Stochastic Search using the Natural Gradient

Sun Yi

Daan Wierstra

Tom Schaul

Jirgen Schmidhuber

IDSIA, Galleria 2, Manno 6928, Switzerland

Abstract

To optimize unknown ‘fitness’ functions, we
present Natural Evolution Strategies, a novel
algorithm that constitutes a principled alter-
native to standard stochastic search meth-
ods. It maintains a multinormal distribution
on the set of solution candidates. The Nat-
ural Gradient is used to update the distrib-
ution’s parameters in the direction of higher
expected fitness, by efficiently calculating the
inverse of the exact Fisher information ma-
trix whereas previous methods had to use
approximations. Other novel aspects of our
method include optimal fitness baselines and
importance mixing, a procedure adjusting
batches with minimal numbers of fitness eval-
uations. The algorithm yields competitive re-
sults on a number of benchmarks.

1. Introduction

Stochastic search methods aim to optimize a ‘fitness’
function that is either unknown or too complex to
model directly. This general framework is known
as ‘black box’ optimization (Hansen & Ostermeier,
2001). It allows domain experts to search for good or
near-optimal solutions to numerous difficult real-world
problems in areas ranging from medicine and finance
to control and robotics.

Typically, three objectives have to be kept in mind
when developing stochastic search algorithms: (1) ro-
bust performance in terms of fitness; (2) limiting the
number of (potentially costly) fitness evaluations; (3)
scalability with problem dimensionality. We address
these issues through a new, principled method for sto-

Appearing in Proceedings of the 26" International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

YIQIDSIA.CH
DAAN@IDSIA.CH
TOMQIDSIA.CH
JUERGEN@IDSIA.CH

chastic search in continuous search spaces, which is less
ad-hoc than traditional stochastic search methods.

Our algorithm maintains and iteratively updates a
multinormal distribution on the search space of so-
lution candidates. Its parameters are updated by
estimating and following a natural search gradient,
(i.e., the natural gradient on the parameters of
the search distribution), towards better expected fit-
ness. Numerous advantages of the natural gradi-
ent have been demonstrated, including its ability of
providing isotropic convergence on ill-shaped func-
tion landscapes, avoiding slow or premature conver-
gence to which ‘vanilla’ (regular) gradients are espe-
cially prone (Amari & Douglas, 1998; Peters & Schaal,
2008).

In our algorithm, the natural search gradient is calcu-
lated using the ezact Fisher information matrix (FIM)
and the Monte Carlo-estimated gradient, yielding ro-
bust performance (objective 1). To reduce the number
of potentially costly evaluations (objective 2), we in-
troduce importance mixing, which entails the reuse of
samples from previous batches while keeping the sam-
ple distribution conformed to the current search distri-
bution. To keep the computational cost manageable in
higher problem dimensions (objective 3), we derive a
novel, efficient algorithm for computing the inverse of
the exact Fisher information matrix (previous meth-
ods were either inefficient or approximate).

The resulting algorithm, Natural Evolution Strategies
(NES), is elegant, requires no additional heuristics and
has few parameters that need tuning.

2. Search Gradients

First let us introduce the algorithm framework and
the concept of search gradients. The objective is to
maximize a d-dimensional unknown fitness function
f : RY = R, while keeping the number of function
evaluations — which are considered costly — as low as

Stochastic Search using the Natural Gradient

possible. The algorithm iteratively evaluates a batch
n samples z ...z, generated from the search distri-
bution p(z|f). It then uses the fitness evaluations
f(z1) ... f(zn) to adjust parameters 6§ of the search
distribution.

Let J(0) = E[f (z)|0] be the expected fitness under
search distribution p (z|@), namely,

J(0) = / f (2)p (2/6) dz.

The core idea of our approach is to find, at each iter-
ation, a small adjustment 06, such that the expected
fitness J (6 + d6) is increased. The most straightfor-
ward approach is to set 66 o< VgJ (0), where VoJ (6) is
the gradient on J (f). Using the ‘log likelihood trick’,
the gradient can be written as

97 (6) = Vo [1 (2)p (al6) dz
:/f(z) Vop (2/6) dz

— [1) L2 ap al6) o

_ /p(z\a) (f (2) VoInp (2]6)) dz,.

The last term can be approximated using Monte Carlo:

Vi (0) = -3 () T (al6)

where V§J (6) denotes the estimated search gradient.

