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Abstract

We describe and analyze efficient algorithms
for learning a linear predictor from examples
when the learner can only view a few at-
tributes of each training example. This is the
case, for instance, in medical research, where
each patient participating in the experiment
is only willing to go through a small number
of tests. Our analysis bounds the number
of additional examples sufficient to compen-
sate for the lack of full information on each
training example. We demonstrate the ef-
ficiency of our algorithms by showing that
when running on digit recognition data, they
obtain a high prediction accuracy even when
the learner gets to see only four pixels of each
image.

1. Introduction

Suppose we would like to predict if a person has some
disease based on medical tests. Theoretically, we may
choose a sample of the population, perform a large
number of medical tests on each person in the sample
and learn from this information. In many situations
this is unrealistic, since patients participating in the
experiment are not willing to go through a large num-
ber of medical tests. The above example motivates the
problem studied in this paper, that is learning when
there is a hard constraint on the number of attributes
the learner may view for each training example.

We propose an efficient algorithm for dealing with this
partial information problem, and bound the number
of additional training examples sufficient to compen-
sate for the lack of full information on each training
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example. Roughly speaking, we actively pick which
attributes to observe in a randomized way so as to con-
struct a “noisy” version of all attributes. Intuitively,
we can still learn despite the error of this estimate
because instead of receiving the exact value of each in-
dividual example in a small set it suffices to get noisy
estimations of many examples.

1.1. Related Work

Many methods have been proposed for dealing with
missing or partial information. Most of the approaches
do not come with formal guarantees on the risk of
the resulting algorithm, and are not guaranteed to
converge in polynomial time. The difficulty stems
from the exponential number of ways to complete
the missing information. In the framework of gener-
ative models, a popular approach is the Expectation-
Maximization (EM) procedure (Dempster et al., 1977).
The main drawback of the EM approach is that it
might find sub-optimal solutions. In contrast, the
methods we propose in this paper are provably effi-
cient and come with finite sample guarantees on the
risk.

Our technique for dealing with missing information
borrows ideas from algorithms for the adversarial
multi-armed bandit problem (Auer et al., 2003; Cesa-
Bianchi and Lugosi, 2006). Our learning algorithms
actively choose which attributes to observe for each ex-
ample. This and similar protocols were studied in the
context of active learning (Cohn et al., 1994; Balcan
et al., 2006; Hanneke, 2007; 2009; Beygelzimer et al.,
2009), where the learner can ask for the target associ-
ated with specific examples.

The specific learning task we consider in the paper was
first proposed in (Ben-David and Dichterman, 1998),
where it is called “learning with restricted focus of
attention”. Ben-David and Dichterman (1998) consid-
ered the classification setting and showed learnability
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of several hypothesis classes in this model, like k-DNF
and axis-aligned rectangles. However, to the best of
our knowledge, no efficient algorithm for the class of
linear predictors has been proposed.!

A related setting, called budgeted learning, was re-
cently studied - see for example (Deng et al., 2007;
Kapoor and Greiner, 2005) and the references therein.
In budgeted learning, the learner purchases attributes
at some fixed cost subject to an overall budget. Be-
sides lacking formal guarantees, this setting is different
from the one we consider in this paper, because we im-
pose a budget constraint on the number of attributes
that can be obtained for every individual example, as
opposed to a global budget. In some applications, such
as the medical application discussed previously, our
constraint leads to a more realistic data acquisition
process - the global budget allows to ask for many at-
tributes of some individual patients while our protocol
guarantees a constant number of medical tests to all
the patients.

Our technique is reminiscent of methods used in the
compressed learning framework (Calderbank et al.,
2009; Zhou et al., 2009), where data is accessed via a
small set of random linear measurements. Unlike com-
pressed learning, where learners are both trained and
evaluated in the compressed domain, our techniques
are mainly designed for a scenario in which only the
access to training data is restricted.

