
PAC-Bayesian Learning of Linear Classifiers

Pascal Germain Pascal.Germain.1@ulaval.ca
Alexandre Lacasse Alexandre.Lacasse@ift.ulaval.ca
François Laviolette Francois.Laviolette@ift.ulaval.ca
Mario Marchand Mario.Marchand@ift.ulaval.ca

Département d’informatique et de génie logiciel, Université Laval, Québec, Canada, G1V-0A6

Abstract

We present a general PAC-Bayes theorem
from which all known PAC-Bayes risk bounds
are obtained as particular cases. We also pro-
pose different learning algorithms for finding
linear classifiers that minimize these bounds.
These learning algorithms are generally com-
petitive with both AdaBoost and the SVM.

1. Intoduction

For the classification problem, we are given a train-
ing set of examples—each generated according to the
same (but unknown) distribution D, and the goal is to
find a classifier that minimizes the true risk (i.e., the
generalization error or the expected loss). Since the
true risk is defined only with respect to the unknown
distribution D, we are automatically confronted with
the problem of specifying exactly what we should op-
timize on the training data to find a classifier having
the smallest possible true risk. Many different specifi-
cations (of what should be optimized on the training
data) have been provided by using different inductive
principles but the final guarantee on the true risk, how-
ever, always comes with a so-called risk bound that
holds uniformly over a set of classifiers. Hence, the
formal justification of a learning strategy has always
come a posteriori via a risk bound. Since a risk bound
can be computed from what a classifier achieves on the
training data, it automatically suggests the following
optimization problem for learning algorithms: given a
risk (upper) bound, find a classifier that minimizes it.

Despite the enormous impact they had on our under-
standing of learning, the VC bounds are generally very
loose. These bounds are characterized by the fact that

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

their data-dependencies only comes through the train-
ing error of the classifiers. The fact that there also
exists VC lower bounds, that are asymptotically iden-
tical to the corresponding upper bounds, suggests that
significantly tighter bounds can only come through ex-
tra data-dependent properties such as the distribution
of margins achieved by a classifier on the training data.

Among the data-dependent bounds that
have been proposed recently, the PAC-Bayes
bounds (McAllester, 2003; Seeger, 2002; Lang-
ford, 2005; Catoni, 2007) seem to be especially tight.
These bounds thus appear to be a good starting point
for the design of a bound-minimizing algorithm. In
this paper, we present a general PAC-Bayes theorem
and show that all known PAC-Bayes bounds are
corollaries of this general theorem. When spherical
Gaussians, over the space of linear classifiers, are used
for priors and posteriors, we show that the Gibbs
classifier that minimizes any of the above-mentioned
PAC-Bayes risk bound is obtained from the linear
classifier that minimizes a non-convex objective
function. We also propose two different learning
algorithms for finding linear classifiers that minimize
PAC-Bayes risk bounds and a third algorithm that
uses cross-validation to determine the value of a pa-
rameter which is present in the risk bound of Catoni
(2007). The first algorithm uses a non-informative
prior to construct a classifier from all the training
data. The second algorithm uses a fraction of the
training set to construct an informative prior that is
used to learn the final linear classifier on the remaining
fraction of the training data1. The third algorithm is,
as the first one, based on a non-informative prior but
uses the cross-validation methodology to choose one
of the bound’s parameters.

1The idea of using a fraction of the training data to
construct a prior has been proposed in (Ambroladze et al.,
2006) for the problem of choosing the hyperparameter val-
ues of the SVM. In contrast, the priors are used here to
directly minimize a PAC-Bayes bound.

PAC-Bayesian Learning of Linear Classifiers

Our extensive experiments indicate that the second
and third algorithms are competitive with both Ada-
Boost and the SVM and are generally much more ef-
fective than the first algorithm in their ability at pro-
ducing classifiers with small true risk.

2. Simplified PAC-Bayesian Theory

We consider binary classification problems where the
input space X consists of an arbitrary subset of Rn
and the output space Y = {−1,+1}. An exam-
ple is an input-output (x, y) pair where x ∈ X and
y ∈ Y. Throughout the paper, we adopt the PAC set-
ting where each example (x, y) is drawn according to
a fixed, but unknown, distribution D on X × Y.

The risk R(h) of any classifier h : X → Y is defined as
the probability that h misclassifies an example drawn
according to D. Given a training set S of m examples,
the empirical risk RS(h) of any classifier h is defined
by the frequency of training errors of h on S. Hence

R(h) def= E
(x,y)∼D

I(h(x) 6= y) ,

RS(h) def=
1
m

m∑
i=1

I(h(xi) 6= yi) ,

where I(a) = 1 if predicate a is true and 0 otherwise.

