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Abstract
Reinforcement Learning methods for controlling
stochastic processes typically assume a small and
discrete action space. While continuous action
spaces are quite common in real-world prob-
lems, the most common approach still employed
in practice is coarse discretization of the action
space. This paper presents a novel method, called
Binary Action Search, for realizing continuous-
action policies by searching efficiently the entire
action range through increment and decrement
modifications to the values of the action variables
according to an internal binary policy defined
over an augmented state space. The proposed
approach essentially approximates any continu-
ous action space to arbitrary resolution and can
be combined with any discrete-action reinforce-
ment learning algorithm for learning continuous-
action policies. Binary Action Search eliminates
the restrictive modification steps of Adaptive Ac-
tion Modification and requires no temporal ac-
tion locality in the domain. Our approach is cou-
pled with two well-known reinforcement learn-
ing algorithms (Least-Squares Policy Iteration
and Fitted Q-Iteration) and its use and properties
are thoroughly investigated and demonstrated on
the continuous state-action Inverted Pendulum,
Double Integrator, and Car on the Hill domains.

1. Introduction
A large number of real-world applications involve continu-
ous control actions, such as the torque applied to the joints
of a robot or the translational velocity of a mobile robot.
The majority of known algorithms for learning control poli-
cies using Reinforcement Learning (RL) delivers policies
which make decisions over a small set of discrete actions,
but become inefficient when the number of actions grows
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beyond a certain number, not to mention the inability to
handle cases with inherently continuous actions. A number
of research efforts have attempted to find a way around this
problem; some have met more success than others, yet none
can be characterized as a comprehensive solution. This is
especially true for domains that exhibit no or reduced tem-
poral action locality, meaning that consecutive actions from
an optimal policy may have quite distant values.

This paper addresses the problem of learning control poli-
cies in stochastic domains where actions (and states) are
continuous. Our contribution is an efficient, generic algo-
rithm which allows the majority of known RL algorithms
to learn and execute effective continuous-action control
policies, even in domains with reduced or no temporal
action locality. The proposed approach, Binary Action
Search (BAS), essentially approximates any continuous ac-
tion space to arbitrary resolution and requires only binary
decisions on behalf of the learning algorithm to efficiently
identify the optimal action (up to the allowed resolution)
in each state. The viability of the proposed approach is
demonstrated in conjunction with two well-known RL al-
gorithms (Fitted Q-Iteration and Least-Squares Policy It-
eration) for learning continuous-action controllers on three
well-known RL domains (Inverted Pendulum, Double Inte-
grator, and Car on the Hill).

The paper is organized as follows. Section 2 provides the
necessary background material, including a description of
our recent work on Adaptive Action Modification. Binary
Action Search (BAS) is presented in Section 3 and related
work is discussed in Section 4. The benefits of the BAS al-
gorithm are experimentally demonstrated in Section 5 and
the paper concludes with a detailed discussion in Section 6.

2. Background
2.1. Markov Decision Processes

A Markov Decision Process (MDP) is a 6-tuple
(S,A, P,R, γ,D), where S is the state space of the pro-
cess,A is the action space of the process, P is a Markovian
transition model

(
P (s, a, s′) denotes the probability of a

transition to state s′ when taking action a in state s
)
, R is a
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reward function
(
R(s, a) is the expected reward for taking

action a in state s
)
, γ ∈ (0, 1] is the discount factor for

future rewards, and D is the initial state distribution. A de-
terministic policy π for an MDP is a mapping π : S 7→ A
from states to actions; π(s) denotes the action choice in
state s. The value Qπ(s) of a state-action pair (s, a) under
a policy π is defined as the expected, total, discounted re-
ward when the process begins in state s, action a is taken at
the first step, and all decisions thereafter are made accord-
ing to policy π:

Qπ(s, a) = Eat∼π;st∼P

[ ∞∑
t=0

γtR
(
st, at

)∣∣∣s0 = s, a0 = a

]
.

The goal of the decision maker is to find an optimal policy
π∗ for choosing actions, which maximizes the expected,
total, discounted reward for states drawn from D:

π∗ = arg max
π

Es∼D
[
Qπ
(
s, π(s)

)]
.

