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Abstract

We combine Bayesian online change point
detection with Gaussian processes to cre-
ate a nonparametric time series model which
can handle change points. The model can
be used to locate change points in an on-
line manner; and, unlike other Bayesian on-
line change point detection algorithms, is
applicable when temporal correlations in a
regime are expected. We show three vari-
ations on how to apply Gaussian processes
in the change point context, each with their
own advantages. We present methods to re-
duce the computational burden of these mod-
els and demonstrate it on several real world
data sets.

1. Introduction

Nonstationarity, or changes in generative parameters,
is often a key aspect of real world time series. An in-
ability to react to regime changes can have a detrimen-
tal impact on predictive performance. Change point
detection (CPD) attempts to reduce this impact by
recognizing regime change events and adapting the
predictive model appropriately. As a result, it can
be a useful tool in a diverse set of application do-
mains including robotics, process control, and finance.
CPD is especially relevant to finance where risk re-
sulting from parameter changes is often neglected in
models. For example, Gaussian copula models used
in pricing collateralized debt obligations (CDOs) had
two key flaws: assuming that subprime mortgage de-
faults have a fixed correlation structure, and using a
point estimate of these correlation parameters learned

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

from historical data prior to the burst of the real-estate
bubble (Li, 2000; Jones, 2009). Bayesian change point
analysis avoids both of these problems by assuming a
change point model of the parameters and integrat-
ing out the uncertainty in the parameters rather than
using a point estimate.

Many of the previous Bayesian approaches to CPD
have been retrospective, where the central aim is to
infer change point locations in batch mode (Barry &
Hartigan, 1993; Xuan & Murphy, 2007). While these
methods are useful for analyzing a variety of time se-
ries datasets, they are not designed for online predic-
tion systems that need to adapt predictions in light of
incoming regime changes. Examples of such systems
can include dialog systems, satellite security systems,
and adaptive compression algorithms, to name a few.

The Bayesian Online CPD (BOCPD) algorithm was
recently introduced by Adams & MacKay (2007), and
similar work has been done by Fearnhead & Liu (2007).
Central to the online predictor is the time since the last
change point, namely the run length. One can perform
exact online inference about the run length at every
time step, given an underlying predictive model (UPM)
and a hazard function. Given all the observations up
to time t, x1 . . . xt ∈ X , the UPM is used to compute
p(xt|x(t−τ):(t−1), θm) for any τ ∈ [1, . . . , (t − 1)]. The
UPM can be thought of as a simpler base model whose
parameters change at every change point; for instance,
the UPM could be iid Gaussian with a different mean
and variance within each regime. The hazard func-
tion H(r|θh) describes how likely we believe a change
point is given an observed run length r. Notice that
through H(r|θh) we can specify, a priori, arbitrary du-
ration distributions for parameter regimes. The only
UPM considered in standard BOCPD is constructed
using the assumption that the data in each segment
is iid with respect to some (ideally exponential fam-
ily) distribution. However, many datasets are not well
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described by a generative model which is piecewise
iid. Indeed, many temporal sequences clearly exhibit
pronounced temporal smoothness within each regime.
The standard BOCPD algorithm also treats its hyper-
parameters, θ := {θh, θm}, as fixed and known. It is
clear empirically that the performance of the algorithm
is highly sensitive to hyper-parameter settings.

In this paper, we first extend BOCPD by implement-
ing UPMs which exploit temporal structure within
each regime, using two time series models based on
Gaussian processes (GPs). GPs can be used to model
time series data directly (i.e. the mapping T → X ,
where T is the set of time indices). This gives rise to
a GP time series (GPTS) model. Alternatively, they
can be used to learn the mapping between observa-
tions xt and xt+1 to produce a nonlinear autoregres-
sive (AR) model (an ARGP). GPs are an attractive
choice for time series UPMs because one can integrate
out the functions representing the GPTS and ARGP
mappings, thus improving predictive performance. We
also improve the flexibility of BOCPD by providing a
principled mechanism to learn hyper-parameters from
the incoming data stream without sacrificing the on-
line nature of the algorithm. Finally, since the range
of the run length variable grows linearly with time,
we introduce a filtering technique to limit it to size K,
where K is set beforehand to trade-off accuracy versus
speed.

