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Abstract

Prediction suffix trees (PSTs) are a popular
tool for modeling sequences and have been
successfully applied in many domains such as
compression and language modeling. In this
work we adapt the well studied Winnow al-
gorithm to the task of learning PSTs. The
proposed algorithm automatically grows the
tree, so that it provably remains competitive
with any fixed PST determined in hindsight.
At the same time we prove that the depth of
the tree grows only logarithmically with the
number of mistakes made by the algorithm.
Finally, we empirically demonstrate its effec-
tiveness in two different tasks.

1. Introduction

Prediction suffix trees are a well studied and com-
pact model for problems such as temporal classification
and probabilistic modeling of sequences (Buhlmann &
Wyner, 1999; Helmbold & Schapire, 1997; Pereira &
Singer, 1999; Ron et al., 1996; Willems et al., 1995).
Different variants of PSTs are also called context tree
weighting (Willems et al., 1995) and variable length
Markov Models (Buhlmann & Wyner, 1999). PSTs
operate in a setting similar to online learning. The
model observes symbols from a sequence, one at a
time, and makes a prediction about the next symbol
based on the symbols it has observed so far. PSTs typ-
ically use only a few recently observed symbols which
are called the context of the prediction. In this sense
they are making a Markovian assumption but, unlike
most other Markov models, the number of symbols
that are used to predict the next symbol depends on
the specific context in which the prediction is made.

In this work, we show how to learn a PST by adapt-
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ing the Winnow algorithm. Even though our theo-
retical results are somewhat similar to (Dekel et al.,
2004), where the perceptron algorithm is used for the
same task, we empirically show that the proposed algo-
rithm consistently obtains lower error rates and grows
smaller trees than the one in (Dekel et al., 2004). Our
motivating application is monitoring processes in a
computer system. Each process produces a sequence of
system calls which request different services from the
operating system. Our task is to model this sequence
and maintain a compact profile of the application. In
this setting, we expect a multiplicative update algo-
rithm to be more appropriate than the algorithm in
(Dekel et al., 2004) for two reasons. First, complex
applications are likely to exhibit different behaviors at
various points during their execution. A multiplica-
tive algorithm can quickly modify its model to reflect
this. Second, multiplicative algorithms cope better
with many irrelevant attributes and this will turn out
to be true when we formalize our problem.

The rest of the paper is organized as follows. In section
2 we review the balanced version of Winnow which
forms the basis of our algorithm. Our main results are
presented in section 3. In section 4 we present some
empirical results and in section 5 we discuss related
approaches. Section 6 states our conclusions.

2. Background

We start by describing Balanced Winnow (Littlestone,
1989). One way to express it is shown in Algorithm 1.
At each round t, the algorithm updates a vector of
parameters 8, € R? and then uses it to construct its
weight vector w;. Then a prediction is obtained as
the inner product of w; and the features x;. If the
algorithm makes a mistake it updates its parameter
vector @ by adding to it a scaled version of the quantity
yrxs, Y+ € {—1,4+1}. This type of update is similar to
the perceptron (Rosenblatt, 1958), however that would
use directly 0 instead of w, for prediction. Selecting a
value for the parameter o, known as the learning rate,
is not trivial and we will always set it at the very end
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Algorithm 1 Balanced Winnow Algorithm
1: 01 —0

2: fort=1,2,...,7 do
eft.i

3 W
t;l Zle eet‘j
Ui <'wt,-’13t>
if yt:gt < 0 then
041 — 04 + ayxy
else
9t+1 — 0,
9: end if
10: end for

so that it optimizes the quantities of interest.

The main characteristic of Balanced Winnow is that
the features have the form x; = [1,—1] ® =} where
x; is the original vector of features and u ® v is the
Kronecker product of w and v. This form of x; will

later allow us to sparsify Balanced Winnow.