The “opposite” setting, in which full information is
given at training time and the goal is to train a predic-
tor that depends only on a small number of attributes
at test time, was studied in the context of learning
sparse predictors - see for example (Tibshirani, 1996)
and the wide literature on sparsity properties of /;
regularization. Since our algorithms also enforce low
¢1 norm, many of those results can be combined with
our techniques to yield an algorithm that views only
O(1) attributes at training time, and a number of at-
tributes comparable to the achievable sparsity at test
time. Since our focus in this work is on constrained
information at training time, we do not elaborate on
this subject. Furthermore, in some real-world situa-
tions, it is reasonable to assume that attributes are
very expensive at training time but are more easy to
obtain at test time. Returning to the example of med-
ical applications, it is unrealistic to convince patients
to participate in a medical experiment in which they
need to go through a lot of medical tests, but once the
system is trained, at testing time, patients who need

'Ben-David and Dichterman (1998) do describe learn-
ability results for similar classes but only under the re-
stricted family of product distributions.

the prediction of the system will agree to perform as
many medical tests as needed.

A variant of the above setting is the one studied by
Greiner et al. (2002), where the learner has all the in-
formation at training time and at test time he tries to
actively choose a small amount of attributes to form a
prediction. Note that active learning at training time,
as we do here, may give more learning power than ac-
tive learning at testing time. For example, we formally
prove that while it is possible to learn a consistent pre-
dictor accessing at most 2 attributes of each example
at training time, it is not possible (even with an infi-
nite amount of training examples) to build an active
classifier that uses at most 2 attributes of each exam-
ple at test time, and whose error will be smaller than
a constant.

2. Main Results

In this section we outline the main results. We start
with a formal description of the learning problem. In
linear regression each example is an instance-target
pair, (x,y) € R? x R. We refer to x as a vector of
attributes and the goal of the learner is to find a lin-
ear predictor x — (w, x), where we refer to w € R? as
the predictor. The performance of a predictor w on an
instance-target pair, (x,y) € R? x R, is measured by a
loss function ¢({w,x),y). For simplicity, we focus on
the squared loss function, £(a,b) = (a—b)?, and briefly
discuss other loss functions in Section 5. Following the
standard framework of statistical learning (Haussler,
1992; Devroye et al., 1996; Vapnik, 1998), we model
the environment as a joint distribution D over the
set of instance-target pairs, R? x R. The goal of the
learner is to find a predictor with low risk, defined as
the expected loss: Lp(w) ef E(x,y)~p[L((W, %), y)].
Since the distribution D is unknown to the learner
he learns by relying on a training set of m examples
S = (x1,91),- -, (Xm, Ym), which are assumed to be
sampled i.i.d. from D. We denote the training loss by

Lg(w) def 1 S ((w,x;) — yi)?. We now distinguish

m
between two scenarios:

e Full information: The learner receives the en-
tire training set. This is the traditional linear re-
gression setting.

e Partial information: For each individual exam-
ple, (x;,9i), the learner receives the target y; but
is only allowed to see k attributes of x;, where k£ is
a parameter of the problem. The learner has the
freedom to actively choose which of the attributes
will be revealed, as long as at most k of them will
be given.
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While the full information case was extensively stud-
ied, the partial information case is more challenging.
Our approach for dealing with the problem of partial
information is to rely on algorithms for the full infor-
mation case and to fill in the missing information in a
randomized, data and algorithmic dependent, way. As
a simple baseline, we begin by describing a straight-
forward adaptation of Lasso (Tibshirani, 1996), based
on a direct nonadaptive estimate of the loss function.
We then turn to describe a more effective approach,
which combines a stochastic gradient descent algo-
rithm called Pegasos (Shalev-Shwartz et al., 2007) with
the active sampling of attributes in order to estimate
the gradient of the loss at each step.

