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Abstract

We consider approximate policy evaluation
for finite state and action Markov deci-
sion processes (MDP) in the off-policy learn-
ing context and with the simulation-based
least squares temporal difference algorithm,
LSTD(λ). We establish for the discounted
cost criterion that the off-policy LSTD(λ)
converges almost surely under mild, minimal
conditions. We also analyze other conver-
gence and boundedness properties of the iter-
ates involved in the algorithm, and based on
them, we suggest a modification in its prac-
tical implementation. Our analysis uses the-
ories of both finite space Markov chains and
Markov chains on topological spaces.

1. Overview

We consider approximate policy evaluation for finite
state and action Markov decision processes (MDP) in
an exploration-enhanced learning context, called “off-
policy” learning. In this context, we employ a certain
policy called the “behavior policy” to adequately ex-
plore the state and action space, and using the observa-
tions of costs and transitions generated under the be-
havior policy, we may approximately evaluate any suit-
able “target policy” of interest. This differs from the
standard policy evaluation case – “on-policy” learn-
ing – where the behavior policy always coincides with
the policy to be evaluated. The dichotomy between
the off-policy and on-policy learning stems from the
exploration-exploitation tradeoff in practical model-
free/simulation-based methods for policy search. With
their flexibility, off-policy methods form an important
part of the model-free learning methodology (Sutton
& Barto, 1998) and have been suggested as important
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simulation-based methods for large-scale dynamic pro-
gramming (Glynn & Iglehart, 1989).

The algorithm we consider in this paper, the off-
policy least squares temporal difference (TD) algo-
rithm, LSTD(λ), is one of the exploration-enhanced
methods for policy evaluation. More specifically, we
consider discounted total cost problems with discount
factor α < 1. We evaluate the so-called Q-factors of
the target policy, which are essential for policy itera-
tion, and which are simply the costs of the policy in an
equivalent MDP that has as its states the joint state-
action pairs of the original MDP1 [see e.g., (Bertsekas
& Tsitsiklis, 1996)]. This MDP will be the focus of our
discussion, and we will refer to Q-factors as costs for
simplicity. Let I = {1, 2, . . . , n} be the set of state-
action pairs indexed by integers from 1 to n. We as-
sume that the behavior policy induces an irreducible
Markov chain on the space I of state-action pairs with
transition matrix P , and that the target policy we aim
to evaluate would induce a Markov chain with transi-
tion matrix Q. We require naturally that for all states,
possible actions of the target policy are also possible
actions of the behavior policy. This condition, denoted
Q ≺ P , can be written as

pij = 0 ⇒ qij = 0, i, j ∈ I. (1)

Let g be the vector of expected one-stage costs g(i)
under the target policy. The cost J∗ of the target
policy satisfies the Bellman equation

J∗ = g + αQJ∗. (2)

With the temporal difference methods (Sutton, 1988)
[see also the books (Bertsekas & Tsitsiklis, 1996; Sut-
ton & Barto, 1998; Bertsekas, 2007; Meyn, 2007)], we

1The equivalent MDP on the space of state-action pairs
can be defined as follows. Consider any two state-action
pairs i = (s, u) and j = (ŝ, v). Suppose a transition from s
to ŝ under action u incurs the cost c(s, u, ŝ) in the original
MDP. Then the cost of transition from i to j in the equiv-
alent MDP can be defined as g(i, j) = c(s, u, ŝ). The tran-
sition probability from i to j under a policy which takes
action v at state ŝ with probability µ(v | ŝ) is given by
p(ŝ | s, u)µ(v | ŝ).
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approximate J∗ by the solution of a projected multi-
step Bellman equation

J = ΠT (λ)(J) (3)

involving a multistep Bellman operator T (λ)

parametrized by λ ∈ [0, 1], whose exact form
will be given later. Here Π is a linear opera-
tor of projection onto an approximation subspace
{Φr | r ∈ <nr} ⊂ <n with respect to a weighted
Euclidean norm, where Φ is an n × nr matrix whose
columns span the approximation subspace and whose
rows are often called “features” of states/actions. In
the case considered here, we take the weights in the
projection norm to be the steady-state probabilities
of the Markov chain induced by the behavior policy.
The projected Bellman equation (3) is equivalent to
a low dimensional equation on <nr , and its solution
Φr∗ (when it exists) is used to approximate the cost
J∗ of the target policy.

