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Abstract

We present a new view of Gaussian belief
propagation (GaBP) based on a representa-
tion of the determinant as a product over or-
bits of a graph. We show that the GaBP
determinant estimate captures totally back-
tracking orbits of the graph and consider how
to correct this estimate. We show that the
missing orbits may be grouped into equiva-
lence classes corresponding to backtrackless
orbits and the contribution of each equiv-
alence class is easily determined from the
GaBP solution. Furthermore, we demon-
strate that this multiplicative correction fac-
tor can be interpreted as the determinant of a
backtrackless adjacency matrix of the graph
with edge weights based on GaBP. Finally,
an efficient method is proposed to compute
a truncated correction factor including all
backtrackless orbits up to a specified length.

1. Introduction

Belief Propagation is a widely used method for infer-
ence in graphical models. We study this algorithm
in the context of Gaussian graphical models. There
have been several studies of Gaussian belief propaga-
tion (GaBP) (Weiss & Freeman, 2001; Rusmevichien-
tong & Van Roy, 2001; Plarre & Kumar, 2004) as well
as numerous applications (Moallemi & Van Roy, 2006;
Bickson et al., 2008b; Bickson et al., 2008a). The
best known sufficient condition for its convergence is
the walk-summable condition (Johnson et al., 2006;
Malioutov et al., 2006) (see also (Cseke & Heskes,
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2008; Moallemi & Van Roy, 2009)), which also pro-
vides new insights into the algorithm by interpreting
it as computing weighted sums of walks (walk-sums)
within the graph. Our aim in this present paper is to
extend this graphical/combinatorial view of GaBP to
include estimation of the determinant (partition func-
tion) of the Gaussian graphical model. This work is
also inspired by the loop-series correction method for
belief propagation (Chertkov & Chernyak, 2006) that
was recently extended to Gaussian graphical models
(Chernyak & Chertkov, 2008).

Our present study leads to a new perspective on GaBP
having close ties to graphical zeta functions (Stark &
Terras, 1996). We find that for walk-summable models
the determinant may be represented as a product over
all orbits (cyclic walks) of the graph. The estimate
of the determinant provided by GaBP only captures
totally backtracking orbits, which can be embedded
as orbits in the computation tree (universal cover) of
the graph. The missing orbits may then be grouped
into equivalence classes corresponding to backtrackless
orbits. The orbit-product over each such equivalence
class may be simply computed from the solution of
GaBP. Also, the product over all backtrackless orbits
may be interpreted as the determinant of a backtrack-
less adjacency matrix of the graph with appropriately
defined edge weights based on the GaBP solution. Fi-
nally, we propose a simple, efficient method to com-
pute truncated orbit-products including all orbits up
to some specified length and provide an error-bound
on the resulting estimates. In certain classes of graphs
(e.g., grids), this leads to an efficient method with com-
plexity linear in the number of nodes and the required
precision of the determinant estimate.

This paper differs fundamentally from (Chernyak &
Chertkov, 2008) in that we rely heavily on the walk-
summable property to develop multiplicative expan-
sions using infinitely many orbits of the graph, whereas
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(Chernyak & Chertkov, 2008) develops additive ex-
pansions over a finite number of “generalized loops”
(which may be disconnected) using methods of Grass-
man calculus. Our present approach leads naturally
to approximation methods (with accuracy guarantees
in walk-summable models) based on truncated orbit-
products.

2. Preliminaries

2.1. Walks and Orbits of a Graph

Let G be a graph on vertices (nodes) V = {1, . . . , n}
with undirected edges {i, j} ∈ G. We may also
treat each undirected edge {i, j} as a symmetric pair
of directed edges (ij) and (ji). A walk w is a se-
quence of adjacent vertices (w0 . . . wL) (wt ∈ V for
t = 0, . . . , L and {wt, wt+1} ∈ G for t = 1, . . . , L − 1)
where |w| , L is the length of the walk. A walk
may be equivalently specified as a sequence of steps

w = ((w0w1)(w1w2) . . . (wL−1wL)) such that each step
is a (directed) edge of the graph that ends where the
following step begins. A walk may visit the same node
or cross the same edge multiple times and may also
backtrack—that is, it may step back to the preceding
vertex. A walk is closed if it begins and ends at the
same node w0 = wL. A closed walk is primitive if it
is not a multiple of some shorter walk (e.g., the walk
(1231) is primitive but (1231231) is not). We define an
orbit ℓ = [w] to be an equivalence class of closed prim-
itive walks, where two walks are considered equivalent
[w] = [w′] if one is a cyclic shift of the other (i.e., if
wt = w′

t+s(mod ℓ) for some s and t = 1, . . . , L). Hence,
there is a one-to-one correspondence between orbits
and (non-terminating) cyclic walks.