2.1. Baseline Algorithm

A popular approach for learning a linear regressor is
to minimize the empirical loss on the training set plus
a regularization term taking the form of a norm of the
predictor. For example, in ridge regression the regu-
larization term is |[w||3 and in Lasso the regularization
term is ||w]|;. Instead of regularization, we can include
a constraint of the form ||w|; < Bor [|[w|z2 < B. With
an adequate tuning of parameters, the regularization
form is equivalent to the constraint form. In the con-
straint form, the predictor is a solution to the following
optimization problem:

min & Y (W) - 9)? st Wl <BL (1)
(x,y)€S

where S = {(x1,y1),-- -, (Xm, Ym)} is a training set of
examples, B is a regularization parameter, and p is
1 for Lasso and 2 for ridge regression. Standard risk
bounds for Lasso imply that if W is a minimizer of (1)
(with p = 1), then with probability greater than 1 —¢
over the choice of a training set of size m we have

IMW®>'(Q

Lp(w) < min

wilw<B m

Lp(w)+0 <B2
To adapt Lasso to the partial information case, we first
rewrite the squared loss as follows:

)

((w,%) = )* = " (exT)w — 2xTw + 37 ,

where w,x are column vectors and w”,x” are their
corresponding transpose (i.e., row vectors). Next, we
estimate the matrix xx? and the vector x using the
partial information we have, and then we solve the
optimization problem given in (1) with the estimated
values of xx” and x. To estimate the vector x we
can pick an index ¢ uniformly at random from [d] =
{1,...,d} and define the estimation to be a vector v

such that

dr, ifr=1
v = . (3)
0 else

It is easy to verify that v is an unbiased estimate of x,
namely, E[v] = x where expectation is with respect to
the choice of the index i. When we are allowed to see
k > 1 attributes, we simply repeat the above process
(without replacement) and set v to be the averaged
vector. To estimate the matrix xx” we could pick two
indices 4,j independently and uniformly at random
from [d], and define the estimation to be a matrix with
all zeros except d?z;x; in the (i,j) entry. However,
this yields a non-symmetric matrix which will make
our optimization problem with the estimated matrix
non-convex. To overcome this obstacle, we symmetrize
the matrix by adding its transpose and dividing by
2. The resulting baseline procedure? is given in Algo-
rithm 1.

Algorithm 1 Baseline(S, k)
S — full information training set with m examples
k — Can view only k elements of each instance in §
Parameter: B
INITIALIZE: A=0€R% ; v=0€R? ; =0
for each (x,y) € S
v=0¢cR?
A=0¢eR
Choose C uniformly at random from
all subsets of [d] x [d] of size k/2
for each (i,j) € C
V; = U5 + (d/k}) Zj
Ai,j = Ai,j + (dz/k) Ty
Aj,i = Aj)i + (dQ/k‘) i

end

A=A+ A/m

V=v+2yv/m

y=y+y’/m
end

Let Lg(w) = wl Aw + wT v + y

OUTPUT: solution of min Lg(w)
w:||w|1<B

2We note that an even simpler approach is to arbitrarily

assume that the correlation matrix is the identity matrix
and then the solution to the loss minimization problem
is simply the averaged vector, w = Z(x,y)es yX. In that
case, we can simply replace x by its estimated vector as de-
fined in (3). While this naive approach can work on very
simple classification tasks, it will perform poorly on realis-
tic data sets, in which the correlation matrix is not likely
to be identity. Indeed, in our experiments with the MNIST
data set, we found out that this approach performed poorly
relatively to the algorithms proposed in this paper.
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The following theorem shows that similar to Lasso,
the Baseline algorithm is competitive with the optimal
linear predictor with a bounded L; norm.

Theorem 1 Let D be a distribution such that P[x €
[-1,4+1]* Ay € [-1,+1]] = 1. Let W be the output of
Baseline(S,k), where |S| = m. Then, with probability
of at least 1 —§ owver the choice of the training set and
the algorithm’s own randomization we have

ln(d/5)>

m

Lp(w)+0O <(dkB)2

Lp(w) < min
w:||w|1<B

The above theorem tells us that for a sufficiently large
training set we can find a very good predictor. Put
another way, a large number of examples can compen-
sate for the lack of full information on each individual
example. In particular, to overcome the extra factor
d?/k in the bound, which does not appear in the full
information bound given in (2), we need to increase m
by a factor of d*/k?.

Note that when k = d we do not recover the full infor-
mation bound. This is because we try to estimate a
matrix with d? entries using only k = d < d? samples.
In the next subsection, we describe a better, adaptive
procedure for the partial information case.