The off-policy LSTD(λ) algorithm that we will analyze
aims to construct the low-dimensional equivalent of
the projected equation (3) by using observations gen-
erated under the behavior policy. The algorithm takes
into account the discrepancies between the behavior
and the target policies by properly weighting the ob-
servations. The technique is based on importance sam-
pling, which is widely used in dynamic programming
and reinforcement learning contexts [see e.g., (Glynn
& Iglehart, 1989; Sutton & Barto, 1998; Precup et al.,
2001; Ahamed et al., 2006)]. The off-policy LSTD(λ)
algorithm we will analyze was first given by (Bert-
sekas & Yu, 2009) in the general context of approx-
imating solutions of linear systems of equations. The
form of the algorithm bears similarities to other off-
policy TD(λ) algorithms, e.g., the episodic off-policy
TD(λ) (Precup et al., 2001), as well as to the on-policy
LSTD(λ) counterpart (Bradtke & Barto, 1996; Boyan,
1999). The algorithm can be described as follows.

Let (i0, i1, . . .) be an infinitely long state trajectory of
the Markov chain with transition matrix P , generated
under the behavior policy. Let φ(i) denote the trans-
pose of the ith row vector of matrix Φ, and let g(i, j) be
the per-stage cost of transition from state i to j. The
off-policy LSTD(λ) method computes low-dimensional
vector iterates Zt, bt and matrix iterates Ct as follows:
with (z0, b0, C0) being the initial condition, for t ≥ 1,

Zt = λα
qit−1it

pit−1it
· Zt−1 + φ(it), (4)

bt = (1− 1
t+1 )bt−1 + 1

t+1Ztg(it, it+1), (5)

Ct = (1− 1
t+1 )Ct−1+

1
t+1Zt

(
α

qitit+1
pitit+1

· φ(it+1)− φ(it)
)′
. (6)

The vector bt and matrix Ct aim to approximate the
quantities defining the projected Bellman equation (3).
The solution rt of the equation Ctr+ bt = 0 is used to
give Φrt as an approximation of J∗ at time t.2

The on-policy case corresponds to the special case P =
Q. There, all the ratios

qit−1it

pit−1it
appeared above in Zt

and Ct become 1, and the algorithm reduces to the
on-policy LSTD algorithm as first given by (Bradtke &
Barto, 1996) for λ = 0 and (Boyan, 1999) for λ ∈ [0, 1].

In the off-policy case, a property of practical impor-
tance is that the ratios qij

pij
are determined by the ratios

between the action probabilities of the target and the
behavior policies (as can be seen from Footnote 1);
therefore, they need not be stored and can be calcu-
lated on-line in the algorithm.

A full convergence analysis of the off-policy LSTD(λ)
algorithm does not exist in the literature, to our knowl-
edge. The almost sure convergence of the algorithm
(i.e., convergence with probability one) in special cases
has been studied. A proof for the on-policy case can be
found in (Nedić & Bertsekas, 2003). A proof for the off-
policy case under the assumption that λαmaxi,j

qij

pij
<

1 (with 0/0 treated as 0) is given in (Bertsekas & Yu,
2009); this covers the on-policy case as well as the off-
policy LSTD(λ) for λ close or equal to 0, but for a
general value of λ, the condition is too stringent on
either the target or the behavior policy. Note that the
case with a general value of λ is important in practice,
because using a large value of λ not only improves the
quality of the approximation from the projected Bell-
man equation, but also avoids potential pathologies re-
garding the existence of solution of the equation (as λ
approaches 1, ΠT (λ) becomes a contraction mapping,
ensuring the existence of a unique solution).

In this work, we establish the almost sure convergence
of the sequences {bt}, {Ct}, as well as their conver-
gence in the first mean, under the general conditions
given at the beginning, namely, the irreducibility of
P and Q ≺ P . Our results imply that the off-policy
LSTD(λ) solution Φrt converges to the solution Φr∗

of the projected Bellman equation (3) almost surely,
whenever Eq. (3) has a unique solution (if (3) has
multiple solutions, then any limit point of {Φrt} is
a solution of it.) As will be seen later, the conver-
gence of {bt}, {Ct} in the first mean (Theorem 1) can
be established using arguments based on finite space
Markov chains, while the proof of the almost sure

2In this paper we do not discuss the exceptional case
where Ctr + bt = 0 does not have a solution. Our focus
will be on the asymptotic properties of the sequence of
equations Ctr + bt = 0 themselves.
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convergence is not so straightforward and finite space
Markov chains-based arguments are no longer suffi-
cient. In contrast to the relative simplicity of the on-
policy case, the technical complexity here is partly due
to the fact that the sequence {Zt} cannot be bounded
a priori. Indeed, we can show that for the off-policy
case, in fairly common situations, {Zt} is almost surely
unbounded (Prop. 2). Neither does it seem likely that
without imposing extra conditions, the sequence of Zt

can have bounded variance. Nevertheless, these do not
preclude the almost sure convergence of the off-policy
LSTD(λ) algorithm, as we will show.

