̂t+1 = V̂t; and if there was an update

in SA-pair (x0, a0), then V̂t+1(x0) ≤ V̂t(x0), so it is

easy to see that V̂t+1(x) ≤ V̂t(x) for all x.

Nice set changes only when there is an update.
Fix an SA-pair (x, a) ∈ Kt and timestep t. Let t1 =
τt,x,a ≤ t be the phase end preceding t. If there were
no updates anywhere in the MDP between t1 and t
and (x, a) ∈ Lt1 , then (x, a) ∈ Lt as well, because the
set Lt can only change if there is an update to the
model.

If an SA-pair is not updated twice in a row,
it is “nice”. Fix an SA-pair (x, a) and a time step
t. With a slight abuse of notation, we denote the kth
phase end of (x, a) by τk. For some k, τt,x,a = τk. Let
t2 = τk+1 the random time of the phase end following
t and t3 = τk+2 be the next phase end. Note that
both τk+1 and τk+2 are potentially infinity with some
probability. Let Z be the event that t3 is finite and no
update is done either at t2 or t3. (When we will need
to refer to Z, t2, or t3 and the identity of t, x and a
will be important, we will use the respective symbols
Zt,x,a, tx,a2 (t) and tx,a3 (t).)

For every k ∈ N and (x, a) ∈ X × A, let Fk,x,a be the

failure event when
∑

(p(y) − p̂∞τk+2
(y))V̂τk+1

(y) ≤ ε2
does not hold (where p̂∞ is the semi-empirical approxi-

mation defined in Lemma 2). The value function V̂τk+1

is Fτk+1
-measurable, so we can apply Lemma 2 to get

P(Fk,x,a) ≤ δ1 if m ≥ 8V 2
max

ε22
log 2

δ1
.7 Note that the

failure probability is small for each k, but their sum
for all k ∈ N would still grow indefinitely. Luckily, we
only have to re-check the accuracy of the approxima-
tion when the nice set changes, and by the previous
point, this only happens if Q̂τk 6= Q̂τk+1

. So let us
define the failure event

F
def
=
⋃

(x,a)∈X×A
⋃
k∈N Fk,x,a ∩ {Q̂τk 6= Q̂τk+1

} .

7Note that if kl is a stopping time, we still have
P(Fkl,x,a) ≤ δ1.

Let us restrict our attention now to the event Z ∩ F c
(intuitively, this is the event when there are at least
two more phase ends after t, we do not update the
value function at either of them, and the checking of∑

(p(y)− p̂∞τk+2
(y))V̂τk+1

(y) ≤ ε2 never fails). On Z ∩
F c, t2 and t3 are finite, so p̂∞t2 = p̂t2 and p̂∞t3 = p̂t3 .
Furthermore, both update checks returned with the
result that an update is not necessary, so∑

y∈X p̂t1(y)V̂t1(y)− p̂t2(y)V̂t2(y) ≤ ε2 and∑
y∈X p̂t2(y)V̂t2(y)− p̂t3(y)V̂t3(y) ≤ ε2 .

Note that p̂t can only be updated at phase ends, so
p̂t = p̂t1 . Using these, and the monotonicity of V̂t,∑

p̂t(y)V̂t(y) =
∑

p̂t1(y)V̂t(y) ≤
∑

p̂t1(y)V̂t1(y)

≤
∑

p̂t3(y)V̂t3(y) + 2ε2 ;∑
p(y)V̂t(y) ≥

∑
p(y)V̂t2(y) ≥

∑
p̂t3(y)V̂t2(y)− ε2

≥
∑

p̂t3(y)V̂t3(y)− ε2 ,

so, on F c ∩ Z, (x, a) ∈ Lt because∑
(p̂t(y)− p(y))V̂t(y) ≤ 3ε2 . (1)

Bounding the failure probability. For any fixed
(x, a), let κ̃ = κ̃(x, a) be the number of times when
the model was updated during the interval [τk, τk+1).
Denote the corresponding indices of τk by k1, . . . , kκ̃.
The quantity κ̃ is random, but is upper bounded by
the total number of updates to the model, which is
upper bounded by the deterministic quantity κ. For
κ̃ ≤ `, define k` = kκ̃, then

P(F ) ≤ P
(⋃

(x,a)∈X×A
⋃
`∈{1...κ} Fk`,x,a

)
≤
∑
x,a∈X×A

∑κ
`=1 P(Fk`,x,a) ≤ κNKδ1 .

