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Abstract
Semi-Supervised Support Vector Machines
(S3VMs) typically directly estimate the label
assignments for the unlabeled instances. This
is often inefficient even with recent advances
in the efficient training of the (supervised)
SVM. In this paper, we show that S3VMs, with
knowledge of the means of the class labels of
the unlabeled data, is closely related to the
supervised SVM with known labels on all
the unlabeled data. This motivates us to first
estimate the label means of the unlabeled data.
Two versions of the meanS3VM, which work by
maximizing the margin between the label means,
are proposed. The first one is based on multiple
kernel learning, while the second one is based
on alternating optimization. Experiments show
that both of the proposed algorithms achieve
highly competitive and sometimes even the best
performance as compared to the state-of-the-art
semi-supervised learners. Moreover, they are
more efficient than existing S3VMs.

1. Introduction
During the past decade, many semi-supervised learning al-
gorithms have been proposed, among which a very popu-
lar type of algorithms is the semi-supervised support vector
machines (S3VMs). Examples include the semi-supervised
SVM (Bennett & Demiriz, 1999), the transductive SVM
(TSVM) (Joachims, 1999), and the Laplacian SVM (Belkin
et al., 2006). Bennett & Demiriz’s S3VM and the TSVM
are built upon the cluster assumption and use the unlabeled
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data to regularize the decision boundary. Specifically, these
methods prefer the decision boundary to pass through low-
density regions (Chapelle & Zien, 2005). The Laplacian
SVM is a S3VM that exploits the data’s manifold structure
via the graph Laplacian. It encodes both the labeled and
unlabeled data by a connected graph, where each instance
is represented as a vertex and two vertices are connected
by an edge if they have large similarity. The goal is to find
class labels for the unlabeled data such that their inconsis-
tencies with both the supervised data and the underlying
graph structure are minimized.

However, while many efficient SVM softwares have been
developed for supervised learning, S3VMs still suffer from
inefficiency issues. In particular, the optimization problem
of Bennett and Demiriz’s S3VM is formulated as a mixed-
integer programming problem and so is computationally in-
tractable in general. TSVM, on the other hand, iteratively
solves standard supervised SVM problems. However, the
number of iterations required may be large since the TSVM
is based on a local combinatorial search that is guided by
a label switching procedure. Unlike the TSVM, the Lapla-
cian SVM only needs to solve one small SVM with the la-
beled data only. However, it needs to calculate the inverse
of an n × n matrix, where n is the size of the whole data
set. This costs O(n3) time and O(n2) memory.

In this paper, we propose a new approach which may lead
to efficient designs of semi-supervised learning algorithms.
In contrast to directly estimating the labels of the unla-
beled examples, we propose a new S3VM which first es-
timates the label means of the unlabeled data. We show
that this S3VM, referred to as the meanS3VM, is nearly
the same as the supervised SVM that is provided with all
the labels of the unlabeled examples. Roughly speaking,
when the data set is separable, the meanS3VM is equiv-
alent to the supervised SVM; otherwise, the loss function
of the meanS3VM is no more than twice of that of the su-
pervised SVM. So, instead of estimating the label of ev-
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ery unlabeled example, we estimate the label means of the
whole unlabeled data. This will be more efficient for semi-
supervised learning. Based on this observation, we pro-
pose two efficient algorithms by maximizing the margin be-
tween the label means of the unlabeled data. Experimental
comparisons with state-of-the-art semi-supervised learning
methods show that our proposed algorithms achieve highly
competitive or even the best performance on a broad range
of data sets, including the semi-supervised learning bench-
mark data sets, UCI data sets and the newsgroup data sets.
In particular, on relatively large data (e.g., those with more
than 1,000 instances), our proposed algorithms are one
hundred times faster than the TSVM and ten times faster
than the Laplacian SVM.

The rest of this paper is organized as follows. Section 2
briefly introduces the semi-supervised support vector ma-
chines. Section 3 studies the usefulness of the label mean
of the unlabeled data. Section 4 proposes two algorithms
which use the label mean for the S3VM. Experimental re-
sults are reported in Section 5. The last section concludes
this paper.