2.1. Mistake Bound for Balanced Winnow

In this section we will briefly discuss a bound on
the number of mistakes made by Balanced Winnow.
Throughout the paper we will assume, or construct
our features such that, ||&¢||o < 1 for all ¢ to make
the bounds simpler. In general, if the labels y; are cho-
sen uniformly at random or even adversarially, no algo-
rithm could achieve any meaningful bound. Therefore,
we assume that there exists a vector u such that for
all t, yi(u,x;) > & for some § > 0.} The magnitude
of § quantifies how hard the problem is. Furthermore,
since w; is always inside the d-dimensional probabilis-
tic simplex we also assume the same is true for w.

The general strategy for proving bounds for online
learning algorithms is to define some measure of
progress ®(w;) towards w and show that with each
mistake the algorithm makes, w; comes closer to w.
A natural measure of progress is the relative entropy
between w; and w:

d
u;
O(wy) = D(ul||wy) = Zul log w1
i=1 *

which is always nonnegative. Then we can show that:

Theorem 1. Let {(x,y:)}, t =1,...,T be a sequence
of input output pairs with x, € R* and vy, € {-1,1}.
Let w be a a vector such that u; > 0 for all i, Y, u; =
1, and yi(u,xs) > & for some § > 0. Then Balanced

Winnow will make at most % mistakes.

!This assumption can be relaxed. See also theorem 2.

Proof. We present a sketch here because this has al-
ready been proved elsewhere in more general form (e.g.
(Shalev-Shwartz, 2007)) and the proof of our main re-
sult in theorem 2 has a similar structure. The proof
proceeds by upper bounding the initial potential and
lower bounding ®(w;) — ®(w;11) using lemma 4 and
the fact that when a mistake is made y; (wy, x¢) < 0.
Combining the upper and lower bounds leads to

logd
(ad — log cosh(a))
where M is the number of mistakes made. This can

be upper bounded using lemma 5. The optimal value
of v is § and this yields the bound in the theorem. [

M <

3. Learning Prediction Suffix Trees

PSTs are popular models for sequential prediction. A
PST is a tree data structure that can compactly store
a set S of strings and all their suffixes. Each s € §
corresponds to a unique node in the tree. In this node
we keep a model for predicting the next symbol when
s is a suffix of the current sequence. A PST makes a
prediction using a weighted sum of the models in the
nodes that match the suffixes of the current sequence.
Section 3.2 gives a more detailed description.

The advantage of PSTs compared to other Markov
models is that the number of symbols used to predict
the next symbol depends on the specific context in
which the prediction is made. But how much context
should be used for each prediction? When learning a
PST one is faced with the following dilemma. If we
consider contexts with more symbols than necessary
we must estimate more parameters and we are likely to
hurt the generalization performance of the algorithm.
On the other hand underestimating the right amount
of context will typically lead to many mistakes.

Recently, (Dekel et al., 2004) proposed an algorithm
that learns a PST of appropriate size by balancing
the above tradeoff. The algorithm in (Dekel et al.,
2004) uses the perceptron algorithm to learn a PST.
The basic idea is that avoiding to grow the tree is
like introducing a noise term in the perceptron update.
We use the same idea here for Balanced Winnow but
many details are different, especially how much noise
is tolerated before the tree is grown. Before we discuss
how Balanced Winnow can be adapted to work for
PSTs we digress to discuss how to modify Balanced
Winnow so that it effectively ignores some of its inputs.

3.1. Sparse Balanced Winnow

Algorithm 1 assigns a nonzero weight to every feature,
even if some of these weights may be exponentially
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small. Here we explain why Balanced Winnow could
be modified so that its predictions can ignore the val-
ues of some attributes. Then we can say that the algo-
rithm has assigned zero weight to those attributes and
our hypothesis is sparse. This may at first seem hard
given that the elements of the weight vector are by con-
struction always positive and that the proof of theorem
1 hinges on the use of relative entropy which becomes
infinite if one of the entries of the weight vector is zero.
However, if one considers the form of z; = [1, —1]®@z;
and notices that