2.2. Gradient-based Attribute Efficient
Regression

In this section, by avoiding the estimation of the ma-
trix xx”, we significantly decrease the number of addi-
tional examples sufficient for learning with k attributes
per training example. To do so, we do not try to esti-
mate the loss function but rather estimate the gradient
Vi(w) = 2({w,x) —y)x, with respect to w, of the
squared loss function ({(w,x) — y)2. Each vector w
can define a probability distribution over [d] by letting
P[i] = |w;|/||w|l1. We can estimate the gradient using
2 attributes as follows. First, we randomly pick j from
[d] according to the distribution defined by w. Using
j we estimate the term (w,x) by sgn(w;) ||[w|1 ;. It
is easy to verify that the expectation of the estimate
equals (w,x). Second, we randomly pick ¢ from [d]
according to the uniform distribution over [d]. Based
on i, we estimate the vector x as in (3). Overall, we
obtain the following unbiased estimation of the gradi-
ent:

Viw) = 2(sgu(wy) lwlha; —y)v,  (4)
where v is as defined in (3).

The advantage of the above approach over the loss
based approach we took before is that the magnitude

of each element of the gradient estimate is order of
d ||wl|1. This is in contrast to what we had for the loss
based approach, where the magnitude of each element
of the matrix A was order of d2. In many situations,
the L; norm of a good predictor is significantly smaller
than d and in these cases the gradient based estimate
is better than the loss based estimate. However, while
in the previous approach our estimation did not de-
pend on a specific w, now the estimation depends on
w. We therefore need an iterative learning method
in which at each iteration we use the gradient of the
loss function on an individual example. Luckily, the
stochastic gradient descent approach conveniently fits
our needs.

Concretely, below we describe a variant of the Pegasos
algorithm (Shalev-Shwartz et al., 2007) for learning
linear regressors. Pegasos tries to minimize the regu-
larized risk

min E
w o (x,y)~D

[(w, %) =9)*] + Alwl3 . (5)
Of course, the distribution D is unknown, and there-
fore we cannot hope to solve the above problem ex-
actly. Instead, Pegasos finds a sequence of weight vec-
tors that (on average) converge to the solution of (5).
We start with the all zeros vector w = 0 € R%. Then,
at each iteration Pegasos picks the next example in the
training set (which is equivalent to sampling a fresh ex-
ample according to D) and calculates the gradient of
the loss function on this example with respect to the
current weight vector w. In our case, the gradient is
simply 2((w, x) — y)x. We denote this gradient vector
by V. Finally, Pegasos updates the predictor accord-
ing to the rule: w = (1 — 3)w — 5. V, where ¢ is the
current iteration number.

To apply Pegasos in the partial information case we
could simply replace the gradient vector V with its
estimation given in (4). However, our analysis shows
that it is desirable to maintain an estimation vector
V with small magnitude. Since the magnitude of V is
order of d||wl|1, where w is the current weight vector
maintained by the algorithm, we would like to ensure
that ||w]||; is always smaller than some threshold B.
We achieve this goal by adding an additional projec-
tion step at the end of each Pegasos’s iteration. For-
mally, after performing the update we set

W« argmin |lu— w2 . (6)
uiflufl: <B

This projection step can be performed efficiently in
time O(d) using the technique described in (Duchi

et al., 2008). A pseudo-code of the resulting Attribute
Efficient Regression algorithm is given in Algorithm 2.
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Algorithm 2 AER(S, k)
S — Full information training set with m examples
k — Access only k elements of each instance in §
Parameters: A\, B
w=(0,...,0) ; w=w ; t=1
for each (x,y) € S
v=0c¢cR?
Choose C' uniformly at random from
all subsets of [d] of size k/2
for each j € C
v; =05 + % d.’L‘j

end

=0

forr=1,...,k/2
sample ¢ from [d] based on P[i] = |w;|/||w]|1
§ =19+ Fsen(wi) [wl @

end

w=(1- w2 yv
W = argming |y, <p [[u — w2
w=w+w/m
t=t+1

end

OuTpUT: W

The following theorem provides convergence guaran-
tees for AER.