2. Semi-Supervised SVM (S3VM)
In semi-supervised learning, we are given a set of labeled
data {(x1, y1), · · · , (xl, yl)} and a set of unlabeled data
{xl+1, · · · ,xl+u}, where l and u are the sizes of the la-
beled data and unlabeled data, respectively, and yi ∈ {±1}.
Let Il = {1, 2, . . . , l} be the set containing indices of the
labeled data, and Iu = {l + 1, l + 2, . . . , l + u} be the set
for the unlabeled data. The goal is to find f that minimizes

min
f

1
2
‖f‖2H + C1

∑

i∈Il

`(yi, f(xi)) + C2

∑

i∈Iu

`sym(f(xi)),

(1)
where H is a reproducing kernel Hilbert space (RKHS) in-
duced by the kernel k, `(y, f(x)) = max{0, 1− yf(x)} is
the hinge loss, `sym(f(x)) = max{0, 1 − |f(x)|} is the
symmetric hinge loss, and C1, C2 are regularization pa-
rameters that balance model complexity with the empirical
risks on the labeled and unlabeled data, respectively.

Let the decision function be f(x) = w′φ(x) + b, where φ
is the feature map induced by the kernel k. By introducing
slack variables, (1) can be reformulated as

min
w,b,ξ

1
2
‖w‖2 + C1

∑

i∈Il

ξi + C2

∑

i∈Iu

ξi (2)

s.t. yi(w′φ(xi) + b) ≥ 1− ξi, i ∈ Il,

|w′φ(xi) + b| ≥ 1− ξi, i ∈ Iu,

ξi ≥ 0, i ∈ Ii ∪ Iu,∑

i∈Iu

sgn(w′φ(xi) + b) = r,

where ξ = [ξ1, . . . , ξl+u]. The last constraint (with user-
defined parameter r) is a balance constraint that avoids the
trivial solution of assigning all patterns to the same class
and thus achieves “infinite” margin (Chapelle et al., 2008).
It is worth noting that the effect of the objective in (2) has
been well studied and many algorithms have been devel-
oped (Chapelle et al., 2008).

3. Usefulness of the Label Mean
Consider the following optimization problem:

min
w,b,ξ,p

1
2
‖w‖2 + C1

∑

i∈Il

ξi (3)

+C2

∑

i∈Iu

(ξi + pi−l − |f(xi)|)

s.t. yi(w′φ(xi) + b) ≥ 1− ξi, i ∈ Il,

w′φ(xi) + b ≤ pi−l, −w′φ(xi)− b ≤ pi−l,

pi−l ≥ 1− ξi, i ∈ Iu; ξi ≥ 0, i ∈ Il ∪ Iu,∑

i∈Iu

sgn(w′φ(xi) + b) = r.

Lemma 1. Let (w∗, b∗, ξ∗,p∗) be the optimal solution of
(3). Then, for i ∈ Iu,

ξ∗i + p∗i−l =
{

1 |f(xi)| ≤ 1,
|f(xi)| otherwise.

Proof. When |f(xi)| ≤ 1, it is easy to verify that setting
p∗i−l = |f(xi)| + ε and ξ∗i = 1 − |f(xi)| − ε (where 0 ≤
ε ≤ 1 − |f(xi)|) satisfies all the constraints in (3). When
|f(xi)| > 1, given p∗i−l ≥ |f(xi)| ≥ 1, then the second
condition p∗i−l ≥ 1 − ξi is satisfied for any ξi ≥ 0, and
ξ∗i = 0 is the choice that minimizes Eq.3.

Proposition 1. Problem (3) is equivalent to problem (2).

Proof. The key is to show that the loss functions in (2) and
(3) are the same. Obviously, this is the case for the labeled
data. For the unlabeled data (i ∈ Iu), let `′sym(f(xi)) =
ξi + pi−l − |f(xi)|. From Lemma 1,

ξi + pi−l − |f(xi)| =
{

1− |f(xi)| |f(xi)| ≤ 1,
0 otherwise.

Note that the RHS is the same as the symmetric hinge loss
`sym(f(xi)), while the LHS is the same as `′sym(f(xi)).
Therefore, `′sym(f(xi)) = `sym(f(xi)).

From the balance constraint, the numbers of positive and
negative instances in the unlabeled data can be obtained
as u+ = r+u

2 and u− = −r+u
2 , respectively. Let the

true label of the unlabeled pattern i be y∗i . The (true)
means for the positive and negative classes are then m+ =
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1
u+

∑
y∗i =1 φ(xi) and m− = 1

u−

∑
y∗i =−1 φ(xi), respec-

tively. Now,
∑

i∈Iu

|f(xi)| − (u− − u+)b

= w′


 ∑

i∈Iu,f(xi)≥0

φ(xi)−
∑

i∈Iu,f(xi)<0

φ(xi)




= u+w′m̂+ − u−w′m̂−, (4)

where m̂+ = 1
u+

∑
i∈Iu,f(xi)≥0 φ(xi) and m̂− =

1
u−

∑
i∈Iu,f(xi)<0 φ(xi) are estimates of m+ and m−.