It is worth mentioning that the study of the almost
sure convergence of the off-policy LSTD(λ) is not
solely of theoretic interest. Various TD algorithms
other than LSTD(λ) use the same approximations
bt, Ct to build approximating models [e.g., precondi-
tioned TD(λ) (Yao & Liu, 2008)] or fixed point map-
pings [e.g., LSPE(λ), see (Bertsekas & Yu, 2009); and
(Bertsekas, 2009)] needed in the algorithms. There-
fore in the off-policy case, the asymptotic behavior
of these algorithms on a sample path depends on the
mode of convergence of {bt}, {Ct}, and so does the
interpretation of the approximate solutions generated
by these algorithms. For algorithms whose conver-
gence relies on the contraction property of mappings,
(for instance, LSPE(λ)), the almost sure convergence
of {bt}, {Ct} on every sample path is critical. Fur-
thermore, the mode of convergence of the off-policy
LSTD(λ) is also relevant for understanding the be-
havior of other off-policy TD algorithms, e.g., the
non-episodic off-policy TD(λ) and episodic off-policy
TD(λ) with very long episodes, which, although not
computing directly bt, Ct, implicitly depend on the
convergence properties of {bt}, {Ct}.

To establish the almost sure convergence of {bt}, {Ct},
we will study the Markov chain {(it, Zt)} on the topo-
logical space I ×<nr . Again, the lack of boundedness
condition on Zt makes it difficult to argue the existence
of an invariant probability measure by constructing ex-
plicitly the form of Zt for a stationary Markov chain
{(it, Zt)} in the limit, as can be done in the on-policy
case (Tsitsiklis & Van Roy, 1997). We will use the the-
ory of e-chains (Meyn & Tweedie, 2009), which con-
cerns topological space Markov chains with equicontin-
uous transition kernels, to establish two main results:
(i) the Markov chain {(it, Zt)} has a unique invari-
ant probability measure and is ergodic (Theorem 2),
and (ii) the almost sure convergence of {bt}, {Ct} (and
hence the almost sure convergence of the off-policy
LSTD(λ) algorithm) (Theorem 3). The first ergod-
icity result is indeed stronger than what is needed to
show (ii); but it sheds light on the nature of the TD

iterates and provides a basis for analyzing other off-
policy TD(λ) algorithms in the future.

Let us also mention the ODE proof approach: relevant
here is the mean-ODE method [see e.g., (Kushner &
Yin, 2003; Borkar, 2008)], which, however, requires the
verification of conditions that in our case would be
tantamount to the almost sure convergence conclusion
we want to establish.

The paper is organized as follows. We specify nota-
tion and definitions in Section 2. We present our main
results and outline their key proof arguments in Sec-
tion 3. We then give proof details for two of the main
theorems, namely, Theorems 1 and 3, in Section 4.
Complete proofs and further discussion can be found
in (Yu, 2010).

2. Notation and Specifications

The projected Bellman equation (3) associated with
TD(λ) methods is a projected version of a multistep
Bellman equation parametrized by λ ∈ [0, 1]. In par-
ticular, let T be the Bellman operator T (J) = g+αQJ
for all J ∈ <n. The mapping T (λ) in Eq. (3) is defined
by

T (λ) = (1− λ)
∞∑

m=0

λmTm+1, λ ∈ [0, 1);

T (1)(J) = lim
λ→1

T (λ)(J), ∀J ∈ <n.

Let Ξp denote the diagonal matrix with the diagonal
elements being the steady-state probabilities of the
Markov chain with transition matrix P , induced by
the behavior policy. Equation (3) is equivalent to the
low dimensional equation on <nr ,

Φ′ΞpΦr = Φ′ΞpT
(λ)(Φr)

= Φ′Ξp

∞∑
m=0

λm(αQ)m
(
g + (1− λ)αQΦr

)
.