In our algorithm, we assume that p (z]0) is a Gaussian
distribution with parameters § = (x, A), where x rep-
resents the mean, and A represents the Cholesky de-
composition of the covariance matrix C, such that A is
upper triangular matrix and! C = ATA. The reason
why we choose A instead of C as primary parameter is
twofold. First, A makes explicit the d (d + 1) /2 inde-
pendent parameters determining the covariance ma-
trix C. Second, the diagonal elements of A are the
square roots of the eigenvalues of C, so AT A is always
positive semidefinite. In the rest of the text, we assume
6 is column vector of dimension dy = d + d(d+ 1) /2
with elements in (x, A) arranged as

T T 17
()"0 ()]
Here ° = x and 6% = [akyk...akyd]T for 1 < k < d,
where a; ; (i < j) denotes the (4, j)-th element of A.

For any matrix Q, Q~ denotes its inverse and Q'
denotes its transpose.

Now we compute

g(z|d) = Velnp(z|0)

d 1
Vo{zn2m— o n A2

—% (A_—r (z — x))T (A_T (z — x))},

where g (z|f) is assumed to be a ds;-dimensional col-
umn vector. The gradient w.r.t. x is simply

VxIlnp(z|f) =C™ (z — x).

The gradient w.r.t. a; ; (i < j) can be derived as

Ba Inp(z|0) =1, —6(4,7) az’_,ila

1,7

where r; ; is the (4, j)-th element of
R=A""(z-x)(z—x) C

and 9 (7, 7) is the Kronecker Delta function.

From g(z|f), the search gradient VjJ(#) can
be computed as VjJ(0) = LGf, where G =
(g (2110) ... g (2a|0)], and £ = [f (z1)... f ()] We
update 6 by 06 = nv§J (), where 7 is an empirically
tuned step size.

3. Using the Natural Gradient

Vanilla gradient methods have been shown to converge
slowly in fitness landscapes with ridges and plateaus.
Natural gradients (Amari et al., 1995; Kakade, 2001)
constitute a principled approach for dealing with such
problems. The natural gradient, unlike the vanilla
gradient, has the advantage of always pointing in the
direction of the steepest ascent. Furthermore, since
the natural gradient is invariant w.r.t. the particu-
lar parameterization of the search distribution, it can
cope with ill-shaped fitness landscapes and provides
isotropic convergence properties, which prevents pre-
mature convergence on plateaus and avoids overag-
gressive steps on ridges (Amari, 1998).

In this paper, we consider a special case of the natural
gradient Vy.J, with the metric in parameter space de-
fined by the KL divergence (Peters, 2007). The natural
gradient is thus defined by the necessary condition

F@gJ = Vg,
with F being the Fisher information matrix:

F=E |Vylup(z|9) V@lﬂP(ZlG)T} .

Stochastic Search using the Natural Gradient

If F is invertible, which may not always be the case, the
natural gradient can be uniquely identified by VoJ =
F~VyJ, or estimated from data using F~vyJ. The
adjustment d6 can then be computed by

00 =nF~vyJ.

As we show below, the FIM can indeed be computed
exactly and is invertible.

The original NES (Wierstra et al., 2008b) algorithm
computes the natural search gradient using the em-
pirical Fisher information matrix, which is estimated
from the current batch. This approach has three im-
portant disadvantages. First, the empirical FIM is not
guaranteed to be invertible, which could result in un-
stable estimations. Second, a large batch size would be
required to approximate the exact FIM up to a reason-
able precision. Third, it is highly inefficient to invert
the empirical FIM, a matrix with O (d4) elements.

We circumvent these problems by computing the ex-
act FIM directly from search parameters 6, avoiding
the potentially unstable and computationally costly
method of estimating the empirical FIM from a batch
which in turn was generated from 6.