If the value function Qπ∗ is known, a greedy policy, which
simply selects actions that maximize Qπ∗ in each state s,
is an optimal policy. For every MDP, there exists at least
one optimal deterministic policy. Value iteration, policy
iteration, and linear programming are well-known methods
for deriving an optimal policy from the MDP model.

2.2. Reinforcement Learning

In reinforcement learning, a learner interacts with a
stochastic process modeled as an MDP and typically ob-
serves the state of the process and the immediate reward
at every step, however P and R are not accessible. The
goal is to gradually learn an optimal policy using the ex-
perience collected through interaction with the process. At
each step of interaction, the learner observes the current
state s, chooses an action a, and observes the resulting next
state s′ and the reward received r, essentially sampling the
transition model and the reward function of the process.
Thus, experience comes in the form of (s, a, r, s′) samples.
Several algorithms have been proposed for learning good
or even optimal policies from (s, a, r, s′) samples (Sutton
& Barto, 1998).

Fitted Q-Iteration (FQI) (Ernst et al., 2005) is a batch-
training version of the popular Q-Learning algorithm. It
uses an iterative scheme to approximate the optimal value
function, whereby an improved value function Q is learned
at each iteration by fitting a function approximator to a set
of training examples generated using a set of samples from
the process and the Q-Learning update rule.

Least-Squares Policy Iteration (LSPI) (Lagoudakis & Parr,
2003) is a learning algorithm based on the approximate
policy iteration framework, whereby at each iteration an
improved policy is produced as the greedy policy over an

approximation of the value function of the previous policy.
LSPI uses linear approximation architectures consisting of
a weighted sum of a set of basis functions φ for represent-
ing value functions. The value function of each policy is
learned by solving a linear system formed using a set of
samples from the process and the fixed-point property of
the value function under the Bellman equation.

2.3. Adaptive Action Modification

A policy for an MDP typically selects the action to be per-
formed next. However, when dealing with continuous ac-
tion spaces over a range of values, successive decisions
usually exhibit a great deal of temporal locality. There-
fore, instead of making a decision about what particular
action to perform, one can make a decision on how to mod-
ify the current action. In its simplest form, this decision
boils down to increasing or decreasing the current action
value by a fixed amount. A more flexible approach would
change the size of the modification step adaptively. If for
two successive time steps the sign of the decision remains
the same (with increase taken as positive and decrease as
negative), the step-size ∆ is increased by a real-valued fac-
torK > 1 toK×∆, whereas when the sign of two succes-
sive decisions is different, the size of the step is decreased
to K−1 ×∆.

The Adaptive Action Modification (AAM) algo-
rithm (Pazis & Lagoudakis, 2009), summarized in
Algorithm 1, is a scheme for realizing efficient continuous-
action control policies in domains with temporal action
locality. AAM uses a learned discrete, binary-decision
policy over the space (S,A) for choosing whether to
increase or decrease the current continuous-action value
a ∈ A in the current state s ∈ S . The modification
step size ∆ is adjusted adaptively as described above,
according to the last two modification decisions and the
scaling factor K. The value of a is updated according to ∆
and this procedure is repeated at each time step. Policies
learned using AAM in conjunction with Q-Learning,
LSPI, and FQI reach superior performance on the Inverted
Pendulum and the Bicycle Balancing and Riding domains
compared to discrete-action policies and make full use of
the continuous-action range.

3. The Proposed Approach
3.1. Binary Action Search

A policy typically decides which specific action to perform
based on the current state. The AAM algorithm breaks
away from this pattern and decides instead how to modify
the current action. The internal binary policy essentially
answers the following question: “When in state s, would
you rather increase or decrease your current action a?”
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Algorithm 1 Adaptive Action Modification
Input: state s, policy π, previous action at−1

Static: previous decision et−1, modification step ∆t−1

Output: continuous action at
et ← π(s, at−1) // binary decision (+1 or −1)
∆t ← ∆t−1K

etet−1

∆t−1 ← ∆t

et−1 ← et
at ← at−1 + et∆t (amax − amin) / (ares − 1)

One potential problem with this approach is that the mod-
ification step cannot be chosen directly. Even if it is clear
that the action value must be increased or decreased, it is
still unclear what the magnitude of this modification step
should be. As a result, the final action choice may over- or
under- shoot depending on the current value of ∆. To min-
imize the effects of this phenomenon, experimental work
with AAM had to rely on increasing the control frequency
(yielding a smaller time step) to allow for quick recovery
from a bad action choice. Unfortunately, adjustment of the
control frequency is not always an option, nor does it con-
stitute a principled way of coping with the lack of temporal
action locality.