By rearranging terms, it can be written as

C̄r + b̄ = 0, (7)

where b̄ is an nr × 1 vector and C̄ an nr × nr matrix,
given by

b̄ = Φ′Ξp

∞∑
m=0

λm(αQ)mg, (8)

C̄ = Φ′Ξp

∞∑
m=0

λm(αQ)m(αQ− I)Φ. (9)

The iterates bt, Ct in the off-policy LSTD(λ) [Eqs. (5),
(6)] aim to approximate b̄, C̄ respectively, (which de-
fine the projected equation (7) and equivalently (3)).
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Their convergence to b̄, C̄, respectively, in any relevant
mode, is what we want to show.

In the rest of the paper, we use it to denote the random
state variable at time t and ī or i∗ to denote specific
states. To simplify notation, we denote β = λα and
study iterates of the form

Zt = β
qit−1it

pit−1it
· Zt−1 + φ(it), (10)

Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′, (11)

with β < 1, (z0, G0) being the initial condition, and
{γt} being a stepsize sequence. The correspondence
between iterates Gt and the vectors bt and matrices
Ct in LSTD(λ) [cf. Eqs. (5), (6)] is as follows: with
γt = 1/(t+ 1),

Gt =

{
bt, if ψ(it, it+1) = g(it, it+1),
Ct, if ψ(it, it+1) = α

qitit+1
pitit+1

· φ(it+1)− φ(it).

(12)

We want to show that Gt converges, in any relevant
mode, to the constant vector/matrix

G∗ = Φ′Ξp

( ∞∑
m=0

βmQm
)
Ψ, (13)

where the vector/matrix Ψ is given row-wisely by

Ψ =


ψ̄(1)′

ψ̄(2)′

· · ·
ψ̄(n)′

 , with ψ̄(i) = E
[
ψ(i0, i1) | i0 = i

]
.

Here and in what follows E denotes the expectation
with respect to the distribution of the Markov chain
{it} with transition matrix P . As can be seen, corre-
sponding to the two choices of ψ in the expression of
Gt [Eq. (12)], Ψ equals g or (αQ− I)Φ, and G∗ equals
b̄ or C̄, respectively [cf. Eqs. (8)-(9)].

We make two assumptions, one on the transition ma-
trices P and Q, as mentioned at the beginning of Sec-
tion 1, and the other on the stepsize sequence.
Assumption 1. The Markov chain {it} with transi-
tion matrix P is irreducible, and Q ≺ P in the sense
of Eq. (1).
Assumption 2. The sequence of stepsizes γt is deter-
ministic and satisfies γt ∈ (0, 1],∑

t

γt = ∞,
∑

t

γ2
t <∞, lim sup

t→∞

γt

γt−1
<∞. (14)

Such sequences of γt include 1/t, t−ν , ν ∈ (0, 1], for in-
stance. When conclusions hold for a specific sequence
{γt}, such as γt = 1/t, we will state them explicitly.

3. Main Results

We pursue separately two lines of analysis, one based
on properties of the finite space Markov chain {it} and
the other based on properties of the topological space
Markov chain {(it, Zt)}. In this section we overview
our main results and outline key proof arguments.

Throughout the paper, let ‖ · ‖ denote the F -norm
‖V ‖ = maxi,j |Vij | for a matrix V , and the infinity
norm ‖V ‖ = maxi |Vi| for a vector V , in particular,
‖V ‖ = |V | for a scalar V . Let “a.s.” stand for almost
sure convergence.

3.1. Analysis Based on Finite Space Markov
Chains

First, it is not difficult to show that Gt converges in
mean. This implies immediately that the LSTD(λ)
solution rt converges in probability to the solution r∗

of Eq. (7) when the latter exists and is unique.

Theorem 1. Under Assumption 1, for each ini-
tial condition z0, suptE‖Zt‖ ≤ c

1−β where c =
max{‖z0‖,maxi ‖φ(i)‖}. Under Assumptions 1 and 2,
for each initial condition (z0, G0),

lim
t→∞

E‖Gt −G∗‖ = 0.

Next, based essentially on a zero-one law for tail
events3 of Markov chains [see (Breiman, 1992), Theo-
rem 7.43], we can show the following result.

Proposition 1. Under Assumptions 1 and 2, for each
initial condition (z0, G0) and any E of the following
events, either P(E) = 0 or P(E) = 1:
(i) E = {limt→∞Gt exists, and supt ‖Zt‖ <∞};
(ii) E = {supt ‖Zt‖ <∞};
(iii) E = {limt→∞ γtZt = 0};
(iv) E = {limt→∞Gt exists}.