In NES, the search distribution is the Gaussian defined
by 6 = (x,A), the precise FIM F can be computed
analytically. Namely, the (m,n)-th element in F is
given by

B ox' ox

ZCc 4

1 _0C _0C
Pl = 55 g+ 3 (O g e 57)

00,, 00,

where 0,,, 6,, denotes the m-th and n-th element in 6.
Let ¢, jm be the a; , ;.. such that it appears at the
(d + m)-th position in 6. First, notice that

oxT 0x _
90, C ow; ~ (€)iy
and
T T
ox c- ox :ax c- ox _o
8ai17j1 8ai2,j2 8371 8%;9

So the upper left corner of the FIM is C~, and F has
the following shape

[Cc~ o
S } |
The next step is to compute F 5. Note that
1 T 0C 0C
F =—tr |C™ (O .
(A)mm 2 t L 8aim’jm 3ain’jj

Using the relation

AT A
8C: aATA:a A+AT6 ,
8ai,j 80@"]' 8ai7j 8ai7j
and the properties of the trace, we get
0A 0A
F = tr|A” A~
(Fa)mn ' [T 3az'n,jn]
T
+tr[OA (O OA }
9ai,, . 0i,j,

Computing the first term gives us

:| = (Ai)jn,im (Ai)]‘mvin ’

Note that since A is upper triangular, A~ is also upper
triangular, so the first summand is non-zero iff

tr |A” OA A~ OA

9ai,, j,,

da;,, j,

In this case, (A7), ; = (A7); ; =a;'; .
0A 0A
tr |A” A~ =a;’, o ims by Jms Jn) -
' { i, i, 3%,%} imiin (i ins s)
Here ¢ (-) is the generalized Kronecker Delta function,
ie. 6 (im,in,Jm,Jn) = 1 iff all four indices are the
same. The second term is computed as
0A OAT
t B =(C7). . 0(in,im)-
' [&lm,y‘m 3ain,jw} (O g 8 i)

Therefore, we have

(Fa)p., = (C7) 8 (i im)+a; 2

tm,tn

3 o o)
It can easily be proven that Fp itself is a block di-
agonal matrix with d blocks along the diagonal, with
sizes ranging from d to 1. Therefore, the precise FIM
is given by

Fo
F
Fy

with Fg = C~ and block Fy, (d > k > 1) given by
-2
_ | o O

Here Dy is the lower-right square submatrix of C~
with dimension d 4+ 1 —k, eg. D1 = C—, and Dy =
(C_)d,d'

Stochastic Search using the Natural Gradient

We prove that the FIM given above is invertible if C
is invertible. Fjy (1 < k < d) being invertible follows
from the fact that the submatrix Dj on the main di-
agonal of a positive definite matrix C~ must also be
positive definite, and adding a,;i > 0 to the diagonal
would not decrease any of its eigenvalues. Also note
that Fo = C~ is invertible, so F is invertible.

It is worth pointing out that the block diagonal struc-
ture of F partitions parameters 6 into d+ 1 orthogonal
groups AY...0%, which suggests that we could mod-
ify each group of parameters without affecting other
groups.

Normally, computing the inverse of F, of size d? by d2,
would be of complexity O (dG), which is intractable
for most practical problems. Realizing that we can
invert each block F; separately, the complexity can be
reduced to O (d4). In a companion paper (Sun et al.,
2009), we present an iterative method for computing
F~ which further reduces the time complexity from
O (d4) to O (d3). Additionally it shows that the space
complexity can be reduced to O (d2) which is linear in
the number of parameters.

4. Optimal Fitness Baselines

The concept of fitness baselines, first introduced
in (Wierstra et al., 2008b), constitutes an efficient vari-
ance reduction method for estimating d6. However,
baselines as found in (Peters, 2007) are suboptimal
w.r.t. the variance of 66, since this FIM may not be
invertible. It is difficult to formulate the variance of
00 directly. However, since the exact FIM is invertible
and can be computed efficiently, we can in fact com-
pute an optimal baseline for minimizing the variance
of 00, given by
Var (56) = n?E[(F 5] —E[F viJ])'
(FvgJ —E[FvyJ])],
where VjJ is the estimated search gradient, which is
given by
1 n
Vil =~ 1f(z) — b Velup (zil6).

n

The scalar b is called the fitness baseline. Adding b
does not affect the expectation of Vj.J, since

B3/l = o [()~ D)) da

Ve/f(Z)p(z 0) da

However, the variance depends on the value of b, i.e.
Var(99) o VE[(F-G1) (F-G1)]
~2%E [(F~Gf) " (F~G1)] + const.

Here 1 denotes a m-by-1 vector filled with 1s. The
optimal value of the baseline is

E [(F—(;f)T (F—Gl)}
b=

E[(F-G1)' (F-G1)|

Assuming samples are i.i.d., b can be approximated
from data by

y o Tica f (@) (Fg(z)" (F g (z))
Y, (Frg(z) (Fg(z)

In order to further reduce the estimation covariance,
we can utilize a parameter-specific baseline for each
parameter §; individually, which is given by

E[(h;Gf) (h;G1)] >, f(z) (hg(z
E[(h;G1) (h;G1)] — " (h;g(z))”

Here h; is the j-th row vector of F~.

