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Abstract

We consider Gaussian multiresolution (MR)
models in which coarser, hidden variables serve
to capture statistical dependencies among the
finest scale variables. Tree-structured MR mod-
els have limited modeling capabilities, as vari-
ables at one scale are forced to be uncorre-
lated with each other conditioned on other scales.
We propose a new class of Gaussian MR mod-
els that capture the residual correlations within
each scale usingparse covariance structure
Our goal is to learn a tree-structured graphi-
cal model connecting variables across different
scales, while at the same time learning sparse
structure for the conditional covariance within
each scale conditioned on other scales. This
model leads to an efficient, new inference algo-
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proach can be extended to multiple resolutions - represent-
ing the market, divisions, industries, and individual compa-
nies at each scale from the coarsest to the finest.

One approach in MR modeling is to use tree-structured
graphical models in which nodes at any scale are connected
to each other only through nodes at other scales (see Fig-
ure 1). While such tree models allow efficient inference
and learning algorithms, they have a significant and well-
known limitation that variables at any of the scalesare-
ditionally uncorrelatedwhen conditioned on neighboring
scales. In our stock return example, the Standard Industrial
Classification (SIC) system, a hierarchy widely-used in fi-
nance, places Microsoft and Apple in different branches of
the tree because the former belongs to the business service
industry in the services division while the latter belongs to
the computer equipment industry in the manufacturing di-
vision. Tree-based modeling methods will assume that the

rithm that is similar to multipole methods in com-
putational physics.

monthly returns of Microsoft and Apple are uncorrelated
conditioned on the market, which is likely not true.

A variety of methods (Bouman & Shapiro, 1994; Choi &
Willsky, 2007) have been proposed to include additional
edges - either inter-scale or within the same scale - to
Multiresolution (MR) models (Willsky, 2002) provide the MR tree model and to consider an overall sparse MR
compact representations for encoding statistical dependegraphical model. We propose a different approach to ad-
cies among a large collection of random variables. In MRdress the limitation of MR tree models. Since the role of
models, variables at coarser resolutions serve as commamarser scales in an MR model is to capture most of the cor-
factors for explaining statistical dependencies among finerelations among the finer scale variables through coarser
scale variables. For example, suppose that we would likecales, shouldn’t theesidual correlation at each scale be
to discover the dependency structure of the monthly returngapproximately)spars® In other words, the residual cor-

of 100 different stocks by looking at pairwise correlations. relation of any node (conditioned on coarser nodes) is con-
It is likely that the covariance matrix will be full, i.e., the centrated completely on a small number of nodes at that
monthly return of one stock is correlated to all otl%r  scale. This suggests that tieenditional correlations at
stocks, because stock prices tend to move together drivezach scale (when conditioned on the neighboring scales)
by the market situation. Therefore, it is more informative should be sparse. Based on this idea, we can model that
to introduce a hidden variable corresponding to the marketonditioned on the market and industries, Microsoft is cor-
and then model the residual covariance (after conditioningelated with Apple and possibly with a few other companies
on the market) among the individual companies. This apsuch as Google or IBM.

1. Introduction

Appearing inProceedings of the6" International Conference Such models lead to efficient inference algorithms that are
on Machine LearningMontreal, Canada, 2009. Copyright 2009 fundamentally different from standard graphical model in-
by the author(s)/owner(s). ference algorithms. We use the sparse tree strudiare
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Figure 1.Examples of MR tree models for a one-dimensional Figure 3.(2) Sparsity pattern of a covariance matrix and (b) the
process (left) and for a two-dimensional process (right). Shadegorresponding graphical model. (c) Conjugate graph encoding
nodes represent original variables at the finest scale and whitée sparsity structure of the covariance matrix in (a).

nodes represent hidden variables at coarser scales.
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ance matrix. Specifically, in the conjugate graph, when two
nodes are not connected witls@njugatesdge, they aran-
correlatedwith each other. We use red solid lines to display
graphical model edges, and blue dotted lines to represent
conjugate edges. Figure 3(c) shows the corresponding con-
jugate graph for a distribution with covariance structure as

Figure 2.(a) A sparse graphical model and (b) the sparsity patterd Figure 3(a). From the conjugate graph, we can identify

of the corresponding information matrix.

thatz; is uncorrelated withrs, x4, andxs.

tweenscales, to propagate information from scale-to-scaleg Multiresolution Models with Sparse

and then perform residual filteringithin each scale using

In-scale Conditional Covariance

the sparse conditional covariance structure. In addition, we

develop methods fdearningsuch models given data at the

We propose a class of MR models with tree-structured con-

finest scale. The structure optimization within each scaleections between different scales and spaseditional

can be formulated as a convex optimization problem.