A similar sequential nonstationary GPTS model was
introduced in Garnett et al. (2009). In this approach
GPs are made robust to incoming change points
through the introduction of an additional hyper-
parameter in the covariance function, which repre-
sents the location at which a change point occurs in-
side a past window of data. The size of the win-
dow is prespecified and it is implicitly assumed that
there can only be one change point inside it. Next-
step predictions are improved using hyper-parameter
marginalization (this includes the change point hyper-
parameter). As the required integral is intractable
for a GP model, Bayesian Monte Carlo (BMC) (Ras-
mussen & Ghahramani, 2002) is used to perform
quadrature integration. BMC requires defining a sepa-
rate GP to model the marginal likelihood surface in ad-
dition to the GP in the model itself. This is problem-
atic because the marginal likelihood function is posi-
tive by definition. Hence the approximation by a GP,
whose range is the entire real line, can be poor. This
problem gets worse as the dimensionality of the hyper-
parameter space increases, which occurs when we ap-
ply change point detection to higher-dimensional time
series data.

The paper is organized as follows: In Section 2, we
derive the message passing scheme used for inference
in BOCPD. In Section 3, we review GPs and explain
GPTS and ARGP. Learning via hyper-parameter op-
timization is explained in Section 4. Finally, in Sec-
tion 5 we illustrate our methods on a diverse set of
data sets applicable to change point analysis.

2. The BOCPD Algorithm

BOCPD calculates the posterior run length at time
t, i.e. p(rt|x1:t), sequentially. This posterior can be
used to make online predictions robust to underlying
regime changes, through marginalization of the run
length variable:

p(xt+1|x1:t) =
∑
rt

p(xt+1|x1:t, rt)p(rt|x1:t)

=
∑
rt

p(xt+1|x(r)
t )p(rt|x1:t) , (1)

where x(r)
t refers to the last rt observations of x, and

p(xt+1|x(r)
t ) is computed using the UPM. The run

length posterior can be found by normalizing the joint
likelihood: p(rt|x1:t) = p(rt,x1:t)P

rt
p(rt,x1:t)

. The joint likeli-
hood can be updated online using a recursive message
passing scheme

γt := p(rt, x1:t) =
∑
rt−1

p(rt, rt−1, x1:t)

=
∑
rt−1

p(rt, xt|rt−1, x1:t−1)p(rt−1, x1:t−1) (2)

=
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
hazard

p(xt|rt−1, x
(r)
t )︸ ︷︷ ︸

UPM

p(rt−1, x1:t−1)︸ ︷︷ ︸
γt−1

.

This defines a forward message passing scheme to re-
cursively calculate γt from γt−1. The conditional can
be restated in terms of messages as p(rt|x1:t) ∝ γt.
All the distributions mentioned so far are implicitly
conditioned on the set of hyper-parameters θ.

Example BOCPD model. A simple example of
BOCPD would be to use a constant hazard function
H(r|θh) := θh, meaning p(rt = 0|rt−1, θh) is indepen-
dent of rt−1 and is constant, giving rise, a priori, to
geometric inter-arrival times for change points. The
UPM can be set to the predictive distribution obtained
when placing a Normal-Inverse-Gamma prior on iid
Gaussian observations (i.e., a Student-t predictive):

xt ∼ N (µ, σ2),

µ ∼ N (µ0, σ
2/κ), σ−2 ∼ Gamma(α, β) . (3)

In this example θm := {µ0, κ, α, β}.
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2.1. Improving Efficiency by Pruning

The posterior p(rt|x1:t) forms a vector of length t,
which is problematic for long time series since it re-
quires t + 1 updates to propagate it to the next time
step. In the parametric exponential family case the
updates and predictions in the UPM run in constant
time regardless of the run length. Thus total run time
of a naive implementation is O(T 2). In practice, the
run length distribution will be highly peaked. We can
make the approach more efficient by pruning out run
lengths with probability below, e.g., ε = 0.001 or con-
sidering only the K most probable run lengths and set-
ting the remaining probabilities to zero. These modi-
fications run in O(T/ε) and O(TK), respectively.