-)"

However, the main disadvantage of parameter-specific
baselines is that different baselines values are used for
closely correlated parameters, which renders gradient
estimations less reliable. In order to address such prob-
lems, we follow the intuition that if the (m,n)-th el-
ement in the FIM is 0, then parameters 6,, and 6,
are orthogonal and only weakly correlated. Therefore,
we propose using the block fitness baseline, i.e. a single
baseline b* for each group of parameters 8%, 0 < k < d.
Its formulation is given by

. E[(F]
E[(FyG"1)(F G*1)]

T f (=) (>)T(g" (2:)

2ic (Fy) (Frgh(z)

Here F, denotes the inverse of the k-th diagonal block

of F~, while G* and g* denote the submatrices corre-
sponding to differentiation w.r.t. 6%.

L G*) (F; G*1)

5. Importance Mixing

In each batch, we evaluate n new samples generated
from search distribution p (z|6). However, since small
updates ensure that the KL divergence between con-
secutive search distributions is generally small, most

Stochastic Search using the Natural Gradient

new samples will fall in the high density area of the
previous search distribution p (z]0"). This leads to re-
dundant fitness evaluations in that same area.

Our solution to this problem is a new procedure called
importance mixing, which aims to reuse fitness eval-
uations from the previous batch, while ensuring the
updated batch conforms to the new search distribu-
tion.

Importance mixing works in two steps: In the first
step, rejection sampling is performed on the previous
batch, such that sample z is accepted with probability

p(zl0)
p(2]0") } '

Here a € [0, 1] is the minimal refresh rate. Let n, be
the number of samples accepted in the first step. In the
second step, reverse rejection sampling is performed as
follows: Generate samples from p (z]|6) and accept z
with probability

min {1, (1-a)

max{ml p(ZIG’)}

~ p(zl9)

until n—n, new samples are accepted. The n, samples
from the old batch and n — n, newly accepted sam-
ples together constitute the new batch. Note that only
the fitnesses of the newly accepted samples need to be
evaluated. The advantage of using importance mixing
is twofold: On the one hand, we reduce the number of
fitness evaluations required in each batch, on the other
hand, if we fix the number of newly evaluated fitnesses,
then many more fitness evaluations can potentially be
used to yield more reliable and accurate gradients.

The minimal refresh rate o lower bounds the expected
proportion of newly evaluated samples p = E [M]
namely p > «, with the equality holding iff § = ¢'.
In particular, if a = 1, all samples from the previous
batch will be discarded, and if a« = 0, p depends only
on the distance between p (z|6) and p (z|6’). Normally
we set « to be a small positive number, e.g. 0.01, to
avoid too low an acceptance probability at the second
step when p (z|0") /p (z]0) ~ 1.

)

It can be proven that the updated batch conforms to
the search distribution p(z|f). In the region where
(I1—a)p(z|0) /p(z|¢) < 1, the probability that a
sample from previous batches appears in the new batch
is

p(20) - (L—a)p(2l0) /p(20') = (1 —a)p(zl0).

The probability that a sample generated from the sec-
ond step entering the batch is ap (z|0), since

max {a, 1 —p(z|0') /p(z]0)} = a.

So the probability of a sample entering the batch is
just p(z|0) in that region. The same result holds also
for the region where (1 — o) p (z|0) /p (z|0") > 1.

6. The Algorithm

Integrating all the algorithm elements introduced
above, Natural Evolution Strategies (with block fit-
ness baselines) can be summarized as

1 initialize A «— I

2 repeat

3 compute A=, and C~ =A~-A~T

4 update batch using importance mixing
5 evaluate f (z;) for new z;

6 compute the gradient G

7 for k=dto0

8 compute the exact FIM inverse F
9 compute the baseline b*

10 §6% — F, G* (f — bk)

11 end

12 0 — 0+ ndb

13 until stopping criteria is met

Assuming that n scales linearly with d, the complexity
of our algorithm is O (d®) (Sun et al., 2009). This is a
significant improvement over the original NES, whose
complexity is O (dﬁ).

Implementations of NES are available in both Python
and Matlab?.