The key observation in designing an improved algorithm is
that nothing prevents us from querying the internal binary
policy more than once before we apply our decision. If,
for example, the answer to the first question is to increase
the action value, we can always compute the new value and
check what the binary policy suggests for that new action
value in the same state. If the suggestion is to decrease,
then we have an over-shoot. If the suggestion is to increase,
then we have an under-shoot. Repeated look-ahead queries
will allow us to search for an action value that reduces the
effects of over-shooting and under-shooting. Going a step
further, we do not even have to adopt the adaptive modifi-
cation step sizes suggested by AAM during our search, nor
do we have to use the previous action value as the starting
point of our search. Instead, we can start at any point and
use any convenient step sizes to search the action range and
successively approximate the value of the best continuous
action choice in the current state. In the absence of domain
knowledge, this search can be accomplished in an optimal
way using a binary search scheme.

The proposed algorithm, called Binary Action Search
(BAS), looks for the best action choice in the continuous
action range [amin, amax] using a finite number of binary
search steps. The first query will be at the center of the
range: “When in state s, would you rather increase or de-
crease the value of the action a = (amax + amin)/2?” The
answer will eliminate half of the action range. The next
query will be at the center of the remaining range, and so
on. In general, each binary decision will eliminate half of

Algorithm 2 Binary Action Search
Input: state s, policy π, resolution bits N
Output: continuous action a
a← (amax + amin)/2
∆← (amax − amin)2N−1/(2N − 1)
for i = 1 to N do

∆← ∆/2
e← π(s, a) // binary decision (+1 or −1)
a← a+ e∆

end for

the remaining possible choices. The number of decisions
required to come to a final decision is the same as the num-
ber of bits of the desired resolution. For example, if we
want to have 256 values for the continuous action (8-bit
resolution), we can use BAS to reach a final decision within
8 queries. The first query will eliminate 128 of the 256 po-
tential choices, the second query will eliminate 64 of the
remaining 128 choices, and so on, up to the eighth query
which will leave us with just one choice. The Binary Ac-
tion Search approach is summarized in Algorithm 2. Note
that ∆ is initialized to a value that allows for proper cov-
erage of the entire action range (including amin and amax)
within a finite number of steps N .

3.2. Learning

The binary policy required by BAS answers the question:
“When in state s, would you rather increase or decrease the
continuous action a?”. Most existing RL algorithms can be
used in conjunction with BAS to learn such binary-action
policies. There are only two requirements on the learning
algorithm of choice: (a) it must be able to handle contin-
uous state spaces, and (b) it must be able to produce a bi-
nary decision for each continuous action variable. The first
requirement is dictated by the fact that the original state
space S will have to be augmented with the latest value of
the continuous action a, therefore the binary policy must be
learned over the augmented state space (S,A). The second
requirement is dictated by the need of a separate modifica-
tion decision for each action variable.

One possible solution is to learn such policies using the
learning scheme of the AAM algorithm, which interacts
with the environment and generates one sample for each bi-
nary decision made. Although empirical tests verified that
such an approach does indeed work well in practice, it rep-
resents a mismatch in learning conditions and excludes the
use of online, on-policy learning methods within BAS. We
would like a learning scheme which is good for both online
and offline learning. The problem is that, even though we
have as many binary decisions per step as we have resolu-
tion bits, there is only one interaction with the environment,
and thus only one reward and one state transition observed.
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A sound learning scheme for the binary decision policy,
which supports both online and offline learning, needs one
sample for each binary decision made. Therefore, from
each action applied to the environment we need to gener-
ate samples for all the binary decision steps that led to this
continuous action choice. The action in each such sample
is the corresponding binary decision (increase or decrease).
The (augmented) state in each such sample is the combina-
tion of the state of the process with the current search point
in the action range. The last sample of each decision cycle,
includes the observed state transition in the original state
space S after the interaction with the environment, as well
as a resetting of the search point to the center of the ac-
tion range for the observed next state. Resetting the search
point is required in order to keep the samples along the en-
tire trajectory of binary decisions “connected”. The reward
is zero for all samples, but the last, which carries the actual
reward observed and therefore it is the only one that should
be discounted. For example, consider a resolution of 3
bits, the continuous action range [1.0, 8.0], and an agent
who internally makes the binary decisions −1, −1, +1 to
find the continuous action a = 2.0 which is applied to
state s. The sample from interacting with the environment
will be (s, 2.0, r, s′), however the three samples used for
learning the binary policy will be