Bound on the number of times when encoun-
tering a non-nice SA-pair. We wish to bound the
cardinality of B = {t|(xt, at) 6∈ Lt} on F c. Since we
have shown that on F c ∩ Zt,x,a, (x, a) ∈ Lt holds, it
follows that, B ⊂ {t |ω ∈ Zct,xt,at} (on F c). Now,
Zct,x,a happens when either tx,a3 (t) is infinite or an
update is done at tx,a2 (t) or tx,a3 (t). Therefore, on
F c, B ⊂ ∪(x,a)∈X×A{t | (x, a) = (xt, at), t

xt,at
3 (t) =

∞}∪{t |update at txt,at
2 (t)}∪{t |update at txt,at

3 (t)}.
The cardinality of the first set in the right-hand side is
at most 2mNK, since for each SA-pair (x, a) which is
visited a finite number of times, there is a time when
it is visited the last time. Then, tx,a3 (t) =∞ can only
happen at most 2m previous visits of (x, a) before this
last visit. In order to bound the cardinality of the sec-
ond set, recall that the total number of updates is κ.



Model-based reinforcement learning – exploration complexity bounds

Pick any update with update time u. If u = txt,at
2 (t)

for some time t, then t must be one of the at most m
visits to (xt, at) that happened just before u. Since
this way all elements of the said set are covered, the
set’s cardinality cannot be larger than mκ. The same
reasoning holds for the third set, showing that the to-
tal cardinality is bounded by 2mκ+ 2mNK.

Counting non-optimal steps. Let Tescape
def
=∑∞

t=0 I {et > ε1/Vmax} be the number of time steps
where the chance of running into a non-nice SA-pair
in H steps is high.

Lemma 3 Let F ′ be the failure event that Tescape >

12mNKH2 + 2H
√

12 ε1
Vmax

mNKH log 1
δ1

+ 4H log 1
δ1

.

Then P(F ′) ≤ δ1.

Next, we will show that except for these at most Tescape
time steps, our algorithm is near-optimal.

3.4. Proving near-optimality

Fix a time step t and let us assume that et ≤ ε1/Vmax.

Truncation. All rewards are nonnegative, so horizon-
H truncation can only decrease values, so

V Mormax
t,M (x) ≥ V Mormax

t,M (x;H) for all x ∈ X: (2)

Substitution with a stationary policy and an
auxiliary model. The event that the model is up-
dated in the next H steps is contained in the event Et
which has low probability: et = P(Et|Ft) ≤ ε1/Vmax.
Furthermore, the event that the agent leaves Lt in the
next H steps is also contained in Et. Therefore, on
(Et)

c, the policy of Mormax stays stationary at π̂t,
and it does not leave the set Lt. We also know that
on Lt, M and M t are identical. Therefore,

V Mormax
M (xt;H) ≥ V π̂t

Mt
(xt;H)− ε1 . (3)

Undo truncation. If the horizon time
H ≥ 1

1−γ log Vmax

ε1
, the effect of truncation is

small enough to give

V π̂t

Mt
(x;H) ≥ V π̂t

Mt
(x)− ε1 for all x ∈ X. (4)

Approximation with the empirical model. If the
transition probabilities of two MDPs are close to each
other, then so are the value functions of a fixed policy:

Lemma 4 Let M1 = (X,A, P1, R), M2 =
(X,A,P2, R) be two MDPs, and fix discount fac-
tor γ, precision ε1, and policy π. Let V1 and V2 be the
value functions of π in their respective MDPs. If∑

y∈X(P1 − P2)(x, a, y)V1(y) ≤ ε1(1− γ)/γ

for every (x, a) ∈ X × A, then V1(x)− V2(x) ≤ ε1 for
every x ∈ X.