7. Experiments

The tunable parameters of Natural Evolution Strate-
gies are comprised of the batch size n, the learning
rate 7, the refresh rate o and the fitness shaping func-
tion. In addition, three kinds of fitness baselines can
be used.

We empirically find a good and robust choice for the
learning rate 7 to be 1.0. On some (but not all) bench-
marks the performance can be further improved by
more aggressive updates. Therefore, the only para-
meter that needs tuning in practice is the batch size,
which is dependent on both the expected ruggedness of
the fitness landscape and the problem dimensionality.

For problems with wildly fluctuating fitnesses, the gra-
dient is disproportionately distorted by extreme fitness
values, which can lead to premature convergence or
numerical instability. To overcome this problem, we

2The Python code is part of the PyBrain machine learn-
ing library (www.pybrain.org) and the Matlab code is
available at www.idsia.ch/"sun/enes.html

Stochastic Search using the Natural Gradient

use fitness shaping, an order-preserving nonlinear fit-
ness transformation function (Wierstra et al., 2008b).
The choice of (monotonically increasing) fitness shap-
ing function is arbitrary, and should therefore be con-
sidered to be one of the tuning parameters of the algo-
rithm. We have empirically found that ranking-based
shaping functions work best for various problems. The
shaping function used for all experiments in this paper
was fixed to f(z) = 2i — 1 for i > 0.5 and f(z) = 0 for
i < 0.5, where 7 denotes the relative rank of f(z) in
the batch, scaled between 0. .. 1.

7.1. Benchmark Functions

We empirically validate our algorithm on 9 unimodal
functions out of the set of standard benchmark func-
tions from (Suganthan et al., 2005) and (Hansen &
Ostermeier, 2001), that are typically used in the liter-
ature, for comparison purposes and for competitions.
We randomly choose the inital guess at average dis-
tance 1 from the optimum. In order to prevent po-
tentially biased results, we follow (Suganthan et al.,
2005) and consistently transform (by a combined ro-
tation and translation) the functions’ inputs, making
the variables non-separable and avoiding trivial op-
tima (e.g. at the origin). This immediately renders
many other methods virtually useless, since they can-
not cope with correlated search directions. NES, how-
ever, is invariant under translation and rotation. In
addition, the rank-based fitness shaping makes it in-
variant under order-preserving transformations of the
fitness function.

7.2. Fitness Baselines and Importance Mixing

We introduced optimal fitness baselines to increase the
algorithm’s robustness, we can thus determine their ef-
fectiveness by comparing the probability of premature
convergence, for each type of baseline, on a diverse
set of benchmarks. Importance mixing, on the other
hand, was designed to reduce the required number of
fitness evaluations.

In order to measure the benefits of both enhancements,
as well as their interplay, we conducted a set of exper-
iments for 16 different settings. Each set consisted in
10 independent runs on each of the 8 unimodal bench-
mark functions (on dimension 5), using n = 50 and
n = 1.0. We varied the value of a between 0.0 and
1.0, the latter corresponding to not using importance
mixing at all. We compare the three types of optimal
fitness baselines introduced in section 4 to using no
baseline. Table 1 summarizes the results.

Not using any baseline shows equivalent behavior to
using the uniform fitness baseline. In both cases, the

Table 1. Average number of evaluations and percentage of
runs that prematurely converged, while varying . and the
type of fitness baseline used.

Baseline « evaluations premature

convergence
None 0.0 | 12854739 52%
None 0.1 1456 4+ 533 42%
None 0.2 | 2011 4+650 40%
None 1.0 | 8306 £ 2756 35%
Uniform 0.0 1251 + 646 50%
Uniform 0.1 1488 £ 650 37%
Uniform 0.2 | 20604775 42%
Uniform 1.0 | 8510+ 3158 33%
Specific 0.0 | 1405 4 866 33%
Specific 0.1 | 2181 £ 2801 29%
Specific 0.2 | 2430+ 1769 27%
Specific 1.0 | 7973 £+ 2407 25%
Block 0.0 | 1329 4+ 662 0%
Block 0.1 1813 + 725 0%
Block 0.2 | 2481 4+919 0%
Block 1.0 | 8199 4 2321 0%

algorithm tends to prematurely converge on ParabR
and SharpR, to a lesser degree also on Cigar. In con-
trast, when using the parameter-specific baseline, we
find that the algorithm consistently fails on Ellipsoid
and Tablet, while working well on ParabR, SharpR
and Cigar. Finally, block fitness baselines are very ro-
bust and have not been found to prematurely converge
in any of our experiments.