The following classification of walks and orbits plays
an essential role in our analysis: A walk (or orbit) is
said to be reducible if it contains a backtracking pair of
consecutive steps . . . (ij)(ji) . . . , otherwise the walk is
irreducible. By repeatedly deleting backtracking pairs
until none remain one obtains the (unique) irreducible

core γ = Γ(w) of the walk w. For closed walks it may
happen that γ = ∅, where ∅ , () denotes the trivial
(empty) walk. We then say that the walk is totally

reducible. We say that a walk is non-trivial if it is not
totally reducible. Totally reducible walks have been
called backtracking (Malioutov et al., 2006), although
totally backtracking is perhaps a better description. Ir-
reducible walks have been called backtrackless (or non-

backtracking) elsewhere in the literature.

Notation. L denotes the set of all orbits of G, Γ(L)
denotes the irreducible (backtrackless) orbits, and we
partition L into (disjoint) equivalence classes Lγ ,

{ℓ ∈ L|Γ(ℓ) = γ} for γ ∈ Γ(L). In particular, L∅

denotes the class of totally backtracking orbits, which
plays a special role in our interpretation of GaBP. We
will use ℓ to denote a generic orbit and reserve γ to
denote irreducible orbits.

Example. Orbits [1231], [1231451], [123421561] are
backtrackless; [1234321], [1232421], [1231321] are to-
tally backtracking; [123241] is both reducible and non-
trivial (neither backtrackless nor totally backtracking).

2.2. Gaussian Belief Propagation

A Gaussian graphical model is a probability distribu-
tion

p(x) = Z−1 exp
{

− 1
2x

TJx+ hTx
}

(1)

of random variables x ∈ R
n where J is a sparse, sym-

metric, positive-definite matrix. The fill-pattern of J
defines a graph G with vertices V = {1, . . . , n} and
edges (ij) for all Jij 6= 0. The partition function

is defined by Z(h, J) ,
∫

exp{− 1
2x

TJx + hTx}dx =
[

(2π)n det J−1
]1/2

e
1
2hT J−1h so as to normalize the dis-

tribution. Given such a model, we may compute the
mean vector µ ,

∫

p(x)xdx = J−1h and covariance

matrix K ,
∫

p(x)(x − µ)(x − µ)T dx = J−1. This
generally requires O(n3) computation in dense graphs
using Gaussian elimination. If G is sparse and only
certain elements of K are required (the diagonal and
edge-wise covariances), then the complexity of Gaus-
sian elimination may be substantially reduced (e.g.,
O(n3/2) in planar graphs using nested dissection) but
still generally has complexity growing as O(w3) in the
tree-width w of the graph.

Gaussian belief propagation (GaBP) is a simple, dis-
tributed, iterative message-passing algorithm to es-
timate the marginal distribution p(xi) of each vari-
able, which is specified by its mean µi and variance
Kii. GaBP is parameterized by a set of messages

mij(xj) = e
1
2 αijx2

j+βijxj defined on each directed edge
(ij) of the graph (mij is regarded as a message being
passed from i to j). The GaBP equations are:

mij(xj) ∝
∫

ψi(xi)
∏

k∈∂i\j

mki(xi)ψij(xi, xj)dxi

where ψi = e−
1
2Jiix

2
i +hixi , ψij = e−Jijxixj and ∂i de-

notes the set of neighbors of i in G. This reduces to
the following rules for computing (α, β)-messages:

αij = J2
ij(Jii − αi\j)

−1

βij = −Jij(Jii − αi\j)
−1(hi + βi\j) (2)

where αi\j ,
∑

k∈∂i\j αki and βi\j ,
∑

k∈∂i\j βki.
These equations are solved by iteratively recomputing
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each message from the other messages until conver-
gence. The marginal distribution is then estimated as
pbp(xi) ∝ ψi(xi)

∏

k∈∂imki(xi), which gives variance

estimates Kbp
i = (Jii−

∑

k αki)
−1 and mean estimates

µbp
i = Kbp

i (hi +
∑

k βki). In trees, this method is
equivalent to Gaussian elimination, terminates after a
finite number of steps and then provides the correct
marginals. In loopy graphs, it may be viewed as per-
forming Gaussian elimination in the computation tree
(universal cover) of the graph (Plarre & Kumar, 2004;
Malioutov et al., 2006) (obtained by “unrolling” loops)
and may therefore fail to converge due to the infinite
extent of the computation tree. If it does converge,
the mean estimates are still correct but the variances
are only approximate. We also obtain an estimate of
the pairwise covariance matrix on edges {i, j} ∈ G:

Kbp
(ij) =

(

Jii − αi\j Jij

Jij Jjj − αj\i

)−1

In this paper, we are concerned with the GaBP esti-
mate of the determinant Z = detK = detJ−1 (which
is closely linked to computation of the partition func-
tion Z). We obtain an estimate of Z from the GaBP
solution as:

Zbp =
∏

i∈V

Zbp
i

∏

{i,j}∈G

Zbp
ij

Zbp
i Zbp

j

(3)

where Zbp
i = Kbp

i and Zbp
ij = detKbp

(ij). The mo-

tivation for this form of estimate is that it becomes
exact if G is a tree. In loopy graphs, there may gen-
erally be no stable solution to GaBP (or multiple un-
stable solutions). The main objective of this paper is
to interpret the estimate Zbp in the context of walk-
summable models (described below), for which there is
a well-defined stable solution, and to suggest methods
to correct this estimate. Note that the variance and
covariance estimates (and hence the determinant esti-
mate Zbp) are independent of h and the β-messages
in (2), they are determined solely by the α-messages
determined by J . Since GaBP correctly computes the
means in walk-summable models, we are mainly con-
cerned with how to correct Zbp (and hence its deriva-
tives, which correspond to the GaBP estimates of vari-
ances/covariances).

Walk-Sum Interpretation Our approach in this
paper may be considered as as extension of the walk-
sum interpretation of GaBP (Malioutov et al., 2006).
Let J be normalized to have unit-diagonal, such that
J = I − R with R having zeros along its diago-
nal. The walk-sum idea is based on the series K =
(I − R)−1 =

∑

k R
k, which converges if ρ(R) < 1

where ρ(R) denotes the spectral radius of the ma-
trix R (the maximum modulus of the eigenvalues of
R). This allows us to interpret Kij as a sum over
all walks in the graph G which begin at node i and
end at node j where the weight of a walk is defined

as Rw =
∏

(ij)∈w r
nij(w)
ij and nij(w) is a count of

how many times step (ij) occurs in the walk. We
write this walk-sum as Kij =

∑

w:i→j R
w. However,

in order for the walk-sum to be well-defined, it must
converge to the same value regardless of the order in
which we add the walks. This is equivalent to requir-
ing that it converges absolutely. Thus, we say that
R is walk-summable if

∑

w:i→j |Rw| converges for all
i, j ∈ V . This is equivalent to the spectral condition
that ρ(|R|) < 1 where |R| , (|rij |) is the element-wise
absolute-value matrix of R. A number of other equiv-
alent or sufficient conditions are given in (Malioutov
et al., 2006).

In walk-summable models it then holds that variances
correspond to closed walk-sums Kii =

∑

w:i→iR
w and

means correspond to a (reweighted) walk-sum over all
walks which end at a specific node µi =

∑

w:∗→i h∗R
w

(here ∗ denotes the arbitrary starting point of the
walk). Moreover, we may interpret the GaBP mes-
sage parameters (α, β) as recursively computing walk-
sums within the computation tree (Malioutov et al.,
2006). This implies that GaBP converges in walk-
summable models and converges to the same “walk-
sum” solution independent of the order in which we
update messages. This interpretation also shows that
GaBP computes the correct walk-sums for the means
but only computes a subset of the closed walks needed
for the variances. Specifically, Kbp

i only includes to-
tally backtracking walks at node i. This is seen as a
walk is totally backtracking if and only if it can be em-
bedded as a closed walk in the computation tree of the
graph and it is these closed walks of the computation
tree which GaBP captures in its variance estimates.

3. Orbit-Product Interpretation of

Gaussian BP

3.1. Determinant Z as Orbit-Product

Let Z(R) , det(I − R)−1. In walk-summable mod-
els, we may give this determinant another graphical
interpretation as a product over orbits of a graph, one
closely related to the so-called zeta function of a graph
(Stark & Terras, 1996).

Theorem 1 If ρ(|R|) < 1 then it holds that Z(R) =
∏

ℓ(1−Rℓ)−1 ,
∏

ℓ Zℓ where the product is taken over

all orbits of G and Rℓ =
∏

(ij)∈ℓ r
nij(ℓ)
ij where nij(ℓ) is
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the number of times step (ij) occurs in orbit ℓ.