For any (x, a) ∈ Lt, P t(x, a, y) = P (x, a, y). Re-
call that Lt is the set of SA-pairs where the effect
of changing the model is in some sense small: Lt =
{(x, a) ∈ Kt :

∑
y∈X(P̂t − P )(x, a, y)V π̂t

M̂t
(y) ≤ 3ε2}.

On (Lt)
c, P t(x, a, y) = P̂ (x, a, y), so

∑
y∈X(P̂t −

P t)(x, a, y)V π̂t

M̂t
(y) ≤ 3ε2 = ε1(1− γ)/γ holds for every

SA-pair, and by Lemma 4 this means that

V π̂t

Mt
(x) ≥ V π̂t

M̂t
(x)− ε1 for all x ∈ X. (5)

Optimality of π̂t. The optimal policy of M̂t is π̂t, so
its value is at least as large as for any other policy, for
example π∗:

V π̂t

M̂t
(x) ≥ V π

∗

M̂t
(x) for all x ∈ X. (6)

Substitution with another auxiliary model.
Let us introduce now a new auxiliary MDP
M̃t = (X,A, P̃t, R) that is identical to M̂t on Kt and to

M outside: P̃t(x, a, y)
def
=

{
P̂ (x, a, y), if (x, a) ∈ Kt;

P (x, a, y), if (x, a) 6∈ Kt.

The following lemma tells that if the one-step look-
aheads are consistently smaller in one MDP than in
an other, then the value function of a fixed policy is
also smaller there:

Lemma 5 Consider two MDPs M1 = (X,A,P1, R1),
M2 = (X,A, P2, R2), and fix discount factor γ and sta-
tionary policy π. Let V1 and V2 be the value functions
of π in their respective MDPs and let v ∈ RX be an
arbitrary value function. If

R1(x, a) + γ
∑
y∈X

P1(x, a, y)v(y)

≤ R2(x, a) + γ
∑
y∈X

P2(x, a, y)v(y)

for every (x, a) ∈ X×A, then V1(x) ≤ V2(x), ∀x ∈ X.

Applying the lemma to M̂t and M̃t, we get that

V π
∗

M̂t
(x) ≥ V π

∗

M̃t
(x) for all x ∈ X. (7)

Substitution with the real model. For all (x, a) ∈
X ×A, consider the quantity

dt(x, a) =
∑
y∈X(P (x, a, y)− P̃t(x, a, y))V ∗(y).

For (x, a) 6∈ Kt, P̃t(x, a, y) = P (x, a, y), so dt(x, a) =



Model-based reinforcement learning – exploration complexity bounds

0. For (x, a) ∈ Kt, P̂t = P̂τ̂k for some k >
0 with τ̂k ≤ t. The optimal value function V ∗

is Fτ̂k−1
-measurable (as it is non-random), so, by

Lemma 2, if m ≥ 8V 2
max

ε22
log 2

δ1
, then

∑
y∈X(P (x, a, y)−

P̂∞(x, a, y))V ∗(y) except for an event F ′′x,a with prob-
ability P(F ′′x,a) ≤ δ1. Because of τ̂k ≤ t, τ̂k is finite, so

P̂∞(x, a, y) = P̂t(x, a, y) = P̃t(x, a, y) for all y ∈ X, so
dt(x, a) ≤ ε2 < 3ε2 = ε1(1− γ)/γ.

Let F ′′ =
⋃
x,a∈X×A F

′′
x,a, for which P(F ′′) ≤ NKδ1.