Importance mixing is clearly beneficial to performance
in all cases, but slightly decreases the robustness. The
latter is not an issue when using block fitness baselines,
which frees us from the requirement of tuning «, as a
value of 0.0 consistently gives the best performance.
However, taking into consideration computation time,
it can be prudent to use a slightly larger «, for the
reasons given in section 5.

For the following experiments, we consistently use
block fitness baselines and set a = 0.01.

7.3. Performance on Benchmark Functions

We ran NES on the set of unimodal benchmark func-
tions on dimension 50 with batch size 1000, using
n = 1.0 and a target precision of 107'°. Figure 1
shows the average performance over 5 runs for each
benchmark function. We left out the Rosenbrock func-
tion on which NES is one order of magnitude slower
than on the other functions (approximately 2,000,000
evaluations). Presumably this is due to the fact that

Stochastic Search using the Natural Gradient

ol Cigar
1% -~ DiffPow
. —— Ellipsoid
ParabR
- Schwefel
SharpR
Sphere

- Tablet

-fitness

100 RO . R
100000 150000 200000
number of evaluations

N
0 50000 250000

Figure 1. Results for 8 unimodal benchmark functions on
dimension 50, averaged over 5 runs.

the principal search direction is updated too slowly on
complex curvatures. Note that SharpR and ParabR
are unbounded functions, which explains the abrupt
drop-off.

7.4. Non-Markovian Double Pole Balancing

Non-Markovian double pole balancing is a challeng-
ing task which involves balancing two differently sized
poles hinged on a cart that moves on a finite track.
The single control consists of the force F' applied to the
cart and observations include the cart’s position and
the poles’ angles, but no velocity information, which
makes this task partially observable. It provides a per-
fect testbed for algorithms focusing on learning fine
control with memory in continuous state and action
spaces (Wieland, 1991). We used the implementation
as found in (Gomez & Miikkulainen, 1997).

We employ NES to optimize the parameters of the
controller of the cart, which is implemented as a simple
recurrent neural network, with three inputs (position
2 and the two poles’ angles §; and (35), three hidden
sigmoid units, and one output, resulting in a total of
21 weights to be optimized.

An evaluation is considered a success iff the poles do
not fall over for 100,000 time steps. Using a batch size
of 100, the average number of evaluations until success,
over 50 runs, was 1753. Only 6% of the runs did not
reach success within the limit of 10000 evaluations.
Table 2 shows results of other premier algorithms ap-
plied to this task, as reported in the literature. NES
clearly outperforms all other methods except CoSyNE.

8. Discussion

Unlike most stochastic search algorithms, NES boasts
a relatively clean derivation from first principles. The
relationship of NES to methods from other fields,
notably evolution strategies (Hansen & Ostermeier,
2001) and policy gradients (Peters & Schaal, 2008;
Kakade, 2001), should be evident to readers familiar
with both of these domains, as it marries the concept of
fitness-based black box optimization from evolutionary
methods with the concept of Monte Carlo-based gra-
dient estimation from the policy gradient framework.

Using both a full multinormal search distribution and
fitness shaping, the NES algorithm is invariant to
translation and rotation and to order-preserving trans-
formations of the fitness function. We empirically
showed that fitness baselines significantly improve the
algorithm’s robustness. We also measured the useful-
ness of importance mixing, which reduces the num-
ber of required fitness evaluations by a factor 5, and
renders the algorithm’s performance less sensitive to
the batch size hyperparameter, because the number
of effectively evaluated fitness values in each batch is
adjusted dynamically.

Comparing our empirical results to CMA-ES (Hansen
& Ostermeier, 2001), considered by many to be the
‘industry standard’ of stochastic search, we find that
NES is competitive but slower on most but not all
standard benchmark functions, especially on higher
dimensions. On the difficult double-pole balancing
benchmark, however, NES yields faster and more ro-
bust results. Furthermore, the results in a companion
paper (Sun et al., 2009) show that NES is also compet-
itive with CMA-ES on multimodal benchmarks. Our
results collectively show that NES can compete with
state-of-the-art stochastic search algorithms on stan-
dard benchmarks. It holds a lot of promise for ongoing
real-world experiments.