Theorem 1 and Prop. 1(iv) together have the follow-
ing implication on the convergence of Gt. According
to Prop. 1(iv), for the event E = {limt→∞Gt exists},
we have P(E) = 1 or 0. Suppose P(E) = 1. Then
Gt

a.s.→ G for some random variable G. Since Theo-
rem 1 implies Gt → G∗ in probability, which further
implies the convergence of a subsequence Gtk

a.s.→ G∗,
we must have G = G∗ a.s.; therefore Gt

a.s.→ G∗. Sup-
pose now P(E) = 0. Then we only have the conver-
gence of Gt to G∗ in probability implied by Theorem 1,
and with probability 1, on every sample path Gt does
not converge. In Section 3.2, we will rule out the sec-

3An event is called a tail event of a process {Xt} if it
is determined by Xt, t ≥ k for any k [see e.g., (Breiman,
1992), Def. 3.10].
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ond case for the stepsize sequence γt = 1/(t + 1), us-
ing the line of analysis based on the Markov chain
{(it, Zt)}.

We discuss other implications of Prop. 1, contrasting
the off-policy case with the standard, on-policy case
where P = Q. In the latter case, events (i) and (ii)
in Prop. 1 both have probability one; event (ii) – the
boundedness of Zt – is true by the definition of Zt. By
contrast, in the off-policy case, under seemingly fairly
common situations (as we show below), Zt is almost
surely unbounded, and consequently, events (i) and (ii)
have probability zero. While the unboundedness of Zt

may sound disquieting, note that it is γtZt
a.s.→ 0, the

event shown in (iii), and not the boundedness of Zt,
that is necessary for the almost sure convergence of Gt.
In other words, {limt→∞Gt exists} ⊂ {limt→∞ γtZt =
0}.4

For practical implementation, however, the unbound-
edness of Zt can be unwieldy. This suggests that in
practice, instead of iterating Zt directly, we equiva-
lently iterate γtZt via

γtZt = β
qit−1it

pit−1it
· γt

γt−1
· (γt−1Zt−1) + γtφ(it), (15)

whenever the magnitude of Zt becomes intolerably
large. That γtZt

a.s.→ 0 when γt = 1/(t + 1) will be
implied by the almost sure convergence of Gt we later
establish.

We now demonstrate by construction that in seem-
ingly fairly common situations, Zt is almost surely un-
bounded. Our construction is based on a consequence
of the extended Borel-Cantelli lemma [(Breiman,
1992), Problem 5.9, p. 97], which says that for any
process {Xt, t ≥ 0} with Xt taking values in S, and
any measurable subsets A,B of S, if for all t,

P (∃s, s > t,Xs ∈ B | Xt, Xt−1, . . . , X0) ≥ δ > 0

on {Xt ∈ A}, then

{Xt ∈ A i.o.} ⊂ {Xt ∈ B i.o.} a.s.

Here, “i.o.” stands for “infinitely often,” and “a.s.”
means that the set-inclusion relation holds after ex-
cluding a set of zero probability. In our context, this
result together with the zero-one probability statement
for the event {supt ‖Zt‖ < ∞} in Prop. 1(ii) has the
following implications.

4This can be seen from the fact that

Gt −Gt−1 = −γtGt−1 + γtZtψ(it, it+1)
′,

and γt → 0 as t→∞.

Denote by Zt,j and φj(it) the jth element of the vector
Zt and φ(it), respectively. Consider a cycle configura-
tion of states (̄i1, ī2, . . . , īm, ī1) with the following three
properties:

(a) it occurs with positive probability:

pī1 ī2pī2 ī3 · · · pīm ī1 > 0; (16)

(b) it has an amplifying effect in the sense that

βm qī1 ī2
pī1 ī2

qī2 ī3
pī2 ī3

· · · qīmī1
pīmī1

> 1; (17)

(c) for some j̄, the j̄th elements of φ(̄i1), . . . , φ(̄im)
have the same sign and their sum is non-zero: i.e.,
either for all k = 1, . . . ,m,

φj̄ (̄ik) ≥ 0, with φj̄ (̄ik) > 0 for some k; (18)

or for all k = 1, . . . ,m,

φj̄ (̄ik) ≤ 0, with φj̄ (̄ik) < 0 for some k. (19)

Proposition 2. Suppose there exists a cycle configu-
ration of states (̄i1, ī2, . . . , īm, ī1) possessing properties
(a)-(c) above, and j̄ is as in (c). Then there exists
a constant ν, which depends on the cycle and is neg-
ative (respectively, positive) if Eq. (18) (respectively,
Eq. (19)) holds in (c), and if for some neighborhood
O(ν) of ν, P(it = ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1, then
P(supt ‖Zt‖ = ∞) = 1.