Consider now the case when event (F ′′)c holds. In this
case, by Lemma 4,

V π
∗

M̃t
(x) ≥ V π

∗

M (x)− ε1 for all x ∈ X. (8)

Bounding failure. The algorithm may encounter
three failure events: F , F ′ and F ′′. Their total proba-
bility is P(F ∪F ′∪F ′′) ≤ P(F )+P(F ′)+P(F ′′) ≤ N2 ·
K2 · (Vmax/ε2 + 1)δ1 + δ1 +NKδ1 This is at most δ for
δ1 = δ/(4N2K2Vmax/ε2). Apart from this less-than-
δ chance of failure, the algorithm will make at most

12mNKH2 + 2H
√

12 ε1
Vmax

mNKH log 1
δ1

+ 4H log 1
δ1

non-near-optimal steps. In the rest of the time, by
adding up eqs. (2)–(8), V Mormax

M (xt) ≥ V ∗M (x) − 5ε1.
If ε1 = ε/5, we get ε-optimality. Expressed with the
original parameters, the necessary sample size is

m =
8V 2

max

ε22
log

2

δ1
≤ 1800γ2V 2

max

ε2(1− γ)2
log

144γN2K2Vmax

δε(1− γ)

and the upper bound on the non-optimal time steps is

Õ
(
NKV 2

max

(1−γ)4ε2

)
.

4. Discussion

For the sake of simplicity, we assumed that the re-
ward function is known, and only the transitions have
to be learned. When the reward is also learnt, we
need to make only slight modifications to the al-
gorithm and the analysis. For example, instead of
bounding

∑
y(P̂t(x, a, y) − P (x, a, y))V (y), we need

to bound
∑
y(R̂(x, a) + γP̂t(x, a, y)V (y))− (R(x, a) +

γP (x, a, y)V (y)). The sample complexity bounds re-
main exactly the same.

Of all PAC-MDP algorithms, proving the bounds of
Rmax is the simplest. Nevertheless, the efficiency
of the other listed methods is proven using the same
tricks, so we believe that their complexity upper
bounds can be improved likewise, so that the depen-
dence on N is log-linear.

A strange property of Mormax is that when a new
batch of samples is collected in an SA-pair, it throws

away the old samples. The flow of fresh samples is
crucial for the proof. However, from a practical point
of view, throwing away information seems suboptimal,
and is not clear whether it is really necessary. We also
note that sample complexity bounds, including ours,
are extremely conservative, because they are for the
worst case. In practice, much lower values of m are
used, so re-estimation of the probabilities can have a
significant effect. On the other hand, preserving old
samples could have more benefits, too.

Acknowledgments

This research was supported by iCORE and Alberta
Ingenuity, both part of Alberta Innovates –Technology
Futures, NSERC and the PASCAL2 Network of Excel-
lence under EC grant no. 216886. Cs. Szepesvári is
on leave from MTA SZTAKI.

References

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. In Koller, D., Schu-
urmans, D., Bengio, Y., and Bottou, L. (eds.), NIPS-21,
pp. 89–96. MIT Press, 2009.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

Brafman, R. I. and Tennenholtz, M. R-MAX - a general
polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research,
3:213–231, 2002.

Kakade, S.M. On the sample complexity of reinforcement
learning. PhD thesis, Gatsby Computational Neuro-
science Unit, University College London, 2003.

Kearns, M. and Singh, S. Finite-sample convergence rates
for Q-learning and indirect algorithms. In Jordan, M. I.,
Kearns, M. J., and Solla, S. A. (eds.), NIPS-10, pp. 996–
1002. MIT Press, 1998.

Kearns, M.J. and Singh, S.P. Near-optimal reinforcement
learning in polynomial time. Machine Learning, 49(2–3):
209–232, 2002.

Li, L. A Unifying Framework for Computational Reinforce-
ment Learning Theory. PhD thesis, Rutgers University,
New Brunswick, NJ, USA, October 2009.

Strehl, A. L. and Littman, M. L. A theoretical analysis of
model-based interval estimation. In De Raedt, L. and
Wrobel, S. (eds.), ICML 2005, pp. 857–864. ACM, 2005.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and
Littman, M. L. PAC model-free reinforcement learning.
In Cohen, W. W. and Moore, A. (eds.), ICML 2006, pp.
881–888. ACM, 2006.

Szita, I. and Lőrincz, A. The many faces of optimism: a
unifying approach. In Cohen, W. W., McCallum, A.,
and Roweis, S. T. (eds.), ICML 2008, pp. 1048–1055.
ACM, 2008.