Using (4), the objective of (3) can be rewritten as
1
2
‖w‖2 + C1

∑

i∈Il

ξi + C2

∑

i∈Iu

(ξi + pi−l)

−C2(u+w′m̂+ − u−w′m̂− + (u+ − u−)b).

On replacing the estimates m̂+ and m̂− by the ground truth
values, we obtain the following optimization problem:

min
w,b,ξ,p

1
2
‖w‖2 + C1

∑

i∈Il

ξi + C2

∑

i∈Iu

(ξi + pi−l) (5)

−C2(u+w′m+ − u−w′m− + (u+ − u−)b)
s.t. constraints in (3) .

Proposition 2. In (5), the loss for an unlabeled xi is

˜̀(xi) =
{ −2y∗i f(xi) y∗i f(xi) < 0, |f(xi)| ≥ 1,

`(y∗i , f(xi)) otherwise. (6)

Proof. The objective in (5) can also be rewritten as
1
2‖w‖2 + C1

∑
i∈Il

ξi + C2

∑
i∈Iu

(ξi + pi−l − y∗i f(xi)).
Hence, ˜̀(xi) = ξi + pi−l − y∗i f(xi). From Lemma 1,

˜̀(xi) =





1− y∗i f(xi) |f(xi)| ≤ 1,
0 |f(xi)| ≥ 1, y∗i f(xi) ≥ 0,
−2y∗i f(xi) |f(xi)| ≥ 1, y∗i f(xi) < 0,

which is equivalent to (6).

Corollary 1. (Separable case) If the data is separable, the
loss in (6) is the same as the hinge loss for sample xi w.r.t.
its true label.
Proof. When the data is separable, (6) becomes ˜̀(xi) =
`(y∗i , f(xi)) which is the same as the hinge loss in the stan-
dard SVM.

Corollary 2. (Non-separable case) If the data is non-
separable, the loss in (6) is no more than twice of that of
the hinge loss w.r.t. the true label.
Proof. (5) is upper-bounded by max{−2y∗i f(xi), 1 −
y∗i f(xi)}, while the hinge loss is `(y∗i , f(xi)) = 1 −
y∗i f(xi). Since −2y∗i f(xi) < 2(1 − y∗i f(xi)), hence
˜̀(xi) < 2`(y∗i , f(xi)).

Figure 1 compares the loss in (6) with the hinge loss.

Figure 1. Plots of yf(x), for the loss in (6) and the hinge loss.

4. S3VM Training via the Label Mean
Results in Section 3 suggests that the label mean, being a
simple statistic, can be useful in building a semi-supervised
learner. To find the label means of the unlabeled data, we
propose in this section a margin-based framework such that
the margin between the means is maximized. Mathemati-
cally, it is formulated as:

min
d∈∆

min
w,b,ρ,ξ

1
2
‖w‖22 + C1

l∑

i=1

ξi − C2ρ (7)

s.t. yi(w′φ(xi) + b) ≥ 1− ξi, i = 1, . . . , l,

1
u+


w′

l+u∑

j=l+1

dj−lφ(xj)


 + b ≥ ρ,

1
u−


w′

l+u∑

j=l+1

(1− dj−l)φ(xj)


 + b ≤ −ρ.

Here, ∆ = {d | di ∈ {0, 1},∑u
i=1 di = u+}. Note that

the balance constraint is incorporated into ∆. Moreover,
by focusing on the label means, we no longer need to have
one constraint for each unlabeled sample. Consequently,
(7) has much fewer constraints than (3). As will be verified
empirically in Section 5, this allows (7) to be trained much
faster than existing S3VM implementations.

Besides, (7) can also be motivated from the Hilbert space
embedding of distributions (Gretton et al., 2006). Here,
we map the positive class to one point in the RKHS and the
negative class to another point. Then, we try to separate the
means with maximum margin. Intuitively, the further part
these two class distributions are, the easier the classification
problem becomes.