Theorem 2 Let D be a distribution such that P[x €
[-1,+1]¢ Ay € [-1,+1]] = 1. Let w* be any vector
such that |[w*||;1 < B and |w*||a < By Then,

BlLo(w)] < LD«w*y+c>(dugjg>Bz mﬁf)>,

where |S| = m, w is the output of AER(S, k) run with
A = ((B+1)d/Bs) v/log(m)/(mk), and the expectation
is over the choice of S and over the algorithm’s own
randomization.

For simplicity and readability, in the above theorem we
only bounded the expected risk. It is possible to obtain
similar guarantees with high probability by relying on
Azuma’s inequality —see for example (Cesa-Bianchi
et al., 2004).

Note that [|[w*||2 < ||w*||1 < B, so Theorem 2 implies
that

dB? [ln(m)

Therefore, the bound for AER is much better® than

Lp(w) <

< min
w:||w|1<B

3When comparing bounds, we ignore logarithmic terms.
Also, in this discussion we assume that B; and Bs are at
least 1.

the bound for Baseline: instead of d?/k we have d/v/k.

It is interesting to compare the bound for AER to the
Lasso bound in the full information case given in (2).
As it can be seen, to achieve the same level of risk,
AER needs a factor of d?/k more examples than the
full information Lasso.* Since each AER example uses
only k attributes while each Lasso example uses all
d attributes, the ratio between the total number of
attributes AER needs and the number of attributes
Lasso needs to achieve the same error is O(d). Intu-
itively, when having d times total number of attributes,
we can fully compensate for the partial information
protocol.

However, in some situations even this extra d fac-
tor is not needed. Suppose we know that the vector
w*, which minimizes the risk, is dense. That is, it
satisfies |[w*||; ~ Vd||w*||2. In this case, choosing
By = B/+/d, the bound in Theorem 2 becomes order
of B?\/d/k+/1/m. Therefore, the number of examples
AER needs in order to achieve the same error as Lasso
is only a factor d/k more than the number of exam-
ples Lasso uses. But, this implies that both AER and
Lasso needs the same number of attributes in order to
achieve the same level of error! Crucially, the above
holds only if w* is dense. When w* is sparse we have
[[w*||1 = ||[w*||2 and then AER needs more attributes
than Lasso.

One might wonder whether a more clever active sam-
pling strategy could attain in the sparse case the per-
formance of Lasso while using the same number of at-
tributes. The next subsection shows that this is not
possible in general.

2.3. Lower bounds and negative results

We now show (proof in (Cesa-Bianchi et al., 2010))
that any attribute efficient algorithm needs in general
order of d/e examples for learning an e-accurate sparse
linear predictor. Recall that the upper bound of AER
implies that order of d?(B+1)2 B3 /e? examples are suf-
ficient for learning a predictor with Lp(w)—Lp(w*) <
€. Specializing this sample complexity bound of AER
to the w* described in Theorem 3 below, yields that
O(d?/e) examples are sufficient for AER for learning
a good predictor in this case. That is, we have a gap
of factor d between the lower bound and the upper
bound, and it remains open to bridge this gap.

Theorem 3 For any € € (0,1/16), k, and d > 4k,

4We note that when d = k we still do not recover the

full information bound. However, it is possible to improve
the analysis and replace the factor d/ Vk with a factor
dmaxy ||x¢]]2/k.



Efficient Learning with Partially Observed Attributes

there exists a distribution over examples and a weight
vector w*, with |[w*|lo = 1 and ||w*[l2 = ||Ww*|1 =
2./€, such that any attribute efficient regression algo-
rithm accessing at most k attributes per training ez-
ample must see (in expectation) at least Q () ex-
amples in order to learn a linear predictor w with
LD(W) — LD(W*) < €.

Recall that in our setting, while at training time the
learner can only view k attributes of each example, at
test time all attributes can be observed. The setting
of Greiner et al. (2002), instead, assumes that at test
time the learner cannot observe all the attributes. The
following theorem shows that if a learner can view at
most 2 attributes at test time then it is impossible to
give accurate predictions at test time even when the
optimal linear predictor is known.