After observing the training set S, the task of the
learner is to choose a posterior distribution Q over
a space H of classifiers such that the Q-weighted ma-
jority vote classifier BQ will have the smallest possible
risk. On any input example x, the output BQ(x) of
the majority vote classifier BQ (sometimes called the
Bayes classifier) is given by

BQ(x) def= sgn
[

E
h∼Q

h(x)
]
,

where sgn(s) = +1 if s> 0 and sgn(s) =−1 otherwise.
The output of the deterministic majority vote classi-
fier BQ is closely related to the output of a stochastic
classifier called the Gibbs classifier GQ. To classify an
input example x, the Gibbs classifier GQ chooses ran-
domly a (deterministic) classifier h according to Q to
classify x. The true risk R(GQ) and the empirical risk
RS(GQ) of the Gibbs classifier are thus given by

R(GQ) = E
h∼Q

R(h) ; RS(GQ) = E
h∼Q

RS(h) .

Any bound for R(GQ) can straightforwardly be turned
into a bound for the risk of the majority vote R(BQ).
Indeed, whenever BQ misclassifies x, at least half of
the classifiers (under measure Q) misclassifies x. It
follows that the error rate of GQ is at least half of the

error rate of BQ. Hence R(BQ) ≤ 2R(GQ). As shown
in Langford and Shawe-Taylor (2003), this factor of 2
can sometimes be reduced to (1 + ε).

The following theorem gives both an upper and
a lower bound on R(GQ) by upper-bounding
D(RS(GQ), R(GQ)) for any convex function
D : [0, 1]× [0, 1]→ R.
Theorem 2.1. For any distribution D, for any set H
of classifiers, for any prior distribution P of support
H, for any δ ∈ (0, 1], and for any convex function
D : [0, 1]× [0, 1]→ R, we have

Pr
S∼Dm

(
∀Q onH : D(RS(GQ), R(GQ)) ≤

1
m

[
KL(Q‖P) + ln

(
1
δ

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

)])
≥ 1− δ ,

where KL(Q‖P) def= E
h∼Q

ln Q(h)
P (h) is the Kullback-

Leibler divergence between Q and P .

Proof. Since E
h∼P

emD(RS(h),R(h)) is a non-negative

random variable, Markov’s inequality gives

Pr
S∼Dm

(
E
h∼P

emD(RS(h),R(h)) ≤

1
δ

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

)
≥ 1− δ .

Hence, by taking the logarithm on each side of the
innermost inequality and by transforming the expec-
tation over P into an expectation over Q, we obtain

Pr
S∼Dm

(
∀Q : ln

[
E
h∼Q

P (h)
Q(h)

emD(RS(h),R(h))

]
≤

ln
[

1
δ

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

])
≥ 1− δ .

The theorem then follows from two applications of
Jensen’s inegality: one exploiting the concavity of
ln(x) and the second the convexity of D.

Theorem 2.1 provides a tool to derive PAC-Bayesian
risk bounds. Each such bound is obtained by using a
particular convex function D : [0, 1] × [0, 1] → R and
by upper-bounding E

S∼Dm
E
h∼P

emD(RS(h),R(h)) .

For example, a slightly tighter PAC-Bayes bound
than the one derived by Seeger (2002) and Langford
(2005) can be obtained from Theorem 2.1 by using
D(q, p) = kl(q, p), where

kl(q, p) def= q ln
q

p
+ (1− q) ln

1− q
1− p

.

PAC-Bayesian Learning of Linear Classifiers

Corollary 2.1. For any distribution D, for any set H
of classifiers, for any distribution P of support H, for
any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q onH : kl(RS(GQ), R(GQ)) ≤

1
m

[
KL(Q‖P) + ln

ξ(m)
δ

])
≥ 1− δ ,

where ξ(m) def=
∑m
k=0

(
m
k

)
(k/m)k(1− k/m)m−k .

Proof. The corollary immediately follows from Theo-
rem 2.1 by choosing D(q, p) = kl(q, p). Indeed, in that
case we have

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

= E
h∼P

E
S∼Dm

“
RS(h)

R(h)

”mRS(h)“ 1−RS(h)

1−R(h)

”m(1−RS(h))

= E
h∼P

Pm
k=0 Pr

S∼Dm (RS(h)= k
m)
„

k
m

R(h)

«k„
1− k

m
1−R(h)

«m−k

= Pm
k=0 (m

k)(k/m)k(1−k/m)m−k ,

where last equality arises from the fact that RS(h) is
a binomial random variable of mean R(h).

See Banerjee (2006) for a very similar proof. Note also
that we retreive the exact formulation of the PAC-
Bayes bound of Langford (2005) if we upper bound
ξ(m) by m+ 1. However, ξ(m) ∈ Θ(

√
m).

The PAC-Bayes bound of McAllester (2003) can be
obtained by using D(q, p) = 2(q − p)2.

Let us now consider functions that are linear in the
empirical risk, i.e., functions of the form D(q, p) =
F(p) − C · q for convex F . As the next corollary
shows, this choice for D gives a PAC-Bayes bound
whose minimum is obtained for Gibbs classifiers mi-
nimizing a simple linear combination of RS(GQ) and
KL(Q‖P). The next corollary has also been found
by Catoni (2007)[Th.1.2.1].