However, note that (7) is non-convex due to the bilinear
constraint between w and d. In the following, we propose
two algorithms to solve (7). The first one is based on con-
vex relaxation (Li et al., 2009), while the second one is
based on alternating optimization.
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4.1. Convex Relaxation

4.1.1. FORMULATING AS KERNEL LEARNING

First, we replace the inner problem of (7) by its dual:

min
d∈∆

max
α∈A

α′1̃− 1
2 (α¯ ỹ)′Kd(α¯ ỹ), (8)

where¯ denotes the element-wise product of two matrices,
α = [α1, . . . , αl+2]′ ∈ Rl+2, ỹ = [y1, . . . , yl, 1,−1]′ ∈
Rl+2, 1̃ = [1′l,0

′
2]
′ ∈ Rl+2,

A =

{
α |

l+2∑

i=1

αiỹi = 0,
l+2∑

i=l+1

αi = C2,

0 ≤ αi ≤ C1,∀i = 1, . . . , l,

0 ≤ αl+1, αl+2 ≤ C2}, (9)

and Kd ∈ R(l+2)×(l+2) is the kernel matrix with elements
Kd

ij = (φd
i )′(φd

j ), where

φd
i =





φ(xi) i = 1, . . . , l,∑l+u
j=l+1 dj−lφ(xj)/u+ i = l + 1,∑l+u
j=l+1(1− dj−l)φ(xj)/u− i = l + 2.

(10)

Note that (8) is a mixed-integer programming problem, and
so is computationally intractable in general.

Here, we consider a minimax convex relaxation of (8) (Li
et al., 2009). Using the minimax inequality, (8) is lower-
bounded by

max
α∈A

min
d∈∆

α′1̃− 1
2
(α¯ ỹ)′Kd(α¯ ỹ). (11)

The inner minimization (over d) can also be written as

maxθ α′1̃− θ (12)

s.t. θ ≥ 1
2
(α¯ ỹ)′Kdt(α¯ ỹ),∀dt ∈ ∆.

Let µt ≥ 0 be the dual variable for each constraint in (12).
It can be shown that (11) can be rewritten as

min
µ∈M

max
α∈A

α′1̃− 1
2
(α¯ ỹ)′

( ∑

t:dt∈∆

µtKdt

)
(α¯ ỹ). (13)

Here, M is the simplex {µ | ∑
µt = 1, µt ≥ 0}.

Note that (13) is of the same form as the optimization prob-
lem in multiple kernel learning (MKL) (Lanckriet et al.,
2004). However, note that (12) involves minimizing over
all dt ∈ ∆. There are an exponential number of feasible
dt’s, and hence the set of base kernels is also exponential
in size and so direct MKL is computationally intractable.

In this paper, we apply the cutting plane method (Kelly,
1960), which has been successfully used in many optimiza-
tion problems in machine learning (Joachims et al., 2009;

Algorithm 1 Cutting plane algorithm for solving the con-
vex relaxation in (11).

1: Initialize α = C2
2 1, find the most violate d0, and set

C = {d0}
2: Run MKL for the subset of kernel matrices selected in
C and obtain α from dual problem of (7).

3: Find the most violated d and set C = d
⋃ C.

4: Repeat steps 2-3 until convergence.

Tsochantaridis et al., 2005), to handle the exponential num-
ber of constraints. The algorithm is shown in Algorithm 1.
First, we initialize α and the set of cutting planes C. Since
the size of C is no longer exponential, we can perform MKL
with the subset of kernel matrices in C and obtain α from
(13). The most violated d is then added to C, and the pro-
cess repeated until convergence.

There are two important issues in the cutting plane algo-
rithm. First, how to efficiently solve the MKL problem in
step 2? Second, how to efficiently find the most violated d
in step 3? These will be addressed in the next two sections.

4.1.2. SOLVING THE MKL PROBLEM IN STEP 2

In recent years, a number of MKL methods have been pro-
posed in the literature (Bach et al., 2004; Lanckriet et al.,
2004; Sonnenburg et al., 2006; Rakotomamonjy et al.,
2008; Xu et al., 2009). In this paper, we use an adapta-
tion of the SimpleMKL algorithm (Rakotomamonjy et al.,
2008) to solve the MKL problem in Step 2 of Algorithm 1.