Theorem 4 There exists a weight vector w* and a
distribution D such that Lp(w*) = 0 while any algo-
rithm A that gives predictions A(x) while viewing only
2 attributes of each x must have Lp(A) > 1/9.

The proof is given in (Cesa-Bianchi et al., 2010). This
negative result highlights an interesting phenomenon.
We can learn an arbitrarily accurate predictor w from
partially observed examples. However, even if we know
the optimal w*, we might not be able to accurately
predict a new partially observed example.

3. Proof Sketch of Theorem 2

Due to the lack of space we only sketch the proof of
Theorem 2. A complete proof of all our theorems is
given in (Cesa-Bianchi et al., 2010).

We start with a general logarithmic regret bound for
strongly convex functions (Hazan et al., 2006; Kakade
and Shalev-Shwartz, 2008). The regret bound implies
the following. Let z1,...,2z,, be a sequence of vectors,
each of which has norm bounded by G. Let A > 0 and
consider the sequence of functions g1, . . ., g, such that
gt(w) = 3|wl||> + (z¢,w). Each g; is A-strongly con-
vex (meaning, it is not too flat), and therefore regret
bounds for strongly convex functions tell us that there
is a way to construct a sequence of vectors wy, ..., Wy,
such that for any w* that satisfies ||w*||; < B we have

%Z%(Wt) - %th(w*) <0 (%) .
=1 et

With an appropriate choice of A, and with the assump-
tion ||w*|]2 < Ba, the above inequality implies that

Ly (ze, Wy — w*) < a where a = O (%;g(m)).

This holds for any sequence of z1,...,2z,,, and in par-
ticular, we can set z; = 2(§: — y¢)vi. Note that z; is a

random vector that depends both on the value of wy
and on the random bits chosen on round ¢. Taking
conditional expectation of z; w.r.t. the random bits
chosen on round ¢ we obtain that E[z,|w,] is exactly
the gradient of ((w,x;) — y¢)? at w;, which we denote
by V. From the convexity of the squared loss, we
can lower bound (V;, w; — w*) by ((wg,x¢) — y;)? —
((w*, %) — y¢)%. That is, in expectation we have that
m
E |23 ((wexe) —u)” = (W xe) —u)?) | <.
t=1

Taking expectation w.r.t. the random choice of the
examples from D, denoting w = % ot and using
Jensen’s inequality we get that E[Lp(W)] < Lp(w*)+
a. Finally, we need to make sure that a is not too
large. The only potential danger is that G, the bound
on the norms of zi,...,2,,, will be large. We make
sure this cannot happen by restricting each w; to the
1 ball of radius B, which ensures that ||z;|| < O((B+
1)d) for all ¢.

4. Experiments

We performed some preliminary experiments to test
the behavior of our algorithm on the well-known
MNIST digit recognition dataset (Cun et al., 1998),
which contains 70,000 images (28 x 28 pixels each) of
the digits 0 — 9. The advantages of this dataset for
our purposes is that it is not a small-scale dataset, has
a reasonable dimensionality-to-data-size ratio, and the
setting is clearly interpretable graphically. While this
dataset is designed for classification (e.g. recognizing
the digit in the image), we can still apply our algo-
rithms on it by regressing to the label.

First, to demonstrate the hardness of our settings, we
provide in Figure 1 below some examples of images
from the dataset, in the full information setting and
the partial information setting. The upper row con-
tains six images from the dataset, as available to a
full-information algorithm. A partial-information al-
gorithm, however, will have a much more limited ac-
cess to these images. In particular, if the algorithm
may only choose k = 4 pixels from each image, the
same six images as available to it might look like the
bottom row of Figure 1.

We began by looking at a dataset composed of “3 vs.
57, where all the 3 digits were labeled as —1 and all
the 5 digits were labeled as +1. We ran four differ-
ent algorithms on this dataset: the simple Baseline
algorithm, AER, as well as ridge regression and Lasso
for comparison (for Lasso, we solved (1) with p = 1).
Both ridge regression and Lasso were run in the full in-
formation setting: Namely, they enjoyed full access to
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Figure 1. In the upper row six examples from the training
set (of digits 3 and 5) are shown. In the lower row we show
the same six examples, where only four randomly sampled
pixels from each original image are displayed.

all attributes of all examples in the training set. The
Baseline algorithm and AER, however, were given ac-
cess to only 4 attributes from each training example.