Corollary 2.2. For any distribution D, any set H
of classifiers, any distribution P of support H, any
δ ∈ (0, 1], and any positive real number C, we have

Pr
S∼Dm


∀Q onH :

R(GQ) ≤ 1
1−e−C

{
1−exp

[
−
(
C ·RS(GQ)

+ 1
m

[
KL(Q‖P) + ln 1

δ

])]}
≥ 1−δ.

Proof. Put D(q, p) = F(p)−C · q for some function F
to be defined. Then

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

= E
h∼P

E
S∼Dm

emF(R(h))−CmRS(h)

= E
h∼P

emF(R(h))
Pm

k=0 Pr
S∼Dm (RS(h)= k

m)e−Ck

= E
h∼P

emF(R(h))
Pm

k=0 (m
k)R(h)k(1−R(h))m−ke−Ck

= E
h∼P

emF(R(h))(R(h)e−C+(1−R(h)))
m

,

and the result follows easily from Theorem 2.1 when
F is the convex function F(p)=ln 1

(1− p [1−e−C])
.

It is interesting to compare the bounds of Corollar-
ies 2.1 and 2.2. A nice property of the bound of
Corollary 2.2 is the fact that its minimization is ob-
tained from the Gibbs classifier GQ that minimizes
C ·mRS(GQ) + KL(Q‖P). As we will see, this mini-
mization problem is closely related to the one solved
by the SVM when Q is an isotropic Gaussian over the
space of linear classifiers. Minimizing the bound given
by Corollary 2.1 does not appear to be as simple be-
cause the upper bound on R(GQ) is not an explicit
function of RS(GQ) and KL(Q‖P). However, this
upper bound does not depend on an arbitrary con-
stant such as C in Corollary 2.2—which gives a com-
putational advantage to Corollary 2.1 since, several
bound minimizations (one for each value of C) would
be needed in the case of Corollary 2.2. The tightness
of these bounds can be compared with the following
proposition.

Proposition 2.1. For any 0 ≤ RS ≤ R < 1, we have

max
C≥0

{
− ln

(
1−R[1− e−C]

)
− CRS

}
= kl(RS , R) .

Consequently, by omitting ln(ξ(m)), Corollary 2.1 al-
ways gives a bound which is tighter or equal to the
one given by Corollary 2.2. On another hand, there
always exists values of C for which Corollary 2.2 gives
a tighter bound than Corollary 2.1.

The next lemma shows that the bound of Corollary 2.2
has the interesting property of having an analytical ex-
pression of the optimal posterior Q∗ for every prior P .

Lemma 2.1. For any set H of classifiers and any
prior P of support H, for any positive real number C,
the posterior Q∗ that minimizes the upper bound on
R(GQ) of Corollary 2.2 has a density which is given
by the following Boltzmann distribution :

Q∗(h) =
1
Z
P (h)e−C·mRS(h) ,

where m denotes the number of training examples in
S and Z is a normalizing constant.

PAC-Bayesian Learning of Linear Classifiers

Proof. We present here a proof for the case where H is
countable. But the theorem also holds for the continu-
ous case. For any fixed C, δ and P , the distribution Q∗

minimizing the bound of Corollary 2.2 is the same as
the one minimizing B(Q), where

B(Q) def= C ·
∑
h∈H

Q(h)RS(h) +
KL(Q‖P)

m
,

under the constraint
∑
h∈H

Q(h) = 1 . At optimality, Q

must satisfy Lagrange constraints, namely that there
exists λ ∈ R such that for any h ∈ H, we have

λ =
∂B

∂Q(h)
= C ·RS(h) +

1
m

(
1 + log

Q(h)
P (h)

)
.

Consequently,

Q(h) = P (h)em(λ−C·RS(h))−1 =
1
Z
P (h)e−C·mRS(h) ,

where Z is a normalizing constant.

It is well known that Bayes classifiers resulting from
a Boltzmann distribution can only be expressed via
integral formulations. Such intergrals can be approxi-
mated by some Markov Chain Monté Carlo sampling,
but, since the mixing time is unknown, we have no real
control on the precision of the approximation. For this
reason, we restrict ourselves here to the case where
the posterior Q is chosen from a parameterized set of
distributions. Building on the previous work of Lang-
ford and Shawe-Taylor (2003) and Langford (2005),
we will focus on isotropic Gaussian distributions of
linear classifiers since, in this case, we have an exact
analytical expression for BQ, GQ, RS(BQ), RS(GQ),
and KL(Q‖P) in terms of the parameters of the pos-
terior Q. These analytic expressions will enable us
to perform our computations without performing any
Monté-Carlo sampling.

3. Specialization to Linear Classifiers

Let us apply Corollary 2.1 and 2.2 to linear classifiers
that are defined over a space of features. Here we sup-
pose that each x ∈ X is mapped to a feature vector
φφφ(x) = (φ1(x), φ2(x), . . .) where each φi is given ex-
plicitly as a real-valued function or given implicitly by
using a Mercer kernel k : X × X → R. In the latter
case, we have k(x,x′) = φφφ(x) ·φφφ(x′)∀(x,x′) ∈ X ×X .
Each linear classifier hw is identified by a real-valued
weight vector w. The output hw(x) of hw on any
x ∈ X is given by

hw(x) = sgn (w ·φφφ(x)) .