Recall that the feature map induced by the base kernel ma-
trix Kdt is given in (10). As in the derivation of the Sim-
pleMKL algorithm, we consider the following MKL prob-
lem in (13).

min
µ∈M

min
w,ξ

1
2

T∑
t=1

‖wt‖2
µt

+ C1

∑

i∈Il

ξi − C2ρ (14)

s.t. yi

(
T∑

t=1

w′
tφ(xi) + b

)
≥ 1− ξi, i ∈ Il,

1
u+




T∑
t=1

w′
t

∑

j∈Iu

dt
j−lφ(xj)


 + b ≥ ρ,

1
u−




T∑
t=1

w′
t

∑

j∈Iu

(1− dt
j−l)φ(xj)


 + b ≤ −ρ.

It is easy to verify that its dual is (11). Following the Sim-
pleMKL, we solve (13), or equivalently, (14), iteratively.
First, we fix µ = [µ1, . . . , µT ]′ and solve the dual of the
inner problem in (14):

max
α∈A

α′1̃− 1
2 (α¯ ỹ)′

( ∑T
t=1 µtKdt

)
(α¯ ỹ).
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Note that this is simply the SVM’s dual, with kernel matrix∑T
t=1 µtKdt and label vector ỹ. Hence, it can be solved

efficiently with existing SVM solvers. Then, we fix α and
use the reduced gradient method to update µ. These two
steps are iterated until convergence.

4.1.3. FINDING THE MOST VIOLATED d IN STEP 3

From (13), the most violated d maximizes (α¯ỹ)′Kd(α¯
ỹ) =

∑l+2
i,j=1 αiαj ỹiỹj(φd

i )′(φd
j ). However, this is a con-

cave QP and so cannot be solved efficiently. Note, how-
ever, that the cutting plane algorithm only requires the ad-
dition of a violated constraint at each iteration. Hence, we
propose in the following a simple and efficient method for
finding a good approximation of the most violated d.

Using (10), it is easy to verify that
∑l+2

i,j=1
αiαj ỹiỹj(φ

d
i )′(φd

j ) (15)

= ‖αiỹiφ(xi)‖22 + αl+1

l∑
i=1

αiỹi(φ
d
i )′(φd

l+1)

−αl+2

l∑
i=1

αiỹi(φ
d
i )′(φd

l+2) + ‖αl+1φ
d
l+1 − αl+2φ

d
l+2‖22.

The first term is not related to d and so can be removed.
Moreover, since labeled data are often more reliable than
unlabeled data (Joachims, 1999), so C2 ¿ C1. Conse-
quently, from (9), αl+1, αl+2 are much smaller than the
other αi’s and the last term in (15) can be dropped. Thus,
as an approximation, we simply maximize

αl+1

l∑

i=1

αiỹi(φd
i )′(φd

l+1)− αl+2

l∑

i=1

αiỹi(φd
i )′(φd

l+2).

On using (10) again, this can be rewritten as

αl+1

u+

∑l

i=1
αiỹi

∑l+u

j=l+1
dj−lk(xi,xj)

−αl+2

u−

l∑

i=1

αiỹi

l+u∑

j=l+1

(1− dj−l)k(xi,xj)

= (
αl+1

u+
− αl+2

u−
)

l+u∑

j=l+1

dj−l

l∑

i=1

αiỹik(xi,xj)

−αl+2

u−

∑l

i=1
αiỹi

∑l+u

j=l+1
k(xi,xj). (16)

Since the second term and (αl+1
u+

− αl+2
u−

) are not related to
d, the maximization of (16) can be rewritten as

max
d∈∆

∑l+u

j=l+1
dj−l

∑l

i=1
αiỹik(xi,xj).

This can be easily solved as follows. First, we sort the∑l
i=1 αiỹik(xi,xj)’s in descending order. Then, those

dj’s with the corresponding j among the largest u+ values
are assigned 1, while all others are assigned 0.

Algorithm 2 Alternating optimization.
1: Run the SVM with the labeled data only.
2: Set the d entries of those unlabeled patterns with the

largest u+ predictions to 1, otherwise set to 0.
3: Fix d, and optimize the QP in (8).
4: Repeat steps 2-3 until convergence.

4.1.4. FINAL ASSIGNMENT OF d

After training, the prediction of x is given by f(x) =∑T
t=1 wtφ(x) + b. Unlabeled patterns whose predictions

are among the u+ largest will have their corresponding dj

entries assigned 1, while the others will be assigned 0.