We randomly split the dataset into a training set and
a test set (with the test set being 10% of the origi-
nal dataset). For each algorithm, parameter tuning
was performed using 10-fold cross validation. Then,
we ran the algorithm on increasingly long prefixes of
the training set, and measured the average regression
error ((w,x) — )2 on the test set. The results (av-
eraged over runs on 10 random train-test splits) are
presented in Figure 2. In the upper plot, we see how
the test regression error improves with the number of
examples. The Baseline algorithm is highly unstable
at the beginning, probably due to the ill-conditioning
of the estimated covariance matrix, although it even-
tually stabilizes (to prevent a graphical mess at the
left hand side of the figure, we removed the error bars
from the corresponding plot). Its performance is worse
than AER, completely in line with our earlier theoret-
ical analysis.

The bottom plot of Figure 2 is similar, only that
now the X-axis represents the accumulative number
of attributes seen by each algorithm rather than the
number of examples. For the partial-information al-
gorithm, the graph ends at approximately 49,000 at-
tributes, which is the total number of attributes ac-
cessed by the algorithm after running over all train-
ing examples, seeing k = 4 pixels from each example.
However, for the full-information algorithm 49,000 at-
tributes are already seen after just 62 examples. When
we compare the algorithms in this way, we see that
our AER algorithm achieves excellent performance for
a given attribute budget, significantly better than the
other Li-based algorithms, and even comparable to
full-information ridge regression.

Finally, we tested the algorithms over 45 datasets gen-
erated from MNIST, one for each possible pair of dig-
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Figure 2. Test regression error for each of the 4 algorithms,
over increasing prefixes of the training set for “3 vs. 5”. The
results are averaged over 10 runs.

its. For each dataset and each of 10 random train-test
splits, we performed parameter tuning for each algo-
rithm separately, and checked the average squared er-
ror on the test set. The median test errors over all
datasets are presented in the table below.

Test Error
Full Information Ridge 0.110
Lasso 0.222
Partial Information AER 0.320
Baseline 0.815

As can be seen, the AER algorithm manages to achieve
good performance, not much worse than the full-
information Lasso algorithm. The Baseline algorithm,
however, achieves a substantially worse performance,
in line with our theoretical analysis above. We also
calculated the test classification error of AER, i.e
sign({w, x)) # y, and found out that AER, which can
see only 4 pixels per image, usually perform only a lit-
tle worse than the full-information algorithms (ridge
regression and Lasso), which enjoy full access to all
784 pixels in each image. In particular, the median
test classification errors of AER, Lasso, and Ridge are
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3.5%, 1.1%, and 1.3% respectively.

5. Discussion and Extensions

In this paper, we provided an efficient algorithm for
learning when only a few attributes from each train-
ing example can be seen. The algorithm comes with
formal guarantees, is provably competitive with algo-
rithms which enjoy full access to the data, and seems
to perform well in practice. We also presented sam-
ple complexity lower bounds, which are only a factor
d smaller than the upper bound achieved by our algo-
rithm, and it remains open to bridge this gap.

Our approach easily extends to other gradient-based
algorithms besides Pegasos. For example, generalized
additive algorithms such as p-norm Perceptrons and
Winnow - see, e.g., (Cesa-Bianchi and Lugosi, 2006).

An obvious direction for future research is how to deal
with loss functions other than the squared loss. In up-
coming work on a related problem, we develop a tech-
nique which allows us to deal with arbitrary analytic
loss functions, but in the setting of this paper will lead
to sample complexity bounds which are exponential in
d. Another interesting extension we are considering is
connecting our results to the field of privacy-preserving
learning (Dwork, 2008), where the goal is to exploit the
attribute efficiency property in order to prevent acqui-
sition of information about individual data instances.
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