Proof. log det(I −R)−1 = tr log(I −R)−1 = tr
∑

k
Rk

k

=
∑

closed w
Rw

|w| =
∑

primitive w

∑∞
m=1

(Rw)m

m|w| =
∑

primitive w
1
|w| log(1 − Rw)−1 =

∑

orbits ℓ log(1 −
Rℓ)−1 = log

∏

ℓ(1 − Rℓ)−1. We have used the iden-
tity log detA = tr logA and the series expansion

log(I − A)−1 =
∑∞

k=1
Ak

k . Each closed walk is ex-
pressed as a multiple of a primitive walk. Every prim-
itive walk w has exactly |w| distinct cyclic shifts. ⋄
We emphasize that ρ(|R|) < 1 is necessary to in-
sure that the the orbit-products we consider are well-
defined. This condition is assumed throughout the re-

mainder of the paper.

3.2. Zbp as Totally Backtracking Orbits

Totally backtracking walks play an important role in
the walk-sum interpretation of the GaBP variance es-
timates. We now derive an analogous interpretation of
Zbp defined by (3):

Theorem 2 Zbp =
∏

ℓ∈L∅
Zℓ where the product is

taken over the set of totally backtracking orbits of G.

Although this result seems intuitive in view of prior
work, its proof is non-trivial involving arguments not
used previously. To prove the theorem, we first sum-
marize some useful lemmas. Consider a block ma-
trix A = (A11A12;A21A22). The Schur complement

of block A11 is A∗
22 , A22 − A21A

−1
11 A21. It holds

that detA = detA11 detA∗
22 and (A∗

22)
−1 = (A−1)22.

Using these well-known identities, it follows:

Lemma 1 Let R = (R11R12;R21R22) and K = (I −
R)−1 = (K11K12;K21K22). Then detK11 = Z(R)

Z(R22)
.

For walk-summable models, we then have

detK11 =

∏

ℓ∈G Zℓ
∏

ℓ∈G2
Zℓ

=
∏

ℓ∈G|ℓ intersects G1

Zℓ

where the final orbit-product is taken over all orbits
of G which include any node of subgraph G1 (corre-
sponding to submatrix R11). Next, using this result
and the interpretation of GaBP as inference on the
computation tree, we are led to the following inter-
pretation of the quantities Zbp

i and Zbp
ij appearing in

(3). Let Ti denote the computation tree of the graph
G with one copy of node i marked. Let Tij denote
the computation tree with one copy of edge {i, j} ∈ G
marked. Then,

Lemma 2 Zbp
i =

∏

ℓ∈Ti|i∈ℓ Zℓ where the product is

over all orbits of Ti that include the marked node i.

Zbp
ij =

∏

ℓ∈Tij |i∈ℓ or j∈ℓ Zℓ where the product is over all

orbits of Tij that include either endpoint of the marked

edge {i, j}.

Proof of Theorem 2. Using Lemma 2 and the cor-
respondence between orbits of the computation tree
and totally backtracking orbits of G, we may expand
(3) to express Zbp entirely as a product over totally
backtracking orbits Zbp =

∏

ℓ∈L∅
ZNℓ

ℓ where Nℓ is
the count of how many times ℓ appears in the orbit-
product—the number of times it appears in the numer-
ator of (3) minus the number of times in appears in
the denominator. It remains to show that Nℓ = 1 for
each totally backtracking orbit. This may be seen by
considering the subtree Tℓ of the computation tree T
traced out by orbit ℓ. Let v and e respectively denote
the number of nodes and edges of Tℓ (hence, e = v−1)
and let c denote the number of edges of T with exactly
one endpoint in Tℓ. First, we count how many powers
of Zℓ appear in the orbit product

∏

i Z
bp
i . For each

vertex i ∈ Tℓ we may pick this as the marked node
in the computation tree and this shows one way that
ℓ can be embedded in Ti so as to include its marked
node. Thus, v gives the total number of multiples
of Zℓ in

∏

i Z
bp
i . Similarly, we could mark any edge

{i, j} ∈ T with one or both endpoints in Tℓ and this
gives one way to embed ℓ into Tij so as to intersect the

marked edge. Thus, the product
∏

ij Z
bp
ij contributes

e + c powers of Zℓ. Lastly, the product
∏

ij Z
bp
i Zbp

j

contains 2e+c powers of Zℓ. This represents the num-
ber of ways we may pick a directed edge (ij) of T such
that at least one endpoint is in Tℓ. The total count is
then Nℓ = v + (e+ c) − (2e+ c) = v − e = 1. ⋄
Combining Theorems 1 and 2, we obtain the following
orbit-product correction to Zbp:

Corollary 1 Z = Zbp × ∏

ℓ 6∈L∅
Zℓ.