4.2. Alternating Optimization

Another natural way to solve (7) is based on alternating op-
timization. Note that for a fixed d, the inner maximization
of (8) w.r.t. α can be solved efficiently with standard QP
solvers. On the other hand, when α is fixed, w and b can
be determined from the KKT conditions, and (7) reduces to

max
d∈∆,ρ

ρ

s.t.
1

u+

(
w′∑l+u

j=l+1
dj−lφ(xi)

)
+ b ≥ ρ,

1
u−


w′

l+u∑

j=l+1

(1− dj−l)φ(xi)


 + b ≤ −ρ.

Proposition 3. At optimality, di−l ≥ dj−l if f(xi) >
f(xj), ∀i, j ∈ Iu

Proof. In order to maximize ρ, we want to in-
crease

∑l+u
q=l+1 dq−lf(xq) and decrease

∑l+u
q=l+1(1 −

dq−l)f(xq) as much as possible. Assume, to the
contrary, that the optimal d does not have the same
sorted order as {f(xj)}l+u

j=l+1. Then, there are two
entries of d, say, di−l and dj−l (both ≥ 0),
with f(xi) ≥ f(xj) but di−l < dj−l. Then∑l+u

q=l+1 dq−lf(xq) =
∑

q 6=i,j dq−lf(xq) + di−lf(xi) +
dj−lf(xj) <

∑
q 6=i,j dq−lf(xq)+dj−lf(xi)+di−lf(xj).

A similar result holds for
∑l+u

q=l+1(1 − dq−l)f(xq). Thus,
interchanging the values of di−l and dj−l will increase∑l+u

q=l+1 dq−lf(xq) and decrease
∑l+u

q=l+1(1−dq−l)f(xq),
and so d is not optimal, a contradiction.

Using this proposition, unlabeled patterns whose predic-
tions are among the u+ largest will have their correspond-
ing entries in d set to one; otherwise they will be set to
zero (Algorithm 2). Note that, unlike convex relaxation, al-
ternating optimization may get stuck in a local minimum.
On the other hand, its computation is very simple and, em-
pirically, much faster.
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Table 1. Accuracy (%) on benchmark data sets. The number in parentheses shows the relative rank of the algorithm (performance-wise)
on the corresponding data set. The smaller the rank, the better the relative performance. The best performance on each data set is bolded.

#labeled Method g241c g241d Digit1 USPS BCI Text Total rank
10 1-NN 52.12(8) 53.28(7) 86.35(3) 83.34(1) 51.00(5) 61.82(7) 31

SVM 52.66(7) 53.34(6) 69.40(9) 79.97(6) 50.15(9) 54.63(9) 46
TSVM 75.29(1) 49.92(8) 82.23(7) 74.80(9) 50.85(6) 68.79(2) 33
Cluster-Kernel 51.72(9) 57.95(2) 81.27(8) 80.59(5) 51.69(3) 57.28(8) 35
LDS 71.15(3) 49.37(9) 84.37(4) 82.43(2) 50.73(8) 63.85(5) 31
Laplacian RLS 56.05(5) 54.32(5) 94.56(1) 81.01(3) 51.03(4) 66.32(4) 22
Laplacian SVM 53.79(6) 54.85(4) 91.03(2) 80.95(4) 50.75(7) 62.72(6) 29
meanS3vm-iter 72.22(2) 57.00(3) 82.98(6) 76.34(8) 51.88(2) 69.57(1) 22
meanS3vm-mkl 65.48(4) 58.94(1) 83.00(5) 77.84(7) 52.07(1) 66.91(3) 21

100 1-NN 56.07(9) 57.55(9) 96.11(5) 94.19(4) 51.33(9) 69.89(9) 45
SVM 76.89(6) 75.36(6) 94.47(8) 90.25(8) 65.69(6) 73.55(8) 42
TSVM 81.54(3) 77.58(2) 93.85(9) 90.23(9) 66.75(5) 75.48(7) 35
Cluster-Kernel 86.51(1) 95.05(1) 96.21(4) 90.32(7) 64.83(7) 75.62(6) 26
LDS 81.96(2) 76.26(5) 96.54(3) 95.04(3) 56.03(8) 76.85(1) 22
Laplacian RLS 75.64(8) 73.54(8) 97.08(1) 95.32(1) 68.64(3) 76.43(4) 25
Laplacian SVM 76.18(7) 73.64(7) 96.87(2) 95.30(2) 67.61(4) 76.14(5) 27
meanS3vm-iter 80.00(5) 77.52(4) 95.68(7) 93.83(5) 71.31(2) 76.74(2) 25
meanS3vm-mkl 80.25(4) 77.58(2) 95.91(6) 93.17(6) 71.44(1) 76.60(3) 22

4.3. MeanS3VM

The obtained d vector can be used to assign labels for
the unlabeled data. We take these labels, together with
the labels of the labeled data, to train a final SVM. The
final SVMs, obtained with the d from Algorithms 1 and
2, will be denoted means3vm-mkl and means3vm-iter, re-
spectively. It is worth noting that the MeanS3VM bears
some resemblance with (Grandvalet et al., 2009), where
one does not estimate the labels of some examples.