2. Preliminaries

Let x ~ N(p,X) be a jointly Gaussian random vector
with a mean vectoy, and a positive-definite covariance
matrix . If the variablesx are Markov with respect to
a graphg = (V, &), the inverse of the covariance matrix
J = Y71 (also called the information, or precision ma-
trix) is sparse with respect 1@. That is,J,; # 0 if and
only if {s,t} € & (Lauritzen, 1996). Figure 2(a) shows
one example of a sparse graph, and the sparsity pattern
the corresponding information matrix is shown in Fig-
ure 2(b). The graph structure implies that is uncorre-
lated with x5 conditionedon x,. For any subsed C V,
let\A = {s € V,s ¢ A} be its complement. The infor-
mation matrix of the conditional distributiqn(x 4 |z\ 4) is
the submatrixof .J with rows and columns corresponding
to elements iMA. In Figure 2(b), the information matrix of
the conditional distributiop(x1, x2, 3, z4|x5) is the sub-
matrix J(1 : 4,1 : 4), which is a tri-diagonal matrix.

Conjugate Graphs Consider a distribution with the spar-
sity pattern of thecovariance matrixgiven as in Figure
3(a). Its information matrix will, in general, be a full ma-
trix, and the corresponding graphical model will be fully
connected as shown in Figure 3(b). We introdaoaju-
gate graphdto illustrate the sparsity structure of a covari-

This term is motivated by conjugate processes - two

covariance structure at each scale. We ddfirgcale con-
ditional covarianceas the conditional covariance between
two variables (in the same scalehen conditioned on vari-
ables at other scalegor equivalently, variables at scales
above and below, but not the variables at the same scale).
Note that this is different from the more commonly used
concept ofpairwise conditional covariangewhich refers

to the conditional covariance between two variables when
conditioned onall other variables(including other vari-
ables within the same scale). An information matrix (i.e.,
a graphical model) is sparse with respect to the pairwise
ebnditional covariance structure. We illustrate the sparsity
of the in-scale conditional covariance using the conjugate
graph. Thus, our model has a sparse graphical model for
inter-scale structure and a sparse conjugate graph for in-
scale structure. In the rest of the paper, we refer to such
an MR model as a Sparse In-scale Conditional Covariance
Multiresolution (SIM) model.

Figure 4(b) shows an example of a SIM mod=inditioned

on scalel (variablex;) and scale3 (variablesz; through
T10), 2 IS uncorrelatedwith z4. This is different fromzo

and x4 being uncorrelated without conditioning on other
scales (the marginal covariance is nonzero), and also dif-
ferent from the corresponding element in the information
matrix being zero (the pairwise conditional covariance is
nonzero). Indeed, the graphical model representation of
the model in Figure 4(b) is a densely connected graphical
structure within each scale as shown in Figure 4(c).

processes with covariances that are inverses of one another. Thigaph is also called eovariance grapf{Cox & Wermuth, 1996).
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Figure 4.Examples of MR models. (a) An MR model with a sparse graphical structure. (b) A SIM model with sparse conjugate graph
within each scale. (c) A graphical model corresponding to the model in (b).

tional distribution at scalen conditioned on other scales
(see Section 2). As illustrated in Figure 4(c), a SIM model
has a densely connected graphical model within each scale,
S0 Jj,,,) in general is not a sparse matrix. Thwerseof
Jim), however, is sparse since we have a sparse conditional
covariance matrix within each scale. The matyixcan
be decomposed as a sum.ff, corresponding to the hi-

Scale 2 LG S o erarchical inter-scale tree structure, affq corresponding

to the conditional in-scale structure. LEf = (J¢)~ L.