<wta$t> = (wf7-’ﬁzr> —<w;7-’”zr> = <wzr_w;a$zr>

where w;" corresponds to the first half of the weight

vector w; and w; corresponds to its second half, then
if w; = w,; any decision of the form (w;,x;) will
effectively ignore attribute z;;. We can have a better
insight on how the algorithm operates with inputs of
the form [1, —1] ® ;" if we rewrite the parameters 8,
in the same manner as the weight vector ie. 6; =
[6;,0;]. The following lemma shows the relationship
between the two vectors 8; and 6;

-0/
Proof. We proceed by induction. For ¢ = 1 we have
0, = 0o 6 = 6, = 0 and the claim is true. If
at time ¢ + 1 there was no mistake the claim is true.
If there was a mistake then the parameters were up-

Lemma 1. In Balanced Winnow, for allt 0, =

dated as follows 0, = 0] + ay,z and 6,,, =
0, + ay;(—x;). Using the induction hypothesis the
latter update is 8, ; = -0 — ayx = 70;&_1 O

By lemma 1, the decision at time ¢ can be written as:

d sinh(9+-)

t 7wt_7w?_>zz

- 1 cosh(

+

)xt,i

where we have used the definitions of hyperbolic sine
and cosme2 For the purposes of decisions, the quan-
tity Z _, cosh(6, ;) s a positive constant so it will not
affect the sign of ¢ yt Let g;; = Slnh(@;rl). mt 418 ignored
when g; ; is zero. Since the only root of the hyperbolic
sine is at zero, g;; = 0 if and only if 0+- =0.

Qt:<w

The strategy to derive a multiplicative update algo-
rithm whose hypothesis is sparse is to make sure that
some of the parameters remain to zero by introducing
some noise that cancels the update for these specific
parameters. When analyzing the algorithm, we will
have to show that the progress made with each mis-
take overshadows the effect of noise. The algorithm
will be phrased in terms of the normalized weights to
maintain the correspondence with Balanced Winnow.

@

and cosh(z) = J%‘f

%sinh(z) = #

In a practical implementation, one should update the
values of the parameters 8; and use the unnormalized
weights g, ; to make predictions.

3.2. Winnow for Prediction Suffix Trees

Our formal setup is as follows. We wish to predict the
items of a sequence yi1,%2,...,Yr, ¥; € >, one at a
time. For now, we assume that ¥ = {—1,1} and we
discuss extensions to larger alphabets in section 4. Let
ly| be the length of a sequence y € * and let y] denote
the subsequence y;, ...,y;. The prediction for y; will
be based on a suffix of yi_l, typically one that con-
tains only the last few symbols in y’i*l. We start with
the preconception that symbols near ¢ should be more
important for the prediction task than symbols away
from ¢ (Helmbold & Schapire, 1997; Willems et al.,
1995). This can be encoded in the features which will
be of the form x; = [1, —1] ® = where:

;o { (L—oll if s=y7}

i=1,...,t—1

x .
£:8 0 otherwise

Therefore x; will conceptually have at most T(T — 1)
dimensions, twice as many as the number of distinct
substrings of y{. Here and below the vector & is in-
dexed by strings from the language £=7 and the nota-
tion z/, simply means z;,,, where {(s) is the position
of s in the lexicographic order of V7, the set of all sub-
strings of y7. Another useful function is the inverse
of £(-): s(7) is the string at position ¢ in the aforemen-
tioned lexicographic order. Furthermore, we extend
s(+) to be a periodic function (with period |Yr|). This
allows to handle indices from the extended features x;
so that we can write for example |z, ;| = xzs(i).