This formula includes a correction for every missing
orbit, that is, for every non-trivial orbit. This implies
that Z = Zbp for trees since all orbits of trees are
totally backtracking.

3.3. Zbp Error Bound

One useful consequence of the orbit-product interpre-
tation of Zbp is that it provides a simple error bound
on GaBP. Let g denote the girth of the graph G, de-
fined as the length of the shortest cycle of G. We note
that the missing orbits ℓ 6∈ L∅ must all have length
greater than or equal to g. Then,

Theorem 3 1
n

∣

∣

∣
log Zbp

Z

∣

∣

∣
≤ ρ(|R|)g

g(1−ρ(|R|)) .
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Proof. We derive the chain of inequalities:
∣

∣log Z
Zbp

∣

∣

(a)
=

∣

∣

∣

∑

ℓ 6∈L∅
logZℓ

∣

∣

∣
≤ ∑

|ℓ|≥g | logZℓ|
(b)

≤
∑

|ℓ|≥g log(1−|R|ℓ)−1 (c)
= tr

∑∞
k=g

|R|k

k ≤ n
∑∞

k=g
ρk

k ≤
nρg

g

∑∞
k=0 ρ

k = nρg

g(1−ρ) . (a) Corollary 1. (b)

| logZℓ| =
∣

∣

∣

∑∞
k=1

(Rℓ)k

k

∣

∣

∣
≤ ∑∞

k=1
(|R|ℓ)k

k = log(1 −
|R|ℓ)−1. (c) The proof of Theorem 1 shows

that tr
∑

k≥1
Rk

k =
∑

ℓ log(1 − Rℓ)−1. Similarly,

tr
∑

k≥g
|R|k

k =
∑

|ℓ|≥g log(1 − |R|ℓ)−1. ⋄
This is consistent with the usual intuition that belief
propagation is most accurate in large girth graphs with
weak interactions.

4. Backtrackless Orbit Correction

In this section we show that the set of orbits omitted
in the GaBP estimate can be grouped into equivalence
classes corresponding to backtrackless orbits and that
the orbit-product over each such equivalence class is
simply computed with the aid of the GaBP solution:

Theorem 4 Z = Zbp×∏

γ 6=∅ Z
′
γ where the product is

over all backtrackless orbits of G and we define

Z ′
γ = (1 −

∏

(ij)∈γ

(r′ij)
nij(γ))−1

where r′ij ,
rij

1−αi\j
and αi\j =

∑

k∈∂i\j αki is com-

puted from the solution of GaBP.

In comparison to Corollary 1, here the correction fac-
tor is expressed as an orbit-product over just the back-
trackless orbits (whereas Corollary 1 uses a separate
correction for each non-trivial orbit). However, all or-
bits are still correctly accounted for because we modify
the edge weights of the graph so as to include a fac-
tor (1 − αi\j)

−1 (computed by GaBP) which serves
to “factor in” totally-backtracking excursions at each
point along the backtrackless orbit, thereby generating
all non-trivial orbits.

The basic idea underlying this construction is depicted
in Figure 1. For each backtrackless orbit γ we de-
fine an associated computation graph Gγ as follows.
First, we start with a single directed cycle based on
γ = [γ1γ2 · · · γL] (any duplicated nodes of the orbit
map to distinct nodes in this directed cycle). Then,
for each node γk of this graph, we attach a copy of the
computation tree Tγk\γk+1

, obtained by taking the full
computation tree Tγk

rooted at node γk and deleting
the branch (γk, γk+1) incident to the root. This con-
struction is illustrated in Figure 1(a,b) for the graph
G = K4 and orbit γ = [(12)(23)(31)]. The cycle has

(a)

24

r23r34

r14

1

3

G = K4

r24

r13

r12

(b)

1

1

2 3

3 4 1 4 2 4

2 4 2 3 3 4 1 3 4 1 2

T1\2 T2\3 T3\1

r14

r31

r12 r23r13

G[(12)(23)(31)]

(c)

1 3

r12 r23

r31

2

α1\2 = α31 + α41 α3\1 = α23 + α43α2\3 = α12 + α42

(d)

1 2 3

r′
31 =

r31
1−α3\1

r′
23 =

r23
1−α2\3

r′
12 =

r12
1−α1\2

Figure 1. Illustration of construction to combine equivalent
orbits. (a) The graph G = K4. (b) The computation graph
Gγ for γ = [(12)(23)(31)]. (c) Finite graph with self-loops
at each node to capture totally backtracking walks. (d)
Equivalent graph with modified edge weights to capture
totally backtracking walks.