We remark that the extra technical condition P(it =
ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1 in Prop. 2 is nonrestrictive.
The opposite case – that on a set with non-negligible
probability, Zt,j̄ eventually always lies arbitrarily close
to ν whenver it = ī1 – seems unlikely to occur except
in highly contrived examples.

3.2. Analysis Based on Topological Space
Markov Chains

To establish the almost sure convergence of Gt to G∗,
we consider the Markov chain {(it, Zt), t ≥ 0} on the
topological space S = I × <nr with product topology
(discrete topology on I and usual topology on <nr ).
We show that {(it, Zt)} can be related to a type of
Markov chains, called e-chains, whose transition ker-
nel functions possess a certain equicontinuity prop-
erty (Meyn & Tweedie, 2009). Central to our proof
is the analysis of the differences in the processes {Zt}
for different initial conditions z0 and the same sample
path of {it}. As can already be seen from Eq. (10), for
two such processes {Zt}, {Ẑt} with initial conditions
z0, ẑ0, respectively, their differences satisfy the simple
recursion:

Zt − Ẑt = β
qit−1it

pit−1it
· (Zt−1 − Ẑt−1), (20)
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which implies that the difference sequence converges
almost surely to zero (Lemma 1). Using more careful
characterizations of such difference sequences together
with the first part of Theorem 1, we can establish the
various properties needed for applying the law of large
numbers (LLN) for e-chains (Meyn & Tweedie, 2009)
and show that the chain {(it, Zt)} is ergodic.

Our conclusions are summarized in the following two
theorems. (Definitions of related terminologies and de-
tailed analysis can be found in (Yu, 2010).)

Theorem 2. Under Assumption 1, the Markov chain
{(it, Zt)} is an e-chain with a unique invariant prob-
ability measure π, and almost surely, for each initial
condition, the sequence of occupation measures {µt}
on S converges weakly to π, where µt is defined by

µt(A) =
1
t

t∑
k=1

1A(ik, Zk)

for all Borel-measurable subsets A of S, and 1A de-
notes the indicator function for the set A.

Let Eπ denote expectation with respect to the station-
ary distribution Pπ of the Markov chain {(it, Zt)} with
initial distribution π.

Theorem 3. Under Assumption 1, G∗ =
Eπ[Z0ψ(i0, i1)′], and with stepsize γt = 1/(t + 1), for
each initial condition (z0, G0), Gt

a.s.→ G∗.

Theorem 3 implies that for each initial condition, the
sequence {Φrt} computed by the off-policy LSTD(λ)
algorithm converges almost surely to the solution Φr∗

of the projected Bellman equation (3) when the latter
exists and is unique.

4. Details of Analysis

Due to space limit, we give the proof for Theorem 1 on
the convergence of LSTD(λ) iterates bt, Ct in the first
mean, and a partial proof for Theorem 3 on the almost
sure convergence of LSTD(λ). Complete proofs for all
theorems in Section 3 can be found in (Yu, 2010).

We denote by Lt
s the product of ratios of transition

probabilities along a segment of the state trajectory,
(is, is+1, . . . , it):

Lt
s =

qisis+1
pisis+1

· qis+1is+2
pis+1is+2

· · · qit−1it

pit−1it
. (21)

Define Lt
t = 1. Note that for s ≤ s′ ≤ t, Ls′

s L
t
s′ = Lt

s

and

E[Lt
s | is] = 1.

4.1. Proof of Theorem 1

To show the first part of Theorem 1, we have by
Eqs. (10) and (21),

Zt = βtLt
0z0 +

t−1∑
m=0

βmLt
t−mφ(it−m),

so, with c = max{‖z0‖,maxi ‖φ(i)‖},

E‖Zt‖ ≤ cE
[
βtLt

0 +
t−1∑
m=0

βmLt
t−m

]
= c

t∑
m=0

βm ≤ c

1− β
.