5. Experiments
The proposed algorithms are evaluated on the benchmark
data sets used in (Chapelle et al., 2006) (Section 5.1), a
number of UCI data sets (Section 5.2) and a text data set
(Section 5.3). We also empirically study the computational
efficiency in Section 5.4.

5.1. Benchmark Data Sets

We first perform experiments on the benchmark data sets
(http://www.kyb.tuebingen.mpg.de/ssl-book/) in (Chapelle
et al., 2006). These include g241c, g241d, Digit1, USPS,
BCI and Text. There are two settings, one using 10 labeled
examples and the other using 100 labeled examples. For
each data set and each setting, there are twelve subsets. The
average accuracy on the unlabeled data will be reported.

The settings of the proposed methods are the same as that
of the TSVM in (Chapelle et al., 2006). Specifically, C1

is fixed to 100, both the linear and Gaussian kernels are
used and then have the better results reported. Besides, C2

is fixed to 0.1. Following (Chapelle et al., 2008), µ+, µ−
are set to the ground truth. When there are only 10 la-
beled examples, we simply set the Gaussian kernel width
to the average distance between patterns. When there are
100 labeled examples, the kernel parameter is selected via
ten-fold cross-validation.

Experimental results are shown in Table 1. We also include
four other SVM-type methods from (Chapelle et al., 2006),
including (1) SVM using labeled data only, (2) TSVM
(Joachims, 1999), (3) SVM with the cluster kernel (Weston
et al., 2005), and (4) Laplacian RLS/SVM (Belkin et al.,
2006). In addition, we also compare with (5) the classic 1-
nearest neighbor classifier, and (6) low-density separation
(LDS) (Chapelle & Zien, 2005). Since the setup is the same
as in (Chapelle et al., 2006), the results for these methods
are simply taken from (Chapelle et al., 2006).

As can be seen, the proposed methods achieve highly com-
petitive performance with the other state-of-the-art semi-
supervised learning methods. In particular, means3vm-mkl
is one of the most accurate algorithms.

5.2. UCI Data Sets

In this section, we evaluate the proposed algorithms on 9
UCI data sets. The experiment setup follows that in (Mal-
lapragada et al., 2009). Each data set is split into two
equal halves, with one for training and the other for test-
ing. Each training data set contains ten labeled examples
and the rest are used as unlabeled examples. The experi-
ment is repeated 20 times and the average results reported.
In addition to the SVM (using labeled data only), TSVM
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Table 2. Accuracy (%) on UCI data. The numbers in parentheses show the number of instances (n) and dimensionality (d). The best
performance on each data set is bolded.

Data set (n, d) SVM SB-SVM LDS TSVM LapSVM means3vm-iter means3vm-mkl
house (232,16) 91.16 90.65 89.35 86.55 89.95 91.72 91.90
heart (270,9) 70.59 79.00 77.11 77.63 77.96 74.56 73.22
vehicle (435,26) 78.28 72.29 66.28 63.62 71.38 82.47 82.15
wdbc (569,14) 75.74 88.82 85.07 86.40 91.07 79.39 80.19
isolet (600,51) 89.58 95.12 92.07 90.38 93.93 98.75 98.98
austra (690,15) 65.64 71.36 66.00 73.38 74.38 68.12 67.59
optdigits (1143,42) 90.31 96.35 96.40 92.34 98.34 98.93 99.09
ethn (2630,30) 67.04 67.57 67.16 54.69 74.60 73.21 73.57
sat (3041,36) 99.13 87.71 94.20 98.26 99.12 99.56 99.56

Table 3. Accuracy (%) on text categorization tasks. The best per-
formance on each data set is bolded.