3. GP-based UPMs

A GP is a distribution over functions and is speci-
fied by a mean function µ(·) and a covariance function
kξ(·, ·), also called a kernel, (Rasmussen & Williams,
2006). The covariance function is parameterized by a
set of hyper-parameters ξ which describe general prop-
erties of the functions generated from the prior, such as
smoothness, length scales and amplitude. The mean
function is typically set to zero. The most common
covariance function is the squared-exponential, which
generates smooth functions that are infinitely differen-
tiable. It has D+ 1 hyper-parameters, where D is the
dimensionality of the input space.

In GPTS the time index t is treated as the input while
the time series observation xt is the output:

xt = f(t) + εt, f ∼ GP(0, kξ), εt ∼ N (0, σ2
n) . (4)

It can be shown that GPTS generalizes many of the
classic time series models such as AR, the autoregres-
sive moving average (ARMA) (Murray-Smith & Gi-
rard, 2001), and the Kalman filter. The GPTS UPM
gives rise to a Gaussian predictive distribution:

p(xt|x(t−τ):(t−1), θm) = N (mt, vt) , (5)

where

mt = k>? (K + σ2
nI)−1x , (6)

vt = k(xt, xt)− k>? (K + σ2
nI)−1k? . (7)

Here, x := x(t−τ):(t−1), k? := k(x(t−τ):(t−1), xt) and
K := k(x(t−τ):(t−1), x(t−τ):(t−1)). θm is given by the
GP hyper-parameters λ := (ξ;σ2

n), where σ2
n is the

noise variance. Notice that under such a model the
GP hyper-parameters are assumed to be fixed across
different regimes. If one desires to model changes in
GP hyper-parameters at every change point, then the

BOCPD algorithm dictates that one should integrate
them out within the UPM. As a result, the UPM
becomes:

p(xt|x, φ) =
∫
p(xt|x, λ)p(λ|x) dλ (8)

=
1
Z

∫
p(xt|x, λ)p(x|λ)p(λ|φ) dλ , (9)

where Z :=
∫
p(x|λ)p(λ|φ) dλ. The expression

p(xt|x, λ) is given by (5). p(x|λ) is known as the
marginal likelihood of the GP, the logarithm of which
is given by:

−1
2
x>(Kξ + σ2

nI)−1x− 1
2

log |Kξ + σ2
nI| −

τ

2
log 2π .

As the log marginal likelihood is a nonlinear function
of λ, both the integrals present in (9) are intractable,
even if one sets p(λ|φ) to be a Gaussian prior over
λ. Consequently, we approximate these integrals us-
ing two methods, each with their own set of pros and
cons. In the first technique we place a grid ({λg}) over
a subspace of GP hyper-parameters that is assumed to
be reasonable for the problem at hand (assigning uni-
form prior mass for each grid point). The integrals can
then be approximated with sums:

p(xt|x, λ) ≈
∑
λg

p(xt|x, λg)

(
p(x|λg)∑
λg
p(x|λg)

)
. (10)

Recall that it is tricky to apply more sophisticated
quadrature algorithms for (9) as the target function is
positive, and the interpolant runs the risk of becoming
negative. The grid method does not scale with increas-
ing dimensionality, however, it offers the opportunity
to cache covariance matrices as one only considers a
fixed set of hyper-parameter settings (see Section 3.1).
An alternative which does scale with higher dimen-
sionality is to use Hamiltonian Monte Carlo (HMC)
(Duane et al., 1987; Neal, 1992). Say we have com-
puted samples {λs} representing the posterior p(λ|x).
Then,

p(xt|x, λ) ≈
∑
λs

p(xt|x, λs) . (11)