As before, the algorithm will have to learn a vector
of parameters 0; = [0;",0; ] while keeping its support,
the strings for which the corresponding entries are non
zero, small. The decisions of the algorithm will be

h, — +
Yt = th,il“t,i

i

where g¢; = Slnh(9+) and ¢ ranges over the support
of ;. The set A that contains the support of 0, every
suffix of every element in the support, and the empty
string can be viewed as a tree. This tree is constructed
in the following way. Every element of A is a node in
the tree. The root corresponds to the empty string.
Let y e Y and u € ¥*. If v = yu € A then u € A by
the definition of A and v is a direct child of u in the tree
with the link from u to v being labeled with y. In this
view, 8, and consequently g assigns weights to nodes
in the tree and the predictions of the online algorithm
amount to taking a weighted sum of the values in the
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Figure 1. A PST whose support is the union of —1,—1 —
1+1,41—1+1 and all their suffixes. If ¢ = 1/4 and
yi_o = —1 — 1 + 1 then the prediction will be i1 =
sign(2 sinh(—2) 4+ % sinh(—%) + 27 sinh(3)) = +1. The
algorithm is able to overcome the prior belief that a longer

suffix is less relevant by assigning its node a large value.

nodes of a path in the tree. This path starts from
the root and follows the links that correspond to the
symbols y;_1,y;_o2, . . ., until we reach a leaf or the next
child does not exist. Figure 1 shows a PST.

Balanced Winnow starts with 8; = 0 therefore ini-
tially the support of @ is the empty string and the
corresponding tree has only one node. As learning pro-
gresses, each mistake the algorithm makes will cause
some of the parameters to be updated to non zero val-
ues. Hence we expect the support of 8 to increase. In
fact we will require that the support of 6, is a subset
of the support of 8;17. Thus, the algorithm can be
thought as growing the tree that corresponds to A.3

If we just apply Balanced Winnow to the task of learn-
ing such a PST we will need memory that is O(T?).
This happens because every distinct substring of yf
will have an associated parameter. Hence, our strat-
egy will be to have an adaptive bound d; on the length
of the suffixes that we will be considering, which is the
same as the depth up to which we will grow the tree.

The proposed algorithm modifies Balanced Winnow so
that the parameter update is

o[ Ouiaya i |s()] < d
A 01 otherwise

This can be equivalently written as

0i 11 =0: + ayrx; + any

where m; is a noise vector that cancels some of the

3Even if an update causes a parameter to become zero
after it has taken a non zero value, we will still keep the
corresponding node in the tree.

components of the update:

—YtTt,i
Nti = { 0

Note that [|7]]ee = (1 — €)(@+1) a fact that we will
use later in the derivation of the mistake bound. Let
h: be the length of the maximal downward path from
the root using the symbols y;—1,y;—2, .... Clearly, if at
any point our way of setting d; suggests that it should
be less than h; there is no reason to let this happen
because we already have grown the tree beyond this
point. Letting d; < h; will only make the norm of n;
larger without any computational benefit. Therefore
dy > hy and then it is easy to prove the following

if |s(i)] > ds
otherwise

Lemma 2. For allt and i either 0;; =0 or ny; = 0.

Proof. There are two cases: either |s(i)] < d; or
|s(2)] > di. If |s(3)] < d; then n,; = 0 by definition.
Now suppose 0;; # 0 and |s(i)] > d;. That means
there was a point ¢ < t when dy > d;. That would
imply dp > hy but since the tree never shrinks this
cannot happen. Therefore 6, ; = 0 if |s(i)| > d. O

Furthermore the sum of the norms of the noise vectors
will turn up in the proof of the mistake bound, there-
fore we would like to keep it bounded by a function
of the number of mistakes. Let J; be the subset of
rounds 1,...,%¢ in which a mistake was made and let
M; = |Ji|. Also let

Pt = Z(l — 6)(di+1)

1€t

and My = Py = 0. We will require that d; is the
smallest integer such that*

P, <MY?
subject to d; > hy. We can then prove the following

Lemma 3. Setting d; = max{h;,b(P;—1)} ensures
that for all t, P, < Mf/S where

b(p) = [ log,_ (Vp* 2+ 1-p)—1| (1)