The task of the learner is to produce a posterior Q over
the set of all possible weight vectors. If each possible
feature vector φφφ has N components, the set of all pos-
sible weight vectors is RN . Let Q(v) denote the poste-
rior density evaluated at weight vector v. We restrict
ourselves to the case where the learner is going to pro-
duce a posterior Qw, parameterized by a chosen weight
vector w, such that for any weight vectors v and u we
have Qw(v) = Qw(u) whenever v − w = −(u − w).
Posteriors Qw satisfying this property are said to be
symmetric about w. It can be easily shown that for any
Qw symmetric about w and for any feature vector φφφ:

sgn
(

E
v∼Qw

sgn (v ·φφφ)
)

= sgn (w ·φφφ) . (1)

In other words, for any input example, the output of
the majority vote classifier BQw (given by the left hand
side of Equation 1) is the same as the one given by the
linear classifier hw whenever Qw is symmetric about
w. Consequently, R(hw) = R(BQw) ≤ 2R(GQw)
and, consequently, Corollary 2.1 and 2.2 provide up-
per bounds on R(hw) for these posteriors. Building
on the previous work of Langford and Shawe-Taylor
(2003) and Langford (2005), we choose both the prior
Pwp and the posterior Qw to be spherical Gaussians
with identity covariance matrix respectively centered
on wp and on w. Hence, for any weight vector v ∈ RN :

Qw(v) =
(

1√
2π

)N
exp

(
−1

2
‖v −w‖2

)
Thus, the posterior is parameterized by a weight vector
w that will be chosen by the learner based on the val-
ues of RS(GQw) and KL(Qw‖Pwp

). Here, the weight
vector wp that parameterizes the prior Pwp

represents
prior knowledge that the learner might have about the
classification task (i.e., about good direction for lin-
ear separators). We therefore have wp = 0 in the
absence of prior knowledge so that P0 is the non-
informative prior. Alternatively, we might set aside
a subset S′ of the training data S and choose wp such
that RS′(GPwp

) is small.

By performing simple Gaussian integrals, as in Lang-
ford (2005), we find

KL(Qw‖Pwp
) =

1
2
‖w −wp‖2

R(GQw) = E
(x,y)∼D

Φ
(
‖w‖Γw(x, y)

)
RS(GQw) =

1
m

m∑
i=1

Φ
(
‖w‖Γw(xi, yi)

)
,

where Γw(x, y) denotes the normalized margin of w

on (x, y), i.e., Γw(x, y) def= yw·φφφ(x)
‖w‖ ‖φφφ(x)‖ , and where Φ(a)

PAC-Bayesian Learning of Linear Classifiers

denotes the probability that X > a when X is a
N(0, 1) random variable, i.e.,

Φ(a) def=
1√
2π

∫ ∞
a

exp
(
−1

2
x2

)
dx . (2)

3.1. Two objective functions to minimize

By using the above expressions for RS(GQw) and
KL(Qw‖Pwp

), Corollaries 2.1 and 2.2 both provide up-
per bounds to R(GQw) and to R(hw) (since R(hw) ≤
2R(GQw)). Hence, each bound depend on the same
quantities: the empirical risk measure, RS(GQw), and
KL(Qw‖Pwp

) which acts as a regularizer.

Minimizing the upper bound given by Corollary 2.1,
in the case of linear classifiers, amounts to finding w∗

that minimizes the following objective function

B(S,w, δ) def= sup
{
ε : kl(RS(GQw)‖ε) ≤

1
m

[
KL(Qw‖Pwp

) + ln
ξ(m)
δ

]}
, (F2.1)

for a fixed value of the confidence parameter δ (say
δ = 0.05). Consequently, our problem is to find weight
vector w∗ that minimizes B subject to the constraints

kl
(
RS(GQw)

∥∥∥B) =
1
m

[
KL(Qw‖Pwp

) + ln
ξ(m)
δ

]
(3)

B > RS(GQw) . (4)

Minimizing the bound of Corollary 2.2, in the case of
linear classifiers, amounts at finding w∗ that minimizes
the simple objective function

CmRS(GQw) + KL(Qw‖Pwp) =

C

m∑
i=1

Φ
(yiw ·φφφ(xi)
‖φφφ(xi)‖

)
+

1
2
‖w −wp‖2 , (F2.2)

for some fixed choice of C and wp. In the absence
of prior knowledge, wp = 0 and the regularizer be-
comes identical to the one used by the SVM. Indeed,
the learning strategy used by the soft-margin SVM
consists at finding w that minimizes

C

m∑
i=1

max
(

0, 1− yiw ·φφφ(xi)
)

+
1
2
‖w‖2 ,

for some fixed choice of C. Thus, for wp = 0, both
learning strategies are identical except for the fact that
the convex SVM hinge loss, max(0, ·), is replaced by
the non-convex probit loss, Φ(·). Hence, the objec-
tive function minimized by the soft-margin SVM is
a convex relaxation of objective function F2.2. Each

learning strategy has its potential drawback. The sin-
gle local minimum of the soft-margin SVM solution
might be suboptimal, whereas the non-convex PAC-
Bayes bound might present several local minima.