To prove the second part of theorem on the conver-
gence of Gt to G∗ in the first mean, we first consider
another process (Z̃t,T , G̃t,T ) on the same probability
space, and apply the LLN for a finite space irreducible
Markov chain to G̃t,T . We then relate (Z̃t,T , G̃t,T ) to
(Zt, Gt). In particular, for a positive integer T , define

Z̃t,T = Zt, t ≤ T ; G̃0,T = G0,

and define for t > T ,

Z̃t,T = φ(it) + βLt
t−1φ(it−1) + · · ·+ βTLt

t−T · φ(it−T );
(22)

G̃t,T = (1− γt)G̃t−1,T + γtZ̃t,T ψ(it, it+1)′, t ≥ 1.
(23)

Note that for t ≤ T , G̃t,T = Gt because Z̃t,T and Zt

coincide.

It is straightforward to show {G̃t,T } converges al-
most surely to a constant G∗T related to G∗. By
construction {Z̃t,T } is bounded. Furthermore, if we
consider the finite space Markov chain {Xt} with
Xt = (it−T , it−T+1, . . . , it, it+1), then for t > T ,
Z̃t,Tψ(it, it+1)′ is a function of Xt. Denote this func-
tion by f . Since G̃T,T takes values in a finite set (whose
size depends on T ), an application of LLN and stochas-
tic approximation theory (see e.g., (Borkar, 2008),
Chap. 6, Theorem 7 and Cor. 8] shows that under
the stepsize condition in Assumption 2, G̃t,T converges
a.s. to E0[f(XT+1)], the expectation of f(XT+1) under
the stationary distribution of the Markov chain {Xt}
(equivalently, that of the chain {it}):

G̃t,T
a.s.→ G∗T = E0

[
Z̃T+1,T ψ(iT+1, iT+2)′

]
= Φ′Ξp

( T∑
m=0

βmQm
)
Ψ. (24)
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We now relate (Zt, Gt) to (Z̃t,T , G̃t,T ). First we bound
E‖Zt− Z̃t,T ‖. By definition ‖Zt− Z̃t,T ‖ = 0 for t ≤ T .
For t ≥ T + 1, similarly to bounding E‖Zt‖, we have
with c = max{‖z0‖,maxi ‖φ(i)‖},

E‖Zt − Z̃t,T ‖ = E
∥∥∥βtLt

0z0 +
t−1∑

m=T+1

βmLt
t−mφ(it−m)

∥∥∥
≤ cE

[ t∑
m=T+1

βmLt
t−m

]
≤ cβT+1

1− β
.

(25)

Next we bound E‖Gt− G̃t,T ‖. By the definition of Gt

and G̃t,T ,

Gt − G̃t,T = (1− γt)
(
Gt−1 − G̃t−1,T

)
+

γt

(
Zt − Z̃t,T

)
ψ(it, it+1)′.

Consequently, with c = maxi,j ‖ψ(i, j)‖,

E‖Gt − G̃t,T ‖ ≤ (1− γt)E‖Gt−1 − G̃t−1,T ‖+
γtcE‖Zt − Z̃t,T ‖

≤ (1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtεT ,
(26)

where the last inequality follows from Eq. (25), and
for some constant c,

εT = cβT+1/(1− β) → 0, as T →∞. (27)

Since γt ∈ (0, 1] and ‖Gt − G̃t,T ‖ = 0 for t ≤ T ,
Eq. (26) implies

sup
t
E‖Gt − G̃t,T ‖ ≤ εT . (28)

We now bound E
∥∥G̃t,T − G∗T

∥∥. By Eq. (24) G̃t,T −
G∗T

a.s.→ 0. By the construction of G̃t,T and the fact γt ∈
(0, 1], for some deterministic constant cT depending
on T , ‖G̃t,T ‖ ≤ cT ,∀t. Therefore, by the Lebesgue
bounded convergence theorem,

lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥ = 0. (29)

Combining Eqs. (28) and (29), we have

lim sup
t→∞

E ‖Gt −G∗‖ ≤ lim sup
t→∞

E
∥∥Gt − G̃t,T

∥∥+

lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥+∥∥G∗ −G∗T
∥∥

≤ εT + 0 + ε̃T , (30)

where ε̃T = ‖G∗ − G∗T ‖, and ε̃T → 0 as T → ∞,
as can be seen from the definition of G∗ and G∗T ,
Eqs. (13) and (24). Letting T go to ∞ in the right-
hand-side of (30) and using also Eq. (27), it follows
that lim supt→∞E ‖Gt −G∗‖ = 0. This completes the
proof.

4.2. Proof of Theorem 3

We need the following lemma, which also plays a key
role in establishing Theorem 2.
Lemma 1. Let Yt = βLt

t−1Yt−1 with Y0 = y0 ∈ <m

and β < 1. Then, the sequence of nonnegative scalar
random variables βtLt

0
a.s.→ 0, and Yt = βtLt

0y0
a.s.→ 0.