“one-way” directed edges whereas each computation
tree has “two-way” undirected edges. This is under-
stood to mean that walks are allowed to backtrack
within the computation tree but not within the cycle.
The importance of this graph is based on the following
lemma (the proof is omitted):

Lemma 3 Let γ be a backtrackless orbit of G. Then,

there is a one-to-one correspondence between the class

of orbits Lγ of G and the non-trivial orbits of Gγ .

Next, we demonstrate how to compute all of the orbits
within an equivalence class as a simple determinant
calculation based on the backtrackless orbit γ and the
GaBP solution. Let R′

γ be defined as the edge-weight
matrix of a simple single-loop graph based on γ with
edge-weights defined by r′γk,γk+1

=
rγk,γk+1

1−αγk\γk+1

. This

construction is illustrated in Figure 1(d). Then,

Lemma 4 Z ′
γ = det(I −R′

γ)−1 =
∏

ℓ∈Lγ
Zℓ.

Proof. Using Lemma 3, we see that the orbit-product
∏

ℓ∈Lγ
Zℓ is equal to the product over all non-trivial

orbits of the graph Gγ , that is, the product over all or-
bits in Gγ which intersect the subgraph corresponding
to γ. Using Lemma 1, this is equivalent to comput-
ing the determinant of the corresponding submatrix
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of KGℓ
= (I − RGℓ

)−1 where RGℓ
is the edge-weight

matrix of the computation graph. This is equivalent
to first eliminating each computation tree (by Gaus-
sian elimination/GaBP) attached to each node of γ
to obtain a reduced graphical model I −Rγ and then
computing det(I − Rγ)−1. Using the GaBP solution,
the effect of eliminating each computation tree is to
add a “self-loop” (diagonal element) to Rγ with edge-
weight αγk\γk+1

=
∑

v 6=γk+1
αv,γk

, obtained by sum-
ming the incoming messages to node γk from each
of its neighbors in the subtree Tγk\γk+1

. This elim-
ination step is illustrated if Figure 1(b,c). We may
use the orbit-product formula to compute the deter-
minant. However, there are infinitely many orbits in
this graph due to the presence of a self-loop at each
of the remaining nodes. At each node, an orbit may
execute any number of steps m around this self-loop
each with edge-weight αγk\γk+1

. Summing these, we
obtain

∑∞
m=0 α

m
γk\γk+1

= (1 − αγk\γk+1
)−1. Hence,

we can delete each self-loop and multiply the follow-
ing edge’s weight by (1 − αγk\γk+1

)−1 and this pre-
serves the value of the determinant. This final reduc-
tion step is illustrated in Figure 1(c,d). Then, the
orbit-product

∏

ℓ∈Lγ
Zℓ is equal to det(I−R′

γ)−1 (e.g.,

based on the graph seen in Figure 1(d)). It is straight-
forward to compute the resulting determinant with re-
spect to the single (directed) cycle graph with edge-
weights R′

γ . There is only one orbit in this graph and

hence det(I − R′
γ)−1 = Z ′

γ , (1 − (R′)γ)−1 where

(R′)γ =
∏

(ij)∈γ(r′ij)
nij(γ) and r′ij = rij(1−αi\j)

−1. ⋄
Proof of Theorem 4. Using these results, it is now
simple to show Z

Zbp =
∏

ℓ 6∈L∅
Zℓ =

∏

γ 6=∅

∏

ℓ∈Lγ
Zℓ =

∏

γ 6=∅ det(I −R′
γ)−1 =

∏

γ 6=∅(1 − (R′)γ)−1. ⋄

5. Backtrackless Determinant

Correction

Next, we show that the correction factor

Z

Zbp
=

∏

γ 6=∅

Z ′
γ =

∏

γ 6=∅

det(I −R′
γ)−1

may also be calculated as a single determinant based
on the following backtrackless adjacency matrix of the
graph. We define R′ ∈ R

2|G|×2|G| as follows. Let the
rows and columns of R′ be indexed by directed edges
(ij) of the graph G. Then, the elements of R′ are
defined

R′
(ij),(kl) =

{

r′kl, j = k and i 6= l
0, otherwise.

(4)

This construction is illustrated in Figure 2. Note that
the walks generated by taking powers R′ correspond to
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Figure 2. (a) 3 × 3 grid G. (b) Graph G′ representing the
backtrackless adjacency matrix R′. Each node ij repre-
sents a directed edge of G, directed edges are drawn be-
tween nodes ij and jk which are non-backtracking (k 6= i).

backtrackless walks of the graph G. The weight of an
edge ((ij)(jk)) in R′ is defined as the (modified) edge-
weight r′jk of the endpoint (jk). The weight of an orbit
in R′ may then be equivalently defined as the product
of node weights r′ij taken over the orbit in R′, which is
equal to the weight of the corresponding backtrackless
orbit of G (using the modified edge weights r′ij).