The samples can be updated sequentially for each
run length hypothesis considered. The samples for
rt = 0 are straightforward as they come from the
Gaussian prior p(λ|φ) = N (φm, φv): we can trivially
obtain iid samples at this stage. As the posterior
p(λ|x(t−τ):(t−1)), represented by samples {λ(t−1)

s }, will
look similar to p(λ|x(t−τ):t), we can initialize the HMC
sampler at {λ(t−1)

s } and run it for a short number of
iterations for each sample. In practice, we have found
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that 4 trajectories with a mean of 11 leapfrog steps give
respectable results. Note that other Sequential Monte
Carlo (SMC) methods could be used also, though we
have not explored these options.

In an ARGP (Quiñonero-Candela et al., 2003) of order
p, the past p values xt−p:t−1 are taken as the GP input
while the output is xt:

xt = f(xt−p:t−1) + εt, (12)

f ∼ GP(0, k), εt ∼ N (0, σ2) .

The ARGP can have more complex dynamics than the
GPTS, but unlike GPTS it is restricted to the discrete
time domain.

3.1. Methods to Improve Execution Time

Efficient computation is more tricky with GPs than iid
models, and the computational bottleneck is the pos-
terior predictive from the UPM p(xt|rt−1, x

(r)
t ). Pre-

diction in GPs is O(T 3) with T training points due
to computing the inverse of the covariance matrix.
Therefore, if we naively recomputed the GP every time
step it would run O(T 5). Fortunately, we can apply
rank 1 updates (Scholkopf & Smola, 2001) to the pre-
dictions since the training data only changes by one
point every time step, lowering the computation to
O(T 4). If pruning is applied the complexity can be
reduced further to O(TR̃2/ε) or O(TKR̃2), where R̃
is the typical max run length not pruned out.

Toeplitz Matrix Methods for GPTS If we are
operating in a discrete-time setting, the covariance ma-
trices involved for GPTS become Toeplitz. We can
use a recursive relationship similar to the one used in
solving Yule-Walker equations (see Golub & Van-Loan
(1996)) in order to compute K−1k? for all time steps
in one O(T 2) sweep.1

Horizontal and Vertical Rank 1 Updates The
precision matrix for prediction can be rebuilt from
scratch every time step using vertical updates, or
the precision matrices for each run length can be
stored from the last step updating with horizontal up-
dates.2 Horizontal updates are compatible with arbi-
trary pruning while vertical updates are not.

1 The method is identical to the Yule-Walker method,
except that at the end we negate and reverse the result.
This works because the inverse of a Toeplitz matrix is per-
symmetric.

2 In horizontal updating Λt,r = Rank1Update(Λt−1,r),
while in vertical it is Λt,r = Rank1Update(Λt,r−1), where
Λt,r is the precision matrix for the UPM at time t and run
length r.

Algorithm 1 Learning (Lines marked with ? ) and
Run Length Estimation in BOCPD. Lines marked
with † directly call the UPM.
1: function getLikelihood {All multiplications in

function are element-wise}
2: (γ0, ∂hγ0, ∂mγ0)←(1, 0, 0) {Initialize the recur-

sion, set hazard and UPM deriv. to 0}
3: † Initialize S to sufficient statistics of UPM prior
4: Define γ̃t as γt[2 : t+ 1]
5: for t = 1:T do
6: †π(r)

t ← p(xt|S)
7: h←H(1 : t)
8: γ̃t←γt−1π

(r)
t (1−h) {Update the messages, no

new change point, (3)}
9: ? ∂hγ̃t←π

(r)
t (∂hγt−1(1− h)− γt−1∂hh)

10: ? ∂mγ̃t←(1− h)(∂mγt−1π
(r)
t + γt−1∂mπ

(r)
t )

11: γt[1]←
∑

γt−1π
(r)
t h {Update the messages,

there is a new change point, (3)}
12: ? ∂hγt[1]←

∑
π

(r)
t (∂hγt−1h + γt−1∂hh)