Scale 3 O-0---O---0  SinceJ¢ is a block-diagonal matrix (with each block cor-
Figure 5.Decomposition of a SIM model into a sparse hierarchi- responding to variables in one scale), its invex$ds also
cal structure connecting different s_cales and a sparse ConjUQaEﬁock-diagonal with each diagonal block equajmpm])fl_
graph at each scale. Shaded matrices are dense, and non-shaqjﬁgnce’z;c is a sparse matrix, whereak is not sparse
matrices are sparse. in general. Therefore, the information matrixof a SIM
In contrast, an MR model with a sparse graphical modemodel can be decomposed as a sum of a sparse matrix and
structure within each scale is shown in Figure 4(a). Such #he inverse of a sparse block-diagonal matrix:
model does not enforce sparse covariance structure within J = Jh 4 (50) )
each scale conditioned on other scales: conditioned on '
scales above and below; andz, are correlated unless we Each nonzero entry ifi" corresponds to an interscale edge
condition on the other variables at the same scale (namel§onnecting variables at different scales. The block diagonal
variablezs). In Section 6, we demonstrate that SIM mod- matrix X has nonzero entries correspondingtmjugate
els lead to better modeling capabilities and faster inferencedges within each scale. In the next section, we take advan-
than MR models with sparse graphical structure. tage of sparsity ifoth.J" andX¢ for efficient inference.

Jun J[tZ]i 0

4= J[mé Jar

0 : J|3.2]§ Ju

Scale 1

The SIM model, to our best knowledge, is the first ap- . L

proach to enforce sparse conditional covariance at eacft- Inference Exploiting Sparsity in Markov
scale explicitly in MR modeling. A majority of the previ- and Covariance Structure

ous approaches to overcoming the limitations of tree mod- . . . S
els (Bouman & Shapiro, 1994: Choi & Willsky, 2007) fo- Let x'be a collef:'ilon of random varlabl'es with a prior dIS-.
cus on constructing an overall sparse graphical model strué['buuomv(o’ J7, 5!”0'1/ bea s_et of noisy mea_lsurements.
ture (as in Figure 4(a)). A different approach based on & = C'% + v WhereC'is a selection matrix, andis a zero-
directed hierarchy of densely connected graphical model§'€aN Gaussian noise vector with a diagonal covariance ma-

is proposed in (Osindero & Hinton, 2007), but it does nottrlx R. Thus, we have in our setup noisy measuremgnts

have a sparse conjugate graph at each layer and requirg ailable at a subset of the'nodes. co_rresponding to the vari-
mean-field approximations unlike our SIM model. ablese. Then, the MAP estimaté is given as follows:

& = argmax p(z|y) = E[z|ly] = (J+ J?)'h  (2)
Desired Structure of the Information Matrix  Here, we r
specify the desired sparsity structure for each submatrix ofvhere J» = CTR~!C is a diagonal matrix, and =

the information matrix of a SIM model. First, we partiton CTR~'y. If J corresponds to a tree-structured model, (2)
the information matrix/ of a SIM model by scale as shown can be solved with linear complexity. If the prior model is
in Figure 5 (corresponding to a model wittscales). The not a tree, solving this equation directly by matrix inver-
submatrixJj,,,, m,], corresponding to the graphical struc- sion requiresO(N3) computations wher#y is the number
ture between scales;, andms, is sparse since the inter- of variables. We review a class of iterative algorithms in
scale graphical model has a tree structure. The submatri®ection 4.1, and propose a new and efficient inference al-
Jim) corresponds to the information matrix of tkendi-  gorithm that solves (2) for our SIM model in Section 4.2.
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4.1. Iterative Algorithms Based on a Matrix Splitting efficiently. In our experiments, we use just a few Gauss-

. . . . ._Jacobi iterations (see Section 4.1) to compute
As described above, the optimal estimates in Gaussian ( ) A

models can be computed by solving a linear equatiorin-scale Inference This step selects the in-scale structure
A% = h whereA = (J + JP). Many iterative linear to perform computations by settidg = (3¢)~'.

system solvers are based on the idea of a matrix splitting:
A = M — K. Let us re-write the original equation as
Mz = h + K. Assuming that\/ is invertible, we obtain
the following iterative update equations:

i‘new — Zc(h _ Jh.%ol(i _ in,old) (5)

Evaluating the right-hand side only involves multiplica-
tions of a sparse matriX¢ and a vector, s@"<* can be