Proof. We proceed by induction. For ¢ = 1 the claim
clearly holds. If there is no mistake on round ¢ then
P, = P,_1 and M; = M;_; so the claim holds. If there
is a mistake then P, = P;_1 + ||n¢]|oco, My = My—1 +1
and it suffices to show that P} < P3| + 2Pt3ff +1
since by induction P2 | + 2Pt3ff +1 < (M;_1+1)2. So

4Tt would also be possible to design the algorithm using

the invariant P, < v/M; as in (Dekel et al., 2004). Our
choice of a greater upper bound on the noise seems to allow
for superior performance in practice (cf. section 4)
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Algorithm 2 Balanced Winnow for PSTs
1: Ph—0

2: Ay — {\} {the empty string}
3: 01 —0
4: fort=1,2,...,7 do
5:  hy « max{j: yf:} € A}
6:  dy — max{hy, b(Pi—1)} {Lemma 3}
7. Compute x; from y}~
8wy, — efi/ > edti
9: @t — <’U]t,.’13t>
10: if yt:gt S 0 then
11: Pt<—Pt 1+(1—€)(dt+1)
12: At+1 <—AtU{y 01 <’L <dt}
ot,z + QYT 5 if |s < dt
13: Ori1i — {Bt,i otllle(rv)v|ise
14:  else
15: Pt — Pt—l
16: At+1 — At
17: 0t+1 — Ot
18:  end if
19: end for
(P + [lmulloe)® < Py +2B) 41
Let z = ||n¢]|oo, 2 > 0. The above can be written as

23 +3P_12* + 3P 1z — 2Pt3_/f —-1<0

and is valid when z is less than its only real root:

2 < \3/133_1 +oP¥? 4 1P,

Since z = |[n¢]|oo = (1 — €)%Y) we finish the proof

di > log;_, ({/Pt3—1+2p3/2+1_Pt 1) -1

The statement of the lemma simply enforces that d; is
an integer and that d; > h;. O

We can now state how everything is put together in Al-
gorithm 2. The set of suffixes A; can be implemented
as a tree, as was described above. The algorithm starts
with an empty tree and in each round it predicts the
next symbol using the parameters in the tree. If a mis-
take is made and if d; > hy we grow the tree in line 12.
Finally, we update the parameter values for the nodes
in the tree and repeat.

In the following theorem we show how the number of
mistakes of this algorithm compares against the perfor-
mance of the optimal tree in hindsight. This is mea-
sured by the cumulative §-hinge loss of the optimal
vector w. The §-hinge loss that u attains at round ¢ is

L = max{0,6 — ye{u, x4) }.

Before we state our result, we prove two useful lemmas.

Lemma 4. For allx € [—1,1] and a > 0 the following
holds e** < cosh(«) 4 sinh(«)x.

Proof. First note that e”® = cosh(«) — sinh(a) and
e® = cosh(a) + sinh(«). The lemma follows by the
convexity of e**. O
Lemma 5. For all o > 0, log cosh(a) < %2

Proof. The bound follows by noticing that it is equiv-

alent to [;° [ 1 — tanh®(u)dudz < [;* [ ldudz O
Our main result is the following theorem:

Theorem 2. Let yy,¥y2,...,yr be a sequence of sym-
bols € {—1,+1}. Let u be a vector such that for all i
w; >0, . u;=1and ), Ly = L. Then Algorithm 2

will make at most max { 25L + 81g§T, g—ﬁ} mistakes.