(
(s, 4.5),−1, 0, (s, 2.5)

)
,(

(s, 2.5),−1, 0, (s, 1.5)
)
, and

(
(s, 1.5),+1, r, (s′, 4.5)

)
.

3.3. Efficiency, Applicability, Variations

Evaluating the binary policy several times before act-
ing does increase the computational demands relatively to
AAM where only a single such evaluation is needed. Nev-
ertheless, this internal binary decision cycle is very effi-
cient. The number of evaluations needed grows logarithmi-
cally to the desired resolution, or, said differently, it grows
linearly to the number of resolution bits. For most prac-
tical applications the required number of resolution bits is
relatively low and as an added benefit the algorithm can be
seen as an anytime algorithm. Computation may proceed
refining the resolution as long as there is time and return
the current action value upon expiration.

The BAS approach allows for selecting any desired action
within the allowed resolution directly, in contrast to AAM
which allows for reaching any desired value only after a
number of interaction steps. This feature comes at the cost
of increased computational complexity. Such a trade-off
may be very reasonable not only in domains that by nature
exhibit no temporal locality, but also in domains, where the
control frequency cannot be increased. For example, if the
control frequency of a robot actuator is fixed and the re-
sults obtained by AAM are unsatisfactory, then BAS could
be used to significantly improve performance at a modest
computational cost.

In some applications there may be areas of the action space
that require finer resolution, while others are less important.
BAS does not require that the action range is partitioned in
equally-sized intervals. Any linear, non-linear, or even dis-
continuous, monotonous skewing function could be used to
distort the action space, creating a more appropriate fit for
the available resolution, as long as a total ordering is pre-
served. BAS will still eliminate half of the available action
choices at each iteration, even if these action choices are
not evenly distributed within the action space. That way
we can achieve the same effective resolution with fewer
decisions, thus reducing computational costs. The skew-
ing function can be defined by the designers using domain
knowledge, or it can be constructed automatically. It is im-
portant to note that the skewing function can be changed at
any time without necessarily invalidating the current binary
policy. Therefore, we may choose to use a skewing func-
tion if and when needed, or modify it during execution.

If the controller has to make simultaneous decisions for n
continuous action variables, a policy choosing among 2n

discrete joint action choices is required (one binary deci-
sion for each one of the n action variables), which is admit-
tedly expensive. Nevertheless, a discrete controller over a
discretized action space offering m choices per action vari-
able, would need a policy choosing amongmn joint actions
for n action variables. Clearly,m cannot be less than 2 and,
in fact, m is usually much larger than 2, therefore the re-
quirements of our controller on the policy do not exceed
those of a minimalist discrete controller. 1

4. Related Work
There is a rich literature on learning continuous-action con-
trollers. Most existing approaches rely on various forms of
continuous-valued function approximators, such as neural
networks (Strösslin & Gerstner, 2003), wire fitting (Baird
& Klopf, 1993; Gaskett et al., 1999), tile coding (San-
tamarı́a et al., 1998), topological maps with interpola-
tion (Touzet, 1997; Gross et al., 1998; Millán et al., 2002),
and probabilistic models (Sallans & Hinton, 2004). In most
cases, this function approximator delivers a value function
over the combined state-action space and the main problem
in these approaches is how to determine the maximizing
continuous action in each state, which is a hard non-linear
optimization problem. Monte-Carlo methods (Sallans &
Hinton, 2004; Lazaric et al., 2008) have been used to al-
leviate this problem using sampling. It should be noted
that, even though the optimal value function over the com-

1Experiments on the “Bicycle Balancing” problem (Ernst
et al., 2005) have demonstrated the viability of this approach
where BAS can