13: ? ∂mγt[1]←
∑

h(∂mγt−1π
(r)
t + γt−1∂mπ

(r)
t )

14: p(rt|x1:t)←normalize γt
15: † Update sufficient statistics of posteriors S
16: end for
17: p(x1:T )←

∑
γT {1 × 1 Calculate the Evidence,

message normalization constant}
18: ? ∂p(x1:T )←(

∑
∂hγT ,

∑
∂mγT )

19: Return (p(x1:T ), ∂p(x1:T ))

4. Hyper-parameter Learning

It is possible to evaluate the (log) marginal likelihood
of the BOCPD model at time T , as it can be decom-
posed into the one-step-ahead predictive likelihoods
(see (1)):

log p(x1:T |θ) =
T∑
t=1

log p(xt|x1:t−1, θ). (13)

Hence, we can compute the derivatives of the log
marginal likelihood using the derivatives of the one-
step-ahead predictive likelihoods. These derivatives
can be found in the same recursive manner as the pre-
dictive likelihoods. Using the derivatives of the UPM,
∂
∂θm

p(xt|rt−1, x
(r)
t , θm), and those of the hazard func-

tion, ∂
∂θh

p(rt|rt−1, θh), the derivatives of the one-step-
ahead predictors can be propagated forward using the
chain rule, as shown in Algorithm (1). The derivatives
with respect to the hyper-parameters can be plugged
into a conjugate gradient optimizer to perform hyper-
parameter learning. Alternatively, hyper-parameters
can be marginalized out inside the UPM as in (9).
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5. Results

We use three variants of our algorithm in the results:
change point detection with an ARGP UPM (ARGP-
CP), a GPTS UPM (GPTS-CP) with fixed GP hyper-
parameters, and a nonstationary GP UPM that allows
the GP hyper-parameters to change at every change
point (NSGP). The variants are compared to ARGP,
GPTS, and the Kalman filter on four real world data
sets. We also compare them to the time independent
model (TIM), modeling the data as iid normal, as a
baseline. To quantify the performance of each of these
models we evaluate them on test data using the one-
step-ahead negative log predictive likelihood (NLL) in
nats/observation and mean-square-error (MSE).3

The results shown all use the constant hazard function.
Likewise, all the GPs use the squared-exponential co-
variance function.

5.1. Nile Data

We first consider the Nile data set,4 which has been
used to test many change point methods (Garnett
et al., 2009). The data set is a record of the lowest
annual water levels on the Nile river during 622–1284
measured at the island of Roda, near Cairo, Egypt.
There is domain knowledge suggesting a change point
in year 715 due to an upgrade in ancient sensor tech-
nology to the nilometer.

We trained the (hyper) parameters of all the models on
data from the first 200 years (622–821). The predic-
tive performance was evaluated on the following years,
822–1284. The run length posterior of NSGP on the
Nile can be seen in Figure 1(b). The installation of the
nilometer is the most visually noticeable change in the
time series. We also see that the only change point the
NSGP is completely confident in occurs shortly after
the nilometer installation.

Quantitative results in predictive performance are
shown in Table 1. We see from the performance of
GPTS-CP that the change point capability does not
help GPTS, but it does help ARGP. The Kalman fil-
ter does reasonably well on this data set. By analyzing
the scatter plots of the Nile data it can be seen that
the system is quite linear, satisfying the assumption of
the Kalman filter, but possibly the noise level in the
system is changing over time. This allows the NSGP
to detect the changes and outperform both GPTS-CP
and the Kalman filter. The error bars are larger than
we would like, but not unexpected given that only 462

3MSE is given by
P

t ‖µt− xt‖2 where µt is the predic-
tive mean.

4http://lib.stat.cmu.edu/S/beran

points are available after removing the 200 used in
training.