Observe that B, the objective function F2.1, is defined
only implicitly in terms of w via the constraints given
by Equations (3) and (4). This optimization problem
appears to be more involved than the (unconstrained)
optimization of objective function F2.2 that arises from
Corollary 2.2. However, it appears also to be more rel-
evant, since, according to Proposition 2.1, the upper
bound given by Corollary 2.1 is somewhat tighter than
the one given by Corollary 2.2 (apart from the presence
of a ln(ξ(m)) term). The optimization of the objective
function F2.1 has also the advantage of not being de-
pendent of any constant C like the one present in the
objective objective function F2.2.

4. Gradient Descent of the PAC-Bayes
Bound

We are now concerned with the problem of minimizing
the (non-convex) objective functions F2.1 (for fixed
wp) and F2.2 (for fixed C and wp). As a first ap-
proach, it makes sense to minimize these objective
functions by gradient-descent. More specifically, we
have used the Polak-Ribière conjugate gradient de-
scent algorithm implemented in the GNU Scientific
Library (GSL). The gradient (with respect to w) of
objective function F2.1 is obtained by computing the
partial derivative of both sides of Equation (3) with
respect to wj (the jth component of w). After solving
for ∂B/∂wj , we find that the gradient is given by

1
m

B(1− B)
B −RS

[
w −wp + ln

(
B(1−RS)
RS(1− B)

)
·

m∑
i=1

Φ′
(
yiw ·φφφ(xi)
‖φφφ(xi)‖

)
yiφφφ(xi)
‖φφφ(xi)‖

]
, (5)

where Φ′(t) denotes the first derivative of Φ evaluated
at t. We have observed that objective function F2.1

tends to have only one local minimum, even if it is
not convex. We have therefore used a single gradient
descent run to minimize F2.1.

The gradient of objective function F2.2 is

C

m∑
i=1

Φ′
(
yiw ·φφφ(xi)
‖φφφ(xi)‖

)
yiφφφ(xi)
‖φφφ(xi)‖

+ (w −wp) . (6)

Since this objective function might have several local
minima, especially for large values of C, each objective
function minimization of F2.2 consisted of k different
gradient-descent runs, where each run was initiated

PAC-Bayesian Learning of Linear Classifiers

from a new, randomly-chosen, starting position. In
the results presented here, we have used k = 10 for
C ≤ 10 and k = 100 for C > 10.

4.1. Proposed learning algorithms

We propose three algorithms that can be used either
with the primal variables (i.e., the components of w)
or the dual variables {α1, . . . , αm} that appear in the
linear expansion w =

∑m
i=1 αiyiφφφ(xi). In this latter

case, the features are implicitly given by a Mercer ker-
nel k(x,x′) = φφφ(x) · φφφ(x′) ∀(x,x′) ∈ X × X . The
objective functions F2.1 and F2.2, with their gradients
(Eq. (5) and (6)), can then straightforwardly be ex-
pressed in terms of k(·, ·) and the dual variables.2

The first algorithm, called PBGD1, uses the prior P0

(i.e., with wp = 0) to learn a posterior Qw by mi-
nimizing the bound value of Corollary 2.1 (objective
function F2.1). In this paper, every bound computa-
tion has been performed with δ = 0.05.

The second algorithm, called PBGD2, was studied
to investigate if it is worthwhile to use a fraction x
of the training data to construct an informative prior
Pwp

, for some wp 6= 0, that will be used to learn a
posterior Qw on the remaining 1−x fraction of the
training data. In its first stage, PBGD2 minimizes the
objective function F2.2 by using a fraction x of the
training data to construct one posterior for each value
of C ∈ {10k : k = 0, . . . , 6}. Note that a large value for
C attempts to generate a w for which the training er-
ror of Gw is small. Each posterior is constructed with
the same non-informative prior used for PBGD1 (i.e.,
with wp = 0). Then, each of these seven posteriors is
used as a prior Pwp

, with wp 6= 0, for learning a pos-
terior Qw by minimizing the objective function F2.1

on the remaining fraction 1 − x of the training data.
From the union bound argument, the δ term in Corol-
lary 2.1 needs to be replaced by (δ/7) to get a bound
that uniformly holds for these seven priors. Empiri-
cally, we have observed that the best fraction x used
for constructing the prior was 1/2. Hence, we report
here only the results for x = 1/2.

For the third algorithm, called PBGD3, we always
used the prior P0 to minimize the objective func-
tion F2.2. But, instead of using the solution obtained
for the value of C that gave the smallest bound of
Corollary 2.2, we performed 10-fold cross validation
on the training set to find the “best” value for C and
then used that value of C to find the classifier that
minimizes objective function F2.2. Hence PBGD3 fol-

2This is true if wp can be expanded in terms of examples
that do not belong to the training set.

lows the same cross-validation learning methodology
normally employed with the SVM but uses the probit
loss instead of the hinge loss.