Fnew = MY (h + K3°9) ©) computed efficiently. Note that although we use a sim-

ilar method of splitting the information matrix and itera-

wherez°!? is the value ofi at the previous iteration, and tively updatingz as in the Richardson iteration (3), our al-
™" is the updated value at the current iteration. The magorithm is efficient for a fundamentally different reason.
trix M is called gpreconditionerand (3) corresponds to the In the Richardson iteration (specifically, the ET algorithm)
preconditioned Richardson iterations (Golub & Van Loan,and in our tree-inference step, solving the matrix equation
1990). If solving the equation/ & = = for a fixed vectorz is efficient because it is equivalent to solving an inference
is easy, each iteration can be performed efficiently. Ther@roblem on a tree model. In our in-scale inference step, the
are a variety of ways in which splittings can be defined. Foipreconditioner selected actually corresponds to a densely
example, Gauss-Jacobi iterations set the preconditibher connected graphical model, but since it has a sparse conju-
as a diagonal matrix with diagonal elementspfand em-  gate graph, the update equation reduces to a sparse matrix
bedded tree (ET) algorithms (Sudderth et al., 2004) splimultiplication.

the matrix so thafl/ has a tree structure. . . .
The concept of performing local in-scale computations can

be found in multipole methods (Greengard & Rokhlin,
1987) that use multiple scales to solve partial differential
We use the matrix splitting idea in developing an efficientequations. Multipole methods assume that after a solution
inference method for our SIM model. Recall that the in-iS computed at coarser resolutions, olagal terms need to
formation matrix of the SIM model can be decomposed ad€ modified at finer resolutions. The SIM model is aimed at
in (1). Our goal is to solve the equatigd” + (X°)~* + providing a precise statistical framework leading to infer-
JP)& = h whereJ", ¥¢, and J? are all sparse matrices. ence algorithms with solid advantages analogous to those
We alternate between two inference steps correspondingf multipole methods.

to inter-scalecomputation anih-scalecomputation in the

MR model. Our inter-scale computation, called thee 5 Learning MR Models with Sparse In-scale
mference ste|epr0|t_s sparse Mark_ov structure conngctlng Conditional Covariance

different scales, while oun-scale inference stepxploits

sparse in-scale conditional covariance structure. 5.1. Log-determinant Maximization

Tree Inference In this step, we select the inter-scale treesljppose that we are given a target covariahdeand
structure as the preconditioner in (3) by settifg= J" +  wish to learn a sparse graphical model that best approxi-
J? + D, whereD is a diagonal matrix added to ensure thatmates the covariance. The target covariance matrix may
M is positive-definité. be specified exactly when the desired statistics of the ran-
h new en—1 ~old ~old dom process are known, or may be the empirical covariance
(J*+JP+ D) =h—(E972"" + D3 “) com[futed from samples. One gossible solllJJtion is to thresh-
With the right-hand side vector fixed, solving the aboveold each element af*)~! so that small values are forced
equation is efficient sincé@/ has a tree structure. On the tO zero, but often, this results in an invalid covariance ma-
right-hand sideDz can be evaluated easily sinéeis di-  trix that is not positive-definite. Thus, standard approaches
agonal, but computing = (X¢)~'# directly is not effi-  in Gaussian graphical model selection solve the following
cient becaus¢x)~! is a dense matrix. Instead, we eval- l0g-determinant optimization problem to find an approxi-
uatez by solving the matrix equatiol¢z = #. The ma- Mmate covariance matrix:
trix X¢ (in-scale conditional covariance) is sparse and well- A

conditioned in general; hence the equation can be solved > = argmax log det X2

%In (3), M needs to be invertible, bt/™ + J?) is singular s.t. %i5 — il < iy Visg (6)
since the diagonal elements at coarser scales (without measure- . . o
ments) are zero. We ude = (dzag(Ec))_l Wherediag(zc) is Where%;j IS a nonnega“ve regular|zat|0n parameter. It
a diagonal matrix with diagonal elementsXf. can be shown that the solution of the above problem has

4.2. Efficient Inference in SIM Models
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a sparse inverse, which is a sparse graphical model approgxcept that/¢ is a diagonal matrix. This diagonal in-
imation (Banerjee et al., 2006). scale conditional structure results in artifacts that corre-

We now turn the tables and consider the problem of approx§pond to inaccurate matching of finest-scale covariances,

o h e .
imating a target distribution with a distribution that has a>owe f'X.J anq modify.J* in the remaining steps. The.