Proof. We will use the relative entropy of w and w as
our measure of progress. Recall that we are working
with vectors of dimension d < T(T — 1) and let

d

®(w;) = D(ul|we) = Z u;
Let Ay = O(wy) — P(wign). The telescopmg sum
T
ZAt = ®(wy) — P(wryq)
t=1

is not greater than ®(w;) because of the non-
negativity of ®(wyy1). Furthermore

d d
wy) < Zui log u; + Zuz log(d)
i=1 i=1

where we have used the non-negativity of the entropy
of uw and that w; starts as a uniform distribution.
Putting all these together, we have the upper bound
T
> A <2logT (2)
t=1
If on round t there was no mistake then A; = 0. Now
assume that a mistake was made on round ¢. To lower
bound A, we first write w41 in terms of w;:

<logd < 2logT

elirii etitayims itang ayTt i+ang ;

_ W€
Wit1,i = = =

Zy Zy Zy
where Z; is the normalization constant:

Zt: E Wy, ;€

j=1

aytT jtang ; (3)

= Z? L wilog =54 which
is just another way to define Ay, leads to

Z u; log Wi

i=1
= ay{u, xs) + a{u, ng)

Replacing the above in A,

oYt Te,i TN

Ay

tht i

—logZ: (4
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We bound the three terms from below. We use Lemma
4 to bound the exponential in (3) by a linear function:

St
< Z wy,; (sinh (o
i=1

= sinh(a)y;(ws, z¢) + (wg, ng) + cosh(a)

YeXe,i+Nt,q)

Zt =

) (Yt + nes) + cosh(a))

We have assumed that the algorithm made a mistake
on round t. This means that sinh(a)y:(w;,x:) < 0.
Furthermore in lemma 2 we showed that either 6, ; = 0
or n;; = 0 and we have previously argued that when
0;; is zero then (wy,v) does not depend on w,;.
Therefore (wy, ;) = 0. These observations lead to

Zy < cosh(a).
Furthermore, from Hoélder’s inequality we have that

—[lulliIndlloc = —[Inelloo
Moreover, y;(u,x;) > 6 — L; by the definition of L,
so0, by combining the three bounds, (4) becomes

— log(cosh(a)). (5)

Summing up the individual lower bounds for all ¢t and
using the definitions of M;, P; and L we get
T

(u,ny) >

Ar > ad — aly — af|nd |

Z Ay > Mp(ad —log(cosh(a))) — aPr — aL

t=1
Substituting the invariant P < Mf /% and combining
this with the upper bound (2) leads to

My (ad —log cosh()) — aMp?? — aL < 2log T
Let z = MT1/3 The inequality
(a6 —logcosh(a))z® — az? — aL —2logT < 0

is valid when z is less than the only real root® of the
polynomial in the left hand size. Let p be this root.
Then the above inequality is equivalent to z < p. Even
though there is an exact analytical expression for p,
much intuition can be gained from a simple upper
bound (Marden, 1966) theorem (30,2): For any A > 1

< mn AMaL +2logT) 3 ﬁﬂ
X
p= ad —logcosh(a) ) 7 ad — log cosh(a)

Using this bound we get that

2L  8logT 64
S St TG

by setting o = §/2, A = 3/2, and using lemma 5. [

My < max{

We further discuss this bound in the light of the theo-
retical and empirical results in the next two sections.

This is true assuming oL + 2log T > 0, which is safe

3.3. Growth Bound

We also bound how quickly Algorithm 2 grows the tree.
In fact, we can show that the depth of the tree grows
logarithmically with the number of mistakes:

Theorem 3. Let Ay, Ay, ... be the sequence of trees
generated by Algorithm 2 with e = 1 — 27/3. Then,
for all T > 2 the depth of Apy1 is upper bounded by
logy Mr_1 + 3log, g

Proof. The depth of Ay is the maximum of the d;
values, given by lemma 3, over all rounds t. How-
ever, if at round t there was no mistake or d; < hy
then the tree is not grown. So, it suffices to show
that, for all rounds ¢ in which a mistake was made,
the quantity b(P;—1) in equation (1) is not greater
than the bound. That expression is upper bounded

by log; _.( f/Pf’_l + 2P3/2 +1—P;_1). Now we switch
to base 2 because we want to relate the bound on the
depth of the tree with the actual size of the tree, we
substitute e = 1 — 271/3 and get