To compute the risk bound for the linear classifier
returned by PBGD3 and the other comparison algo-
rithms (AdaBoost and SVM), we performed a line
search, along the direction of the weight vector w of
the returned classifier, to find the norm ‖w‖ that min-
imizes the bound of Corollary 2.1.3 For each bound
computation, we used the non-informative prior P0.

4.2. PBGD with Respect to Primal Variables

For the sake of comparison, all learning algorithms of
this subsection are producing a linear classifier hw on
the set of basis functions {φ1, φ2, . . .} known as de-
cision stumps. Each decision stump φi is a threshold
classifier that depends on a single attribute: its output
is +b if the tested attribute exceeds a threshold value
t, and −b otherwise, where b ∈ {−1,+1}. For each
attribute, at most ten equally-spaced possible values
for t were determined a priori.

We have compared the three PBGD algorithms to
AdaBoost (Schapire et al., 1998) because the latter is a
standard and efficient algorithm when used with deci-
sion stumps. Since AdaBoost is an algorithm that min-
imizes the exponential risk 1

m

∑m
i=1 exp(−yiw·φφφ(xi)), it

never chooses a w for which there exists a training ex-
ample where −yiw ·φφφ(xi) is very large. This is to be
contrasted with the PBGD’s algorithms for which the
empirical risk RS(GQw) has the “sigmoidal” shape of
Equation (2) (and never exceeds one). We thus an-
ticipate that AdaBoost and PBGD’s algorithms will
select different weight vectors w on many data sets.

The results obtained for all three algorithms are sum-
marized in Table 1. Except for MNIST, all data sets
were taken from the UCI repository. Each data set was
randomly split into a training set S of |S| examples
and a testing set T of |T | examples. The number n of
attributes for each data set is also specified. For Ada-
Boost, the number of boosting rounds was fixed to 200.
For all algorithms, RT (w) refers to the frequency of er-
rors, measured on the testing set T , of the linear clas-
sifier hw returned by the learner. For the PBGD’s al-
gorithms, GT (w) def= RT (GQw) refers to the empirical
risk on T of the Gibbs classifier. The “Bnd” columns
refer to the PAC-Bayes bound of Corollary 2.1, com-
puted on the training set. All bounds hold with con-
fidence 1 − δ = 0.95. For PBGD1, PBGD3 and Ada-
Boost, the bound is computed on all the training data

3This is justified by the fact that the bound holds uni-
formly for all weight vectors w.

PAC-Bayesian Learning of Linear Classifiers

Table 1. Summary of results for linear classifiers on decision stumps.
Dataset (a) AdaBoost (1) PBGD1 (2) PBGD2 (3) PBGD3 SSB

Name |S| |T | n RT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd
Usvotes 235 200 16 0.055 0.346 0.085 0.103 0.207 0.060 0.058 0.165 0.060 0.057 0.261
Credit-A 353 300 15 0.170 0.504 0.177 0.243 0.375 0.187 0.191 0.272 0.143 0.159 0.420
Glass 107 107 9 0.178 0.636 0.196 0.346 0.562 0.168 0.176 0.395 0.150 0.226 0.581
Haberman 144 150 3 0.260 0.590 0.273 0.283 0.422 0.267 0.287 0.465 0.273 0.386 0.424
Heart 150 147 13 0.259 0.569 0.170 0.250 0.461 0.190 0.205 0.379 0.184 0.214 0.473
Sonar 104 104 60 0.231 0.644 0.269 0.376 0.579 0.173 0.168 0.547 0.125 0.209 0.622
BreastCancer 343 340 9 0.053 0.295 0.041 0.058 0.129 0.047 0.054 0.104 0.044 0.048 0.190
Tic-tac-toe 479 479 9 0.357 0.483 0.294 0.384 0.462 0.207 0.208 0.302 0.207 0.217 0.474 (2,3)<(a,1)
Ionosphere 176 175 34 0.120 0.602 0.120 0.223 0.425 0.109 0.129 0.347 0.103 0.125 0.557
Wdbc 285 284 30 0.049 0.447 0.042 0.099 0.272 0.049 0.048 0.147 0.035 0.051 0.319
MNIST:0vs8 500 1916 784 0.008 0.528 0.015 0.052 0.191 0.011 0.016 0.062 0.006 0.011 0.262
MNIST:1vs7 500 1922 784 0.013 0.541 0.020 0.055 0.184 0.015 0.016 0.050 0.016 0.017 0.233
MNIST:1vs8 500 1936 784 0.025 0.552 0.037 0.097 0.247 0.027 0.030 0.087 0.018 0.037 0.305 (3)<(1)
MNIST:2vs3 500 1905 784 0.047 0.558 0.046 0.118 0.264 0.040 0.044 0.105 0.034 0.048 0.356
Letter:AvsB 500 1055 16 0.010 0.254 0.009 0.050 0.180 0.007 0.011 0.065 0.007 0.044 0.180
Letter:DvsO 500 1058 16 0.036 0.378 0.043 0.124 0.314 0.033 0.039 0.090 0.024 0.038 0.360
Letter:OvsQ 500 1036 16 0.038 0.431 0.061 0.170 0.357 0.053 0.053 0.106 0.042 0.049 0.454
Adult 1809 10000 14 0.149 0.394 0.168 0.196 0.270 0.169 0.169 0.209 0.159 0.160 0.364 (a)<(1,2)
Mushroom 4062 4062 22 0.000 0.200 0.046 0.065 0.130 0.016 0.017 0.030 0.002 0.004 0.150 (a,3)<(2)<(1)