5.2. Bee Waggle Dance Data

Honey bees perform what is known as a waggle dance
on honeycombs. The three stage dance is used to com-
municate with other honey bees about the location of
pollen and water. Ethologists are interested in iden-
tifying the change point from one stage to another to
further decode the signals bees send to one another.
The bee data set contains six videos of sequences of
bee waggle dances.5 The video files have been prepro-
cessed to extract the bee’s position and head-angle at
each frame. While many in the literature have looked
at the cosine and sine of the angle, we chose to analyze
angle differences.

We illustrate applying NSGP to “sequence 1” of the
bee data in Figure 1(a); training on the first 250 frames
(four change points) and testing on the remaining 807
frames (15 change points). We see that the NSGP
identifies the structure in the data despite only ob-
serving four different dance stages during the train-
ing period. Figure 1(a) also shows the output of the
CUSUM algorithm when applied to the bee data; we fit
the parameters as recommended by Grigg & Spiegel-
halter (2008). The CUSUM appears to alert far too
many times after a change point or not at all. Addi-
tionally it does not provide a run length distribution;
so we do not know if CUSUM is referring to a re-
cent change point or an old one when it alerts. The
CUSUM can not correct for a mistaken alert after ob-
serving more data as BOCPD can by simply adjusting
the run length distribution.

In the quantitative results we find the ARGP-CP
does significantly better than the other methods. The
GPTS-CP and NSGP do not do as well possibly be-
cause the x and y positions over time can be explained
well by a stationary GPTS model.

5.3. Snowfall Data

We also used historical daily snowfall data in Whistler,
BC, Canada,6 to evaluate our change point models.
The models were trained on two years of data. We
evaluated the models’ ability to predict next day snow-
fall using 35 years of test data. A probabilistic model
of the next day snowfall is of great interest to local
skiers. In this data set, being able to adapt to differ-
ent noise levels is key: there may be highly volatile

5http://www.cc.gatech.edu/~borg/ijcv_psslds/
6http://www.climate.weatheroffice.ec.gc.ca/

(Whistler Roundhouse station, identifier 1108906).

http://lib.stat.cmu.edu/S/beran
http://www.cc.gatech.edu/~borg/ijcv_psslds/
http://www.climate.weatheroffice.ec.gc.ca/
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(a) Bee Waggle Dance: The output BOCPD, video sequence one of six. Top: Due to the multivariate
nature of the time series we artificially separated them in plotting for increased readability. The time series are
the bee’s: x coordinate (blue), y coordinate (green), and angle (red). The vertical dashed red line represents
the boundary between train and test sets. Note that there are only four true change points in training yet
NSGP can still identify the structure successfully. Middle: The true run length is marked in dashed blue to
complement the posterior median in solid red. The large black cross marks the labeled switches in the bee’s
dance. The small red crosses mark alert locations where the probability of a change point under the run length
posterior since the last alert exceeds 0.95. Using a conservative alert threshold of 0.95 we are able to match the
true change points quite well while still keeping a low time to alert. Bottom: We show the common frequentist
change point detector CUSUM as a comparison. The solid blue line is the CUSUM statistic, the horizontal
solid red line is the alert threshold set to attain a false positive rate of 5%, the red crosses are when the CUSUM
crosses the threshold, and the black crosses are again the true change points.
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(b) Nile Record: The output NSGP, 622–1284. Top: The large black cross marks the installation of the
nilometer in 715. The small red crosses mark alert locations where the probability of a change point under
the NSGP posterior since the last alert exceeds 0.50. Given that the threshold is only 0.50 the NSGP is fairly
liberal in alerting. Bottom: The run length CDF and its median (solid red).

Figure 1. Applying NSGP to the Nile and Bee data sets.
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Table 1. Variants of Gaussian process BOCPD, marked with a ♥, compared against other methods on the Nile data,
bee data, and snow data. The results are provided with 95% error bars and the p-value testing the null hypothesis that
methods are equivalent to the best performing method, according to NLL, using a one sided t-test.