1

f’/Pf_l +2P¥2 1P,

It is easy to show that the expression inside the log-

arithm can be upper bounded by WP o cause

such an inequality is equivalent to showing that the
polynomial 36y° 4+ 48y* + 7y> + 30y? + 36y is non nega-
tive for y > 0 where y = y/P;_1. Therefore the above
quantity is upper bounded by

3\/Pt 1+2 < 3log

where we used the 1nvar1ant P, < M;*’°. M; is a non
decreasing sequence and Mp_; > 1 since T > 2 and
the first prediction is always a zero which counts as a
mistake. So we upper bound the above quantity by

3MY 42

3log,

3]\4—1/3

2/3

5
3log, <logy Mr_1 + 3log, 3

where we have used the inequality log,(3u + 2) <
log, (5u), which is true for p > 1. O

Theorem 3 says that the amount of memory needed by
the tree grows only linearly with the number of mis-
takes. The respective growth bound given in (Dekel
et al., 2004), also scales linearly but with a larger con-
stant. This is reflected in the experiments, too.

However, the comparison of their mistake bound and
ours is complex and in general multiplicative and addi-
tive update algorithms have different merits (Kivinen
& Warmuth, 1997). Our case is even more intricate be-
cause x; conceptually has twice as many dimensions
as that in (Dekel et al., 2004) and the feature values
are different. Therefore, the optimal weight vector in
hindsight and the value of the margin will be different
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Table 1. Summary of experimental results

DATASET ULYSSES BIT ULYSSES A-Z EXCEL OUTLOOK FIREFOX

UPDATE PErC. WINN. PERC. WINN. PErC. WINN. PErRC. WINN. PERC. WINN.
% ERROR | 24.32 20.49 67.58 65.58 22.68 20.59 5.1 4.43 14.86 13.88
PST Size | 675K 270K 13.2M 10.3M || 24402 15338 41239 25679 21081 12662

for the two algorithms. The latter is likely to be larger
in our case because our feature values are larger. In
this view our mistake bound dependence on 6% may
not be important since  may be large. Notice that
for the multiplicative algorithm we can afford to push
the features as close to 1 as we wish without changing
the mistake bound which depends on just ||@¢||oc < 1.
The algorithm in (Dekel et al., 2004) however depends
on ||x¢]|2 < 1 and their features cannot be made larger
without affecting their mistake or growth bound. In
theorem 3 we set € so that the features are as large
as possible while keeping the PST size linear with the
number of mistakes. Finally our bound also depends
on logT and even though this dependence also exists
in a lower bound (Kivinen & Warmuth, 1997), this
assumes that an adversary selects the feature values
which is not true in this case. Nevertheless, as the next
section shows the actual number of mistakes in prac-
tice may differ markedly from these worst case bounds.

4. Experiments

We have conducted some experiments to demonstrate
the effectiveness of the proposed algorithm. We are
interested in two quantities, the online error rate and
the size of the PST. Since the data from our moti-
vating application are not publicly available, we first
describe two reproducible experiments. We used the
text from James Joyce’s Ulysses to define two prob-
lems: predicting the next bit and predicting the next
alphabetic character in the text (non alphabetic char-
acters were discarded in this case).

The first two columns of table 1 show the results of
these experiments. For both tasks, our Winnow vari-
ant makes fewer mistakes and grows a smaller tree than
the perceptron of (Dekel et al., 2004). In all experi-
ments, o was set to 0.1 and € was set as in theorem 3.
The baseline error rates are 50% and 88% respectively.

Predicting the next letter as well as the problems
from our motivating application are multiclass prob-
lems. To handle them, we adapt ideas from (Crammer
& Singer, 2002) and maintain weights w, . wk)
one for each class. The decision at time ¢ is g; =
argmax; (w®, x,) and if § # y, we update w(@)

and w®¥) by updating their parameters: 9&’;‘1)’1- =

6% — azy; and 00, = 0 + amy, (if [s(5)] < dy

as usual). A problem with this formulation is that we
need the normalization constant Zt(] ) for each class 7.
Strictly speaking, Zt(j ) cannot be computed without
a priori knowledge of the length T of the sequence,
because we conceptually have a weight for each sub-
string of the whole sequence. However, the following

approximation
= (i )
2= 3 o
1€EAL
works very well in practice, can be quickly computed
from Zt(i )1, and was used in all our experiments.