Theorem 5 Z = Zbp ×Z ′ where Z ′ , det(I−R′)−1,

that is, det(I −R)−1 = Zbp × det(I −R′)−1.

Before providing the proof, we establish that
walk-summability with respect to R implies walk-
summability with respect to R′:

Lemma 5 If ρ(|R|) < 1 then ρ(|R′|) ≤ ρ(|R|).

Proof. Once the α-parameters converge, the β-
parameters follow a linear system βk+1 = R′βk + b
(Moallemi & Van Roy, 2009). Hence, the asymptotic
convergence rate of GaBP is ρ(R′). Compare this to
the Gauss-Jacobi (GJ) iteration µk+1 = µk + (h −
Jµk) =

∑k+1
t=0 R

th (µ0 = 0), which has convergence
rate ρ(R). It is clear that the GaBP iteration captures
a superset of those walks computed by GJ at each iter-
ation (because the depth-k computation tree includes
all k-length walks). Hence, for non-negative models
(R ≥ 0 and h ≥ 0) it must hold that the error in the
GaBP estimate of µ is less than or equal to the error
of GJ (at every iteration). This implies ρ(R′) ≤ ρ(R)
if R ≥ 0, from which we conclude ρ(|R′|) ≤ ρ(|R|) in
walk-summable models. ⋄
Proof of Theorem 5. By construction, there is a one-
to-one weight-preserving correspondence between or-
bits of G′ and backtrackless orbits of G. The result
then follows from the orbit-product representation of
Z ′ over G′ (Theorem 1, Lemma 5), which is equivalent
to the backtrackless orbit-product of Theorem 4. ⋄
One useful consequence of this result is that the error

bound of Theorem 3 can be improved to 1
n

∣

∣

∣
log Zbp

Z

∣

∣

∣
=
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1
n |logZ ′| ≤ ρ(|R′|)g

g(1−ρ(|R′|)) .

It is impractical to compute the complete correction
factor Z ′ = det(I−R′)−1, as this is not easier than di-
rectly computing Z = det(I−R)−1. However, because
R′ is itself walk-summable, we can use this representa-
tion as a starting point for constructing approximate
corrections such as the one considered in the next sec-
tion.

6. Block-Resummation Method

Next, we consider an efficient method to approxi-
mate Z(A) = det(I−A)−1 for walk-summable models
ρ(|A|) < 1. This method can be used to either di-
rectly approximate Z(R) (A = R) or to approximate
the GaBP-correction Z ′ (A = R′).

Given a graph G based on vertices V , we specify a set
of blocks B = (Bk ⊂ V, k = 1, . . . , |B|) chosen such
that: (1) Every short orbit |ℓ| < L is covered by some
block B ∈ B, and (2) If B,B′ ∈ B then B ∩ B′ ∈ B.
We also define block weights wB as follows: wB = 1
for maximal blocks (not contained by another block)
and wB = 1 − ∑

B′)B wB′ for non-maximal blocks
(these weights may be negative). This insures that
∑

B′⊇B wB′ = 1 for each B ∈ B. Then, we define our
estimate

ZB ,
∏

B

ZwB

B ,
∏

B

(det(I −AB)−1)wB (5)

where AB denotes the |B|× |B| principle submatrix of
A corresponding to B.

This approximation method is similar in spirit to ap-
proximations used elsewhere (e.g., Kikuchi approxima-
tions to free-energy (Yedidia et al., 2005)). However,
the new insights offered by the orbit-product view al-
lows us to give our estimate a precise interpretation in
walk-summable Gaussian models:

Theorem 6 ZB =
∏

ℓ∈LB
Zℓ where LB , ∪B∈BLB

and LB is the set of all orbits covered by B.

Proof. ZB =
∏

B

∏

ℓ∈B Z
wB

ℓ =
∏

ℓ∈LB
Z

P

B⊃ℓ wB

ℓ =
∏

ℓ∈LB
Zℓ where

∑

B⊃ℓ wB = 1 follows from the defi-
nition of the block weights. ⋄
Moreover, we can then bound the error of the estimate.
Noting that LB includes all short orbits of the graph,
we can derive the following result by a similar proof as
for Theorem 3:

Corollary 2 1
n

∣

∣log ZB

Z

∣

∣ ≤ ρ(|A|)L

L(1−ρ(|A|)) .