. . : goal of this step is to compute the target information matrix
sparsecovariancematrix (as opposed to a sparse informa-

. . ) . 1]* = Jh 4 J°* so that the finest scale submatrix(of)~!
tion matrix as above). We again use the Iog-determmanIS exactly equal to the given target covariaiie. In other
problem, but now in the information matrix domain: yeq 9 g '

words, we design a matriXx“* such that(J" + J¢*) be-
J — aremax log det J comes an “exact” target MR model in which the marginal
B §>0 & covariance at the finest scale equals the given target co-
s.t. |Jig = I < iy, Vig o (7) varianceX ;.. We describe the detailed computation in the

Appendix (see also (Choi et al., 2009)).

where.J* is a target information matrix. The solutiohhas ~ Step 3: Obtaining sparse in-scale conditional covari-
a sparse inverse, leading to a sparse covariance approximance Consider the target information matrix computed
tion. In our MR modeling approach, we apply this sparsefrom Step 2: J* = J" + J°*. The inter-scale parf”
covariance approximation method to model the conditionals a tree model buff°* is not sparse and does not have a
distribution at each scale conditioned on other scales.  sparse inverse (i.e5°* = (J¢*)~! is notsparse). We find

a SIM model that approximates" by solving the follow-
5.2. Learning a SIM Model ing problem:

Suppose that we are given a target covariangeof the J = argmax ZIOg det, i
variables at the finest scale. Our objective is to introduce J-0 -

hidden variables at coarser scales and learn a SIM model, st iy = T3] < vige iy 3} € Eimscate
so that when we marginalize out all coarser scale variables, 7 ’_ _ g J_ 0 Vj{i e &, ®)

the marginal covariance at the finest scale is approximately J b +J inter

egual toX . Ourlea_rning procedure consists of three St?pswhere Jim is the in-scale information matrix at scale
FI}I’S.t, we learn the mter—spale part of the SIM mo_del .(|.e.,amjgimcal(i and &, are the set of all possible in-scale
J" in Figure 5) by learning an MR tree approximation. gnq inter-scale edges, respectively. If we look at the terms
Next, a sparse in-scale conditional covariak€es learned involving scalem (i.e., elements of the matrix,, ), the

by solving a convex optimization problem _similar t_o ("), above problem maximizes the log-determinanfigf; sub-

but before this step, we compute the target information Majgt 1o element-wise constraints. Therefore, as in Section
trix (for the full process acrosall scales) which plays the 5.1, the log-det terms ensure that eaf{:n] has a sparse
same role ag'™ in (7). inverse, which leads to a sparse in-scale conditional covari-

Step 1. Learning the inter-scale model/* To begin ~ @nce, and thus a sparse conjugate graph.

with, we select an MR tree structure (without any in-scaleThe problem in (8) is convex and can be efficiently solved
ConnectionS) withadditional hiddenvariables at coarser using genera| techniques for convex Opt|m|zat|onfuerg'

scales and the original variables at the finest scale. FO3004). The regularization parametgr; is chosen by a
some processes, there exists a natural hierarchical strugeyristic method (see (Choi et al., 20()9)).

ture: for example, the MR tree models in Figure 1 for regu-
lar one-dimensional or two-dimensional processes, and th .
hierarchy defined by the Standard Industrial Classification™ Experimental Results

(SIC) system for the stock returns. For problems in whichjn this section, we present the modeling and inference per-
the hierarchical structure is not clearly defined, any clusformance of our SIM model. The results are compared with
tering algorithm can be applied to group variables togethep, single-scale approximate model where we learn a sparse
and insert one coarser scale variable per group. Once thgtaphical model using (6) without introducing hidden vari-
structure is fixed, we apply the EM algorithm to choose thegpjes, a tree-structured MR model, and a sparse MR model
parameters that best match the given target covariafice of the form introduced in (Choi & Willsky, 2007) that has

for the finest scale variables. This procedure is efficient forsparse graphica| model structure at each scale. We measure
a tree-structured model and converges to a local maXimUI’T]he mode”ng accuracy of approximate models by Comput_
ing the divergence between the specified target distribution

Step 2: Finding the target information matrix J* . L
b 9 g and the approximate distribution learngd.