SB- Lap- means3vm
Classes SVM TSVM LDS SVM -iter -mkl
(1,2) 70.74 75.44 55.10 68.23 84.72 84.27
(1,3) 74.83 89.34 58.88 71.34 90.54 90.83
(1,4) 78.47 88.71 61.72 74.67 88.33 88.76
(1,5) 82.64 92.35 66.45 78.01 91.10 91.14
(2,3) 64.06 66.05 50.76 61.68 66.48 66.73
(2,4) 74.85 81.50 50.32 70.95 81.77 81.71
(2,5) 80.12 84.94 53.94 74.79 77.13 77.37
(3,4) 75.26 81.98 50.08 71.45 84.47 84.12
(3,5) 78.31 77.38 53.83 74.91 81.65 80.36
(4,5) 68.07 67.54 52.39 65.05 66.45 72.85

and Laplacian SVM (LapSVM), we also compare with the
Semi-Boost SVM (SB-SVM) (Mallapragada et al., 2009)
and Inductive LDS (Chapelle & Zien, 2005). As in (Mal-
lapragada et al., 2009), parameter C1 is set to 1 and the
linear kernel is used for all the SVMs. C2 is fixed to 0.1.

As can be seen from Table 2, the proposed algorithms
achieve highly competitive performance on all data sets.
In particular, means3vm-iter is the best on 2 of the 9 tasks,
while means3vm-mkl is the best on 4 tasks.

5.3. Text Categorization

In this section, we evaluate the various methods using
the popular 20-newsgroups data set (http://people.csail.mit.
edu/jrennie/20Newsgroups/). Following Mallapragada
et al. (2009), we use five of the twenty classes, and gen-
erate ten tasks from these five classes by the one-vs-one
strategy. The experimental setup is as same as that in Sec-
tion 5.2, except that each training data set now has only two
labeled examples per class.

Table 3 shows the results. As can be seen, the proposed
algorithms achieve highly competitive or sometimes even
the best performance on these data sets.

Table 4. Wall clock time (in seconds). The smallest time cost on
each data set is bolded.

means3vm
Data set TSVM LapSVM -iter -mkl
BCI 73.88 0.19 0.27 2.45
Text 6181.12 17.27 0.55 14.12
g241d 596.23 5.88 0.53 0.94
g241c 552.19 7.08 1.77 2.17
Digit1 1222.90 6.54 0.50 0.83
USPS 560.05 7.48 0.58 1.25
house 3.19 0.09 0.09 0.77
heart 13.12 0.06 0.09 0.52
vehicle 34.46 0.20 0.11 0.65
wdbc 123.02 0.29 0.50 0.56
isolet 62.10 0.55 0.19 0.97
austra 44.37 0.40 0.26 0.80
optdigits 114.93 1.53 0.39 0.94
ethn 355.30 11.70 1.09 2.16
sat 494.38 18.78 1.08 1.86
(1,2) 2176.65 13.46 0.81 3.33
(1,3) 2151.67 13.48 0.75 3.09

5.4. Speed

In this section, we study the computational efficiency of the
various methods1. All the experiments are performed on a
PC with 2GHz Intel Xeon(R)2-Duo running Windows XP
with 4GB main memory.

As can be seen from Table 4, TSVM is always slower
than the Laplacian SVM and the proposed algorithms. The
Laplacian SVM is slightly faster than the means3vm-mkl
when the data set is small. However, on large data sets
(with more than 1,000 instances), the Laplacian SVM is
much slower than means3vm-mkl. Moreover, means3vm-
iter is consistently faster than means3vm-mkl and is almost
always the fastest among all methods. In particular, on the
large data sets, means3vm-iter is about 100 times faster
than TSVM and 10 times faster than Laplacian SVM.

1The TSVM and Laplacian SVM implementations are down-
loaded from http://svmlight.joachims.org/ and http://manifold.cs.uchicago.
edu/manifoldregularization/software.html, respectively.
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6. Conclusion
In contrast to previous semi-supervised support vector ma-
chines that directly estimate the label of every unlabeled
example, we propose in this paper a new approach which
works by first estimating the label means of the unlabeled
data. We show that the semi-supervised SVM with known
label means of unlabeled data is closely related to the su-
pervised SVM that has access to all the labels of the un-
labeled examples. Based on this observation, we propose
two algorithms that maximize the margin between the label
means of the unlabeled data. Experiments on a broad range
of data sets show that, in comparison with state-of-the-art
semi-supervised learning methods, both of our proposed al-
gorithms achieve highly competitive or sometimes even the
best performance, and are much faster to train.

The idea of using the label means can be applied to many
other learning scenarios, and other approaches for estimat-
ing the label means will also be investigated in the future.
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