Thus, for the class of models with ρ < 1, we obtain an
approximation scheme which converges to the correct
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Figure 3. Demonstration of determinant approximation
method for 256 × 256 periodic grid with uniform edge
weights r ∈ (0, .25). Plots of (a) ρ(|R|) and ρ(|R′|) vs
r; (b) ( 1

n
log of) Z, Zbp and ZB (with L = 2, 4, 8, 16, 32)

vs r; (c) 1

n
log(ZbpZ′

B) vs r; and (d) 1

n
| log(Z−1ZB)| and

1

n
| log(Z−1ZbpZ′

B)| vs L = 2, 4, 8, 16, 32 for r = .23. In (b)
and (c) the estimates for L = 8, 16, 32 are all nearly exact
(and therefore hard to distinguish in the plot) and the er-
rors are largest near the walk-summable threshold r = .25.
Estimates (b) are not based on GaBP and are actually
worst than Zbp for L = 2. However, the GaBP-corrections
(c) are strictly better than Zbp.

determinant as the parameter L is made large with er-
ror decaying exponentially in L. The estimate ZB(R)
includes all orbits that are covered by some block. The
improved GaBP-based estimate ZbpZB(R′) includes
all orbits ℓ such that γ = Γ(ℓ) is covered by some block.
Thus, the GaBP-based correction includes many more
orbits. We also note that the error-bound using the
GaBP-based estimate is typically smaller as we have
shown that ρ(|R′|) ≤ ρ(|R|) (if ρ(|R|) < 1).

Construction of B for Grids To achieve an error
bound 1

n | log ZB

Z | ≤ ε we must choose L ∼ log ε−1.
Then, the computation needed to achieve this preci-
sion will depend on both the number of blocks and the
block size needed to cover all orbits up to this length.
In certain classes of sparse graphs, it should be pos-
sible to control the complexity of the method. As an
example, we demonstrate how to choose blocks for 2D
grids. Consider the

√
n×√

n square grid in which each
vertex is connected to its four nearest neighbors. We
may cover this graph by L × L blocks shifted (both
vertically and horizontally) in increments of L

2 (let L
be even). It can be seen that this set of blocks covers
all loops shorter than L. To include all intersections
of blocks, we add L× L

2 , L
2 ×L and L

2 × L
2 blocks. The

block weights are wL×L = 1, wL×L/2 = wL/2×L = −1
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and wL/2×L/2 = 1. The complexity of computing the
determinant of an L× L block is O(L3) and the total
number of blocks is O(n/L2). Hence, the total com-
plexity is O(nL) = O(n log ε−1).

We test our approach numerically on a 256×256 square
grid (with periodic boundary conditions). We set all
edge weights to r and test the quality of approximation
using both estimates ZB(R) and ZbpZB(R′) for r ∈
(0, .25) (J = I−R becomes indefinite for larger values
of r) and block sizes L = 2, 4, 8, 16, 32. The results
are shown in Figure 3. As expected, accuracy rapidly
improves with increasing L in both methods and the
GaBP-correction approach is more accurate.

7. Conclusion and Future Work

We have demonstrated an orbit-product representa-
tion of the determinant (the partition function of the
Gaussian model) and interpreted the estimate ob-
tained by GaBP as corresponding to totally back-
tracking orbits. Furthermore, we have shown how to
correct the GaBP estimate in various ways which in-
volve incorporating backtrackless orbits (e.g. cycles)
of the graph. In particular, we demonstrated an ef-
ficient block-resummation method to compute trun-
cated orbit-products in sparse graphs (demonstrated
for grids). These methods also extend to address es-
timation of the matrix inverse (the covariance matrix
of the Gaussian model), which may in turn be used
as an efficient preconditioner for iterative solution of
linear systems. We leave these extensions for a longer
report.

In future work, we plan to extend the method of con-
structing an efficient set of blocks to other classes
of sparse graphs. It may also be fruitful to ex-
tend our analysis to generalized belief propagation
(Yedidia et al., 2005) in Gaussian models. In a
related direction, we intend to explore methods to
“bootstrap” GaBP using the factorization Z(R) =
(

∏∞
k=0 Z(−R2k

))
)−1

, which follows from the formula

(I −R)−1 =
∏

k(I +R2k

). By computing Zbp(−R2k

)
for small values of k we may capture short backtrack-
less orbits of the graph. Another direction is to in-
vestigate generalization of the formula Z = ZbpZ ′ to
non-walksummable models, perhaps using methods of
(Chernyak & Chertkov, 2008). A related idea is to
approximate a non-walksummable model by a walk-
summable one and then correct estimates obtained
from the walk-summable model to better approximate
the non-walksummable model.
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