with the non informative prior P0. For PBGD2, the
bound is computed on the second half of the train-
ing data with the prior Pwp

constructed from the first
half, and, as explain in Section 4.1, with δ replaced by
(δ/7). Note that the bounds values for the classifiers
returned by PBGD2 are generally much lower those for
the classifiers produced by the other algorithms. This
almost always materializes in a smaller testing error
for the linear classifier produced by PBGD2. To our
knowledge, these training set bounds for PBGD2 are
the smallest ones obtained for any learning algorithm
producing linear classifiers.

To determine whether or not a difference of empirical
risk measured on the testing set T is statistically signif-
icant, we have used the test set bound method of Lang-
ford (2005) (based on the binomial tail inversion) with
a confidence level of 95%. It turns out that no algo-
rithm has succeeded in choosing a linear classifier hw

which was statistically significantly better (SSB) than
the one chosen by another algorithm except for the few
cases that are list in the column “SSB” of Table 1.

Overall, AdaBoost and PBGD2and3 are very compet-
itive to one another (with no clear winner) and are
generally superior to PBGD1. We therefore see an
advantage in using half of the training data to learn
a good prior over using a non-informative prior and
keeping all the data to learn the posterior.

4.3. PBGD with Respect to Dual Variables

In this subsection, we compare the PBGD algorithms
to the soft-margin SVM. Here, all four learning al-
gorithms are producing a linear classifier on a fea-
ture space defined by the RBF kernel k satisfying
k(x,x′) = exp(− 1

2‖x−x′‖2/γ2) ∀(x,x′) ∈ X×X . The
results obtained for all algorithms are summarized in

Table 2. All the data sets are the same as those of the
previous subsection. The notation used in this table is
identical to the one used for Table 1.

For the SVM and PBGD3, the kernel parameter γ
and the soft-margin parameter C was chosen by 10-
fold cross validation (on the training set S) among the
set of values proposed by Ambroladze et al. (2006).
PBGD1and2 also tried the same set of values for γ but
used the bound of Corollary 2.1 to select a good value.
Since we consider 15 different values of γ, the bound
of PBGD1 is therefore computed with δ replaced by
(δ/15). For PBGD2, the bound is, as stated before,
computed on the second half of the training data but
with δ replaced by (δ/(7·15)). Again, the bounds val-
ues for the classifiers returned by PBGD2 are gener-
ally much lower those for the classifiers produced by
the other algorithms. To our knowledge, the training
set bounds for PBGD2 are the smallest ones obtained
for any learning algorithm producing linear classifiers.

The same method as in the previous subsection was
used to determine whether or not a difference of empir-
ical risk measured on the testing set T is statistically
significant. It turns out that no algorithm has chosen a
linear classifier hw which was statistically significantly
better than the choices of the others except the few
cases listed in the “SSB” column. Thus, the SVM and
PBGD3 are very competitive to one another (with no
clear winner) and are both slightly superior to PBGD2,
and a bit more than slightly superior than PBGD1.

5. Conclusion

We have shown that the standard PAC-Bayes risk
bounds (McAllester, 2003; Seeger, 2002; Langford,
2005; Catoni, 2007) are specializations of Theorem 2.1
that are obtained by choosing a particular convex func-

PAC-Bayesian Learning of Linear Classifiers

Table 2. Summary of results for linear classifiers with a RBF kernel.
Dataset (s) SVM (1) PBGD1 (2) PBGD2 (3) PBGD3 SSB