Method Negative Log Likelihood p-value MSE p-value
Nile Data (200 Training Points, 462 Test Points)

GPTS 1.19±0.0548 0.196 0.579±0.0976 0.356
♥ GPTS-CP 1.19±0.0548 0.167 0.583±0.0989 0.335
ARGP 1.18±0.0510 0.202 0.568±0.0940 0.410
♥ ARGP-CP 1.15± 0.0555 N/A 0.553± 0.0962 N/A
Kalman 1.17±0.0508 0.361 0.562±0.121 0.453
TIM 1.49±0.0714 <0.001 1.16±0.161 <0.001
♥ NSGP (grid) 1.15±0.0655 0.490 0.585±0.0988 0.321

Bee Waggle Dance Data (250 Training Points, 807 Test Points)
GPTS 8.02±0.504 <0.001 8.44±0.745 <0.001
♥ GPTS-CP 4.54±0.188 <0.001 3.13±0.241 <0.001
ARGP 4.35±0.167 0.007 2.98±0.224 0.008
♥ ARGP-CP 4.07± 0.150 N/A 2.62± 0.195 N/A
Kalman 4.39±0.176 0.002 2.93±0.215 0.016
TIM 4.54±0.177 <0.001 3.25±0.237 <0.001
♥ NSGP (HMC) 4.19±0.212 <0.001 3.17±0.230 <0.001

Whistler Snowfall Data (500 Training Points, 13380 Test Points)
GPTS 1.48±0.0455 <0.001 0.780±0.0333 <0.001
♥ GPTS-CP 1.17±0.0183 <0.001 0.689±0.0294 <0.001
ARGP 1.31±0.0395 <0.001 0.637±0.0268 0.143
♥ ARGP-CP -0.604±0.0385 <0.001 0.750e±0.0315 <0.001
Kalman 1.28±0.0373 <0.001 0.614± 0.0254 0.589
TIM 1.47±0.0284 <0.001 1.01±0.0387 <0.001
♥ NSGP (grid) −1.98± 0.0561 N/A 0.618±0.0242 N/A

snowfall during a storm and then no snow in between
storms. Hence, the NSGP has an advantage in being
able to adapt its noise level.

5.4. Industry Portfolio Data

We also tried a multivariate data set: the “30 indus-
try portfolios” data set,7 which was also used in the
context of change point detection by Xuan & Murphy
(2007). The data consists of daily returns of 30 dif-
ferent industry specific portfolios from 1963 to 2009.
The portfolios consist of NYSE, AMEX, and NASDAQ
stocks from industries such as food, oil, telecoms, etc.

In Figure 2, we show that the change points found co-
incide with significant events with regard to the stock
market: the climax of the Internet bubble, the burst of
the Internet bubble, and the 2004 presidential election.
The methods used in Xuan & Murphy (2007) did not
find any correspondence with historical events. For
financial returns the iid assumption within a regime

7http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/Data_Library/det_30_ind_port.html

is quite reasonable, so as expected the GP finds very
long covariance length scales, attributing the variabil-
ity within each regime to noise.

6. Conclusion

We develop inference techniques to extend Gaussian
process time series models, GPTS and ARGP, to ac-
count for change points, by combining them with
a change point model designed to handle nonsta-
tionary time series data. We also show how to do
hyper-parameter learning in these models using hyper-
parameter optimization, via maximizing the marginal
likelihood. We have illustrated the use of BOCPD on
a diverse set of real world examples including multi-
variate data sets (bee data and industry), and ones
with ground truth change points (bee data).
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Figure 2. Industry Portfolios: BOCPD run length distribution in 1998–2008. The shading represents the CDF of the
run length distribution, while the solid red line represents the median of the distribution. Areas of a quick transition from
black (CDF of zero) to white (CDF of one) indicate a sharply peaked run length distribution. Many events of market
impact create change points. Some of the other change points correspond to minor rallies or rate cuts but not a historical
event. Note that we plot the filtering distribution, so the vertical spikes are change points BOCPD thinks are plausible
but then realizes are false upon receiving more data.
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