Proof. From the definition of Yt and Lt
s [cf. Eq. (21)],

Yt = βtLt
t−1L

t−1
t−2 · · ·L1

0y0 = βtLt
0y0. Consider the non-

negative sequence Xt = βtLt
0 with X0 = 1. We have

Xt = βLt
t−1Xt−1, ⇒ E

[
Xt | Ft−1

]
= βXt−1 ≤ Xt−1,

where Ft−1 = σ(is, s ≤ t − 1) is the σ-field generated
by is, s ≤ t − 1. This implies that {(Xt,Ft)} is a
nonnegative supermartingale. Since EX0 = 1 < ∞,
by a martingale congergence theorem [see (Breiman,
1992), Theorem 5.14 and its proof], Xt

a.s.→ X, a non-
negative random variable with EX ≤ lim inft→∞EXt.
Since β < 1, EXt = βt → 0 as t → ∞. Therefore
X = 0 a.s., implying Xt

a.s.→ 0 and Yt
a.s.→ 0.

By Theorem 2 the Markov chain {(it, Zt)} has a unique
invariant probability measure π. It can be shown
that under the stationary distribution Pπ of {(it, Zt)}
with initial distribution π, Eπ‖Z0ψ(i0, i1)′‖ <∞ [(Yu,
2010), Prop. 5.3]. We can now prove Theorem 3, which
states that with γt = 1/(t+ 1), for each initial condi-
tion (z0, G0), Gt

a.s.→ G∗ = Eπ

[
Z0ψ(i0, i1)′

]
.

Fix G0, and consider an initial condition (z0, G0) for
any z0. Consider the sequence {Gt} corresponding to
γt = 1/(t + 1), and a related sequence {G̃t} given
below, with Z0 = z0:

Gt =
1

t+ 1

( t∑
k=1

Zkψ(ik, ik+1)′ +G0

)
,

G̃t =
1

t+ 1

t∑
k=0

Zkψ(ik, ik+1)′.

Since G0/(t + 1) → 0 and Z0ψ(i0, i1)′/(t + 1) → 0
as t → ∞, the convergence of {Gt} on a sample path
is equivalent to that of {G̃t}, which does not depend
on G0. Since Eπ‖Z0ψ(i0, i1)′‖ < ∞, applying LLN
[see (Meyn & Tweedie, 2009), Theorem 17.1.2; (Doob,
1953), Theorem 2.1] to the stationary Markov process
{(it, Zt, it+1)} under Pπ, and using also the second
part of Theorem 1, it can be shown that for each ini-
tial condition x = (̄i, z̄) from a measurable set F with
π(F ) = 1, G̃t

a.s.→ G∗, and G∗ = Eπ

[
Z0ψ(i0, i1)′

]
.

Hence Gt
a.s.→ G∗ for initial condition x ∈ F .

We now show for any initial condition x̂ 6∈ F , the
corresponding Ĝt also converges almost surely to G∗.
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Let x̂ = (̄i, ẑ). Since {it} is irreducible, π({̄i}×<nr ) >
0. We also have π(F ) = 1, so there exists x̄ = (̄i, z̄) ∈
F for some z̄ ∈ <nr . Let ∆ = ẑ − z. Consider the
two processes (Ẑt, Ĝt) and (Zt, Gt) corresponding to
the two initial conditions x̂ 6∈ F, x̄ ∈ F , respectively,
and for the same path of {it}. By Lemma 1, we have

Ẑt − Zt = βtLt
0∆, βtLt

0
a.s.→ 0.

The second relation implies also 1
t+1

∑t
k=1 β

kLk
0

a.s.→ 0.
Therefore, with c = maxi,j ‖ψ(i, j)‖, we have

‖Ĝt −Gt‖ =
∥∥∥ 1
t+ 1

t∑
k=1

(
Ẑk − Zk

)
ψ(ik, ik+1)′

∥∥∥
≤ c‖∆‖

( 1
t+ 1

t∑
k=1

βkLk
0

)
a.s.→ 0.

We also have Gt
a.s.→ G∗ (because its initial condition

x̄ ∈ F ); therefore Ĝt
a.s.→ G∗.

Thus for any initial condition (̄i, z̄) and G0, Gt
a.s.→ G∗.

Since the space of i0 is finite, this implies for any initial
distribution of i0 and initial (z̄, G0), Gt

a.s.→ G∗. The
proof is complete.
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