Name |S| |T | n RT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd
Usvotes 235 200 16 0.055 0.370 0.080 0.117 0.244 0.050 0.050 0.153 0.075 0.085 0.332
Credit-A 353 300 15 0.183 0.591 0.150 0.196 0.341 0.150 0.152 0.248 0.160 0.267 0.375
Glass 107 107 9 0.178 0.571 0.168 0.349 0.539 0.215 0.232 0.430 0.168 0.316 0.541
Haberman 144 150 3 0.280 0.423 0.280 0.285 0.417 0.327 0.323 0.444 0.253 0.250 0.555
Heart 150 147 13 0.197 0.513 0.190 0.236 0.441 0.184 0.190 0.400 0.197 0.246 0.520
Sonar 104 104 60 0.163 0.599 0.250 0.379 0.560 0.173 0.231 0.477 0.144 0.243 0.585
BreastCancer 343 340 9 0.038 0.146 0.044 0.056 0.132 0.041 0.046 0.101 0.047 0.051 0.162
Tic-tac-toe 479 479 9 0.081 0.555 0.365 0.369 0.426 0.173 0.193 0.287 0.077 0.107 0.548 (s,3)<(2)<(1)
Ionosphere 176 175 34 0.097 0.531 0.114 0.242 0.395 0.103 0.151 0.376 0.091 0.165 0.465
Wdbc 285 284 30 0.074 0.400 0.074 0.204 0.366 0.067 0.119 0.298 0.074 0.210 0.367
MNIST:0vs8 500 1916 784 0.003 0.257 0.009 0.053 0.202 0.007 0.015 0.058 0.004 0.011 0.320
MNIST:1vs7 500 1922 784 0.011 0.216 0.014 0.045 0.161 0.009 0.015 0.052 0.010 0.012 0.250
MNIST:1vs8 500 1936 784 0.011 0.306 0.014 0.066 0.204 0.011 0.019 0.060 0.010 0.024 0.291
MNIST:2vs3 500 1905 784 0.020 0.348 0.038 0.112 0.265 0.028 0.043 0.096 0.023 0.036 0.326 (s)<(1)
Letter:AvsB 500 1055 16 0.001 0.491 0.005 0.043 0.170 0.003 0.009 0.064 0.001 0.408 0.485
Letter:DvsO 500 1058 16 0.014 0.395 0.017 0.095 0.267 0.024 0.030 0.086 0.013 0.031 0.350
Letter:OvsQ 500 1036 16 0.015 0.332 0.029 0.130 0.299 0.019 0.032 0.078 0.014 0.045 0.329
Adult 1809 10000 14 0.159 0.535 0.173 0.198 0.274 0.180 0.181 0.224 0.164 0.174 0.372 (s,3)<(2)
Mushroom 4062 4062 22 0.000 0.213 0.007 0.032 0.119 0.001 0.003 0.011 0.000 0.001 0.167 (s,2,3)<(1)

tion D that binds Gibbs’ true risk to its empirical
estimate. Moreover, when spherical Gaussians over
spaces of linear classifiers are used for priors and pos-
teriors, we have shown that the Gibbs classifier GQw

that minimizes the PAC-Bayes bound of Corollary 2.1
(resp. 2.2) is obtained from the weight vector w that
minimizes the (non-convex) objective function F2.1

(resp. F2.2). When the prior is non-informative, a sim-
ple convex relaxation of F2.2 gives the objective func-
tion which is minimized by the soft-margin SVM.

We have proposed two learning algorithms (PBGD1
and PBGD2) for finding linear classifiers that mini-
mize the bound of Corollary 2.1, and another algo-
rithm (PBGD3) that uses the cross-validation me-
thodology to determine the value of parameter C
in the objective function F2.2. PBGD1 uses a non-
informative prior to construct the final classifier from
all the training data. In contrast, PBGD2 uses a frac-
tion of the training set to construct an informative
prior that is used to learn the final linear classifier on
the remaining fraction of the training data. Our ex-
tensive experiments indicate that PBGD2 is generally
much more effective than PBGD1 at producing classi-
fiers with small true risk. Moreover, the training set
risk bounds obtained for PBGD2 are, to our knowl-
edge, the smallest obtained so far for any learning al-
gorithm producing linear classifiers. In fact, PBGD2
is a learning algorithm producing classifiers having a
good guarantee without the need of using any test set
for that purpose. This opens the way to a feasible
learning strategy that uses all the available data for
training. Our results also indicate that PBGD2 and
PBGD3 are competitive with both AdaBoost and the
soft-margin SVM at producing classifiers with small
true risk. However, as a consequence of the non-
convexity of the objective function F2.2, PBGD2 and

PBGD3 are slower than AdaBoost and the SVM.

Acknowledgements Work supported by NSERC
Discovery grants 262067 and 0122405.

References

Ambroladze, A., Parrado-Hernández, E., & Shawe-
Taylor, J. (2006). Tighter PAC-Bayes bounds. Pro-
ceedings of the 2006 conference on Neural Informa-
tion Processing Systems (NIPS-06) (pp. 9–16).

Banerjee, A. (2006). On bayesian bounds. ICML ’06:
Proceedings of the 23rd international conference on
Machine learning (pp. 81–88).

Catoni, O. (2007). PAC-Bayesian surpevised classifi-
cation: the thermodynamics of statistical learning.
Monograph series of the Institute of Mathematical
Statistics, http://arxiv.org/abs/0712.0248.

Langford, J. (2005). Tutorial on practical prediction
theory for classification. Journal of Machine Learn-
ing Research, 6, 273–306.

Langford, J., & Shawe-Taylor, J. (2003). PAC-Bayes
& margins. In S. T. S. Becker and K. Obermayer
(Eds.), Advances in neural information processing
systems 15, 423–430. Cambridge, MA: MIT Press.

McAllester, D. (2003). PAC-Bayesian stochastic model
selection. Machine Learning, 51, 5–21.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of
Statistics, 26, 1651–1686.

Seeger, M. (2002). PAC-Bayesian generalization
bounds for gaussian processes. Journal of Machine
Learning Research, 3, 233–269.