From Step 1, we have an information mattly... corre-

sponding to an MR tree model. Note that.. has a struc- 3For MR models we use the marginal distribution at the finest
ture as in Figure 5 and thus can be written &% ¢ J°) scale to compute this divergence.
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Figure 6.The structure of the SIM model approximation for Stock data.

Table 1.Top 4 strongest conjugate edges at Scatd Figure 6.

Sign | SIC code| Industry Group Representative Companies
+ 13 Oil and Gas Extraction Schlumberger
29 Petroleum Refining Exxon Mobile, Chevron
+ 35 Machinery And Computer Equipment Dell, Apple, IBM, Xerox
36 Other Electrical Equipment Except Computer Equipmet, Intel, GE
+ 20 Food And Kindred Products Coca Cola, Heinz
28 Chemicals And Allied Products Dow Chemical, Johnson & Johnson
+ 35 Machinery And Computer Equipment Dell, Apple, IBM, Xerox
73 Business Services Microsoft, Oracle
6.1. Stock Returns among companies that belong to the same industry, because

i . . . there is no hidden variable to capture the correlations at a
Our first experiment is modeling the dependency_ S.trucwr%oarser resolution. Figure 7(b) shows the information ma-
of monthly _Stoilr(] returntsh.l WE;; com]!o ;}t;g’ghte g(r)rg)r;mca(lj “"trix at the finest scale of a sparse MR model approximation
variance using the monthly returns fr 02007, and — cpoi & Willsky, 2007). Although the graphical model is

learn a SIM model approximation for ti&d companies in . s
. ) . . sparser than the single-scale approximation, some of the
the S&P 100 stock index using the hierarchy defined by companies still have densely connected edges. This sug-

:\r/}eR Stagdlarcri] Ingustr|?l Classmcan?n (tShIC) Syslgt;@ ur gests that the SIM model structure is a more natural repre-
MOCEIS have: scales, representing the markebivi- sentation for capturing in-scale statistics. As shown in the

?'OTS'Q? 'ndt‘Str]ieS’ atrt:d%zl |nd|V|d;JtaI ::r?n}panltes, respec- caption of Figure 7, the SIM model approximation provides
Ively, at scales from the coarsest o the inest. the smallest divergence of all approximations.
Figure 6 shows the first three scales of the SIM model ap-
proximation. At Scale, we show the SIC code for each 6.2. Fractional Brownian Motion
industry (represented by two digits) and in the parenthesi%v ider fractional B . ion (fB ith 1
denote the number of individual companies that belong to € consi gr:actl(én?_ :;)W”'T]n ”.‘0“0_” ( mz)W't . #rst
that industry (i.e., number of children). We show the finestParametet! = 0.3 efined on the time intervgD, 1] wit

- - the covariance functiont (¢y, to) = 2 (|t1]?7 + |to|?H —
scale of the SIM model using the sparsity pattern ofithe P ) 8 sh L2 h N 2 lized b
scale conditional covariancia Figure 7(c). Often, indus- 2! B t| q )I. F.'guie. Shows tl € cgvargr&ze realized by
tries or companies that are closely related have a conjugaFeaC . mlg' N us;gng .t|m|e samp ehs. ur | approxima-
edge between them. For example, the strongest conjuga%m In Figure ( ) is close to the origina covanance in
edge at Scal@ is the one between the Oil and Gas Ex- Figure 8(a_), while the single-scale approx_lmatlon In Fig-
traction industry (SIC cod&3) and the Petroleum Refining ure 8(b) falls_to CaPt““? long-range correlations and the tree
industry (SIC code9). Table 1 shows conjugate edges model covariance in Figure 8(c) appears blocky.

at Scales in the order of their absolute magnitude (i.e., the Fig. 9(a) displays a 256-point sample path using the exact
top 4 strongest in-scale conditional covariance). statistics and (b) displays noisy observations of (a), which
are only available on (0,1/3] and (2/3,1]. Fig. 9 (c-e) show
the estimates based on the approximate single-scale model,
e MR tree model (witlh scales), and the SIM model, re-
spectively, together with the optimal estimate based on the
“We disregard 6 companies listed on S&F00 after1990. exact statistics. The estimate based on our SIM model ap-
*http://www.osha.gov/pls/imis/simanual.html proximation is close to the optimal estimate and does not

Figure 7(a) shows the sparsity pattern of thioermation
matrix of a single-scale approximation. Note that the cor-
responding graphical model has densely connected edg
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Figure 7.Stock returns modeling example. Sparsity pattern of the
information matrix of (a) the single-scale (122.48), and (b) the
sparse MR approximation (28.34). (c) Sparsity pattern of the in-
scale conditional covariance of the SIM approximation (16.36).