Future work will address the problems of automatically
determining good batch sizes and dynamically adapt-
ing the learning rate. We plan to investigate the possi-
bility of combining our algorithm with other methods
(e.g. Estimation of Distribution Algorithms) to accel-
erate the adaptation of covariance matrices, improving
performance on fitness landscapes where directions of
ridges and valleys change abruptly (e.g. the Rosen-
brock benchmark). Moreover, realizing that stochas-
tic search based on the natural gradient is not limited
to any particular distribution, we can derive the FIM
inverse for other (e.g. heavy-tailed) distributions using
the same methodology.

Stochastic Search using the Natural Gradient

Table 2. Non-Markovian double pole balancing. Shown are the average numbers of evaluations for SANE (Moriarty &
Miikkulainen, 1996), ESP (Gomez & Miikkulainen, 1997), NEAT (Stanley & Miikkulainen, 2002), CMA-ES (Hansen &
Ostermeier, 2001), CoSyNE (Gomez et al., 2006), FEM (Wierstra et al., 2008a), and NES.

Method SANE

ESP NEAT CMA-ES CoSyNE FEM NES

Evaluations | 262,700 7,374

6,929

3,521 1,249 2,099 1,753

9. Conclusion

NES constitutes a competitive, theoretically well-
founded and relatively simple method for stochas-
tic search. Unlike previous natural gradient meth-
ods, NES quickly calculates the inverse of the ez-
act Fisher information matrix. This increases ro-
bustness and accuracy of the search gradient estima-
tion, even in higher-dimensional search spaces. Fur-
thermore, importance mixing prevents unnecessary re-
dundancy embodied by samples from earlier batches.
Good results on standard benchmarks and the difficult
non-Markovian double pole balancing task affirm the
promise of this research direction.

Acknowledgments

We thank Fred Ducatelle for his valuable and
timely input. This research was funded by
SNF grants 200020-116674/1, 200021-111968/1 and
200021-113364/1.

References

Amari, S. (1998). Natural gradient works efficiently in
learning. Neural Computation, 10, 251-276.

Amari, S., Cichocki, A., & Yang, H. (1995). A new
learning algorithm for blind signal separation. Ad-
vances in Neural Information Processing Systems
(NIPS95), 8, 757-763.

Amari, S., & Douglas, S. C. (1998). Why natural
gradient? Proceedings of the 1998 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing (ICASSP98), 2, 1213-1216.

Gomez, F., & Miikkulainen, R. (1997). Incremental
evolution of complex general behavior. Adaptive Be-
havior, 5, 317-342.

Gomez, F., Schmidhuber, J., & Miikkulainen, R.
(2006). Efficient non-linear control through neu-
roevolution. Proceedings of the 16th European Con-
ference on Machine Learning (ECMLO06), 4212, 654—
662.

Hansen, N., & Ostermeier, A. (2001). Completely de-
randomized self-adaptation in evolution strategies.
FEvolutionary Computation, 9, 159-195.

Kakade, S. (2001). A natural policy gradient. In
Advances in neural information processing systems

(NIPS01), 12, 1531-1538.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient
reinforcement learning through symbiotic evolution.
Machine Learning, 22, 11-32.

Peters, J., & Schaal, S. (2008). Natural actor-critic.
Neurocomputing, 71, 1180-1190.

Peters, J. R. (2007). Machine learning of motor skills
for robotics. Doctoral dissertation, Los Angeles, CA,
USA. Adviser-Stefan Schaal.

Stanley, K. O., & Miikkulainen, R. (2002). Evolv-
ing neural networks through augmenting topologies.
Evolutionary Computation, 10, 99-127.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K.,
Chen, Y. P., Auger, A., & Tiwari, S. (2005). Prob-
lem definitions and evaluation criteria for the cec
2005 special session on real-parameter optimization
(Technical Report). Nanyang Technological Univer-
sity, Singapore.

Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J.
(2009). Efficient natural evolution strategies. To
appear in: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO009).

Wieland, A. (1991). Evolving neural network con-
trollers for unstable systems. Proceedings of the
International Joint Conference on Neural Networks
(IJCNNY91), 2, 667-673.

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J.
(2008a). Fitness expectation maximization. In Par-
allel problem solving from nature (PPSNO8), 337—
346.

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber,
J. (2008b). Natural evolution strategies. Proceed-
ings of the Congress on Fvolutionary Computation
(CEC08), Hongkong, 3381-3387.