We now turn to experiments from our motivating ap-
plication. The task is to predict the next system call
a program will execute based on the previous system
calls. Our data consists of three applications, Fire-
fox and Microsoft’s Excel and Outlook, for each of
which we have 40 sequences of system calls. Our mon-
itoring application was recording 23 different system
calls. The last three columns in table 1 summarize
the results of all experiments. For brevity, we report
for each application the average online prediction er-
ror and tree size over the 40 sequences. However, ta-
ble 1 understates the difference of the two algorithms
in this problem since the multiplicative algorithm is
always making less mistakes and growing smaller trees
than the additive one for all three applications and all
tested sequences. All paired sample two sided t-tests
showed that the differences of the reported quantities
are significant (p < 107° for all tests). However, there
exist sequences that can force Winnow to make more
mistakes than perceptron. In two out of the 120 se-
quences Winnow was initially making more mistakes
and started outperforming perceptron only after the
first half of the sequence.

Finally, it is interesting to note that if instead of
P, < Mf /3 e had enforced P < Mtl/ % we would have
derived a mistake bound that always scales with 6%
and a similar growth bound for € = 1—2~'/2, Surpris-
ingly, this variant has empirically no clear advantage
over the additive algorithm. Our analysis allows select-
ing a smaller € i.e. larger features which in turn allow
the margin § to be larger and this improves the mistake
bound. At the same time larger features mean that
the norms of the noise vectors will be larger. Hence
we need to decide how much noise we should tolerate.
Too much noise will hurt the mistake bound and too



Learning Prediction Suffix Trees with Winnow

little will cause the tree to grow very fast. A good bal-
ance can be achieved by requiring the size of the tree
to scale linearly with the number of mistakes.

5. Related Work

Apart from (Dekel et al., 2004), with which we com-
pared in the experiments, there are many other meth-
ods for learning PSTs which are based on a wide
range of principles such as PAC learning (Ron et al.,
1996), structural risk minimization (Kearns & Man-
sour, 1998) and online Bayesian mixtures (Willems
et al., 1995) and their generalizations (Helmbold &
Schapire, 1997; Pereira & Singer, 1999). All these
methods assume that we have a bound on the max-
imum depth of the tree. For many applications this
is not known and the algorithm should be allowed to
estimate a good value of this parameter from the data.

(Kivinen & Warmuth, 1997) contains many results
and insights about multiplicative algorithms includ-
ing variants that are competitive with any vector u
such that ||ul|y < U. Extending our algorithm to be
competitive with any vector in this ball is also possi-
ble. Additionally, many authors, starting with (Blum,
1997), have noticed that Winnow’s weight vector can
be sparsified by zeroing the entries which have small
weights compared to the largest weight in the hypoth-
esis. This procedure is effective in practice but comes
with no theoretical guarantees. In the case of learning
PSTs however, the tree implicitly defines a partial or-
der for the costs of setting the parameters to non zero
values. This allows us to have a sparse hypothesis and
still be able to characterize the number of mistakes.

6. Conclusions

We presented a modification of Balanced Winnow for
learning PSTs in order to predict the next item in a se-
quence. The algorithm presented here does not rely on
any assumptions about an underlying PST that gen-
erates the data. Our algorithm comes with theoretical
guarantees about the number of mistakes it will make
relative to the best PST determined in hindsight and
about the amount of memory it will use to store its hy-
pothesis. In all our experiments we found that it makes
fewer mistakes and uses less memory than an additive
algorithm with similar guarantees (Dekel et al., 2004).
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