All at the finest scale. We provide the divergence between the ° 02 05 075 1 0 0% 05 075t
approximate and the empirical distribution in the parenthesis. The (d) (e)
tree approximation has divergence 38.22. Figure 9.Estimation for fBm-256. (a) Sample-path Using exact

statistics. (b) Noisy and sparse observations of (a), Estimation us-
ing (c) single-scale approximation, (d) tree model, and (e) SIM
model are shown in the dash-dot red lines, with the optimal esti-

™y mate based on exact statistics in the solid black line. The dashed
blue line shows plus/minus one standard deviation error bars.
(b) (c) (d) Table 2.FBm-256 approximation

Figure 8.Covariance for fBm-64. (a) Original model, (b) Single- _ #var | #param*| Div. RMS*
scale approximation, (c) Tree approximation, (d) SIM model. Original | 256 | 32896 0 0
Single 256 20204 3073 | 0.2738
have blocky artifacts unlike the estimate based on the MR Tree 341 681 80.4 | 0.1134
tree model. The sparse MR model of (Choi & Willsky, Sparse MR| 341 1699 15.68 | 0.1963
2007) does not lead to blocky artifacts either, but we ob- SIM 341 1401 8.56 | 0.0672

serve that the SIM model can achieve a smaller divergence* # nodes + # graphical or conjugate edges
with a smaller number of parameters than the sparse MR root-mean-square error w.r.t. the optimal estimate
model (see Table 2). Note that the number of parameters

(number of nodes plus the number of (conjugate) edges) ifhe inference problem for the SIM model (using the in-
the SIM model is much smaller than in the original modelference algorithm in Section 4.2), the original and the
and in the approximate single-scale model. single-scale approximate model (using the ET algorithm
described in Section 4.1), and the sparse MR model (using
6.3. Polynomially Decaying Covariance for a 2-D Field  the algorithm in (Choi & Willsky, 2007)). The SIM mod-
eling approach provides a significant gain in convergence

We consider a collection o256 Gaussian random vari- ; A
rate over other models as displayed in Figure 11.

ables arranged spatially onlé x 16 grid. The variance
of each variable is given b¥,, = 1.5 and the covari- )
ance between each pair of variables is giverbhy ,, = 7. Conclusion and Future Work

1 . . .
d(s,1)"=, whered(s,t) is the s.pat|al dlstapce betwegn We propose a method to learn a Gaussian MR model with
nodess andt¢. Such processes with polynomially-decaying . . .

gparse in-scale conditional covariance at each scale and

covariance have long-range correlations (unlike processe ; : ; .
Sparse inter-scale graphical structure connecting variables

with exponentially-decaying covariance), and are usually . . . .
. . cross scales. By decomposing the information matrix of

not well-modeled by a single-scale sparse graphical mode : . L ;
he resulting MR model into a sparse matrix (information

The original graphical structure (corresponding to the in- : . . i
o ) n matrix corresponding to inter-scale graphical structure) and
verse of the specified covariance matrix) is fully connected : . . " :
matrix that has a sparse inverse (in-scale conditional covari-

and the single-scale approximation of it is still densely con- L .
. : ance), we develop an efficient inference algorithm that ex-
nected with each node connected to at I8dsheighbors. ; o -
) . ploits sparsity in both the Markov and covariance structure.
Fig. 10 shows theonjugategraph of the SIM model ap- . . .
T - . Qur learning algorithm first learns a good MR tree model
proximation within each scale. We emphasize that thes

. . o ~That approximates the given target covariance at the finest
conjugate edges encode the in-scale conditional correlation : ;
. . ) scale and then augments each scale with a sparse conjugate
structure among the variables directly, so each node is onl

locally correlated when conditioned on other scales éraph using a convex optimization procedure based on log-
' determinant maximization. While our focus in this paper is

We generate random noisy measurements using the spean the Gaussian model, applying similar principles to dis-
fied statistics and compare the computation time to solverete models is also of interest, and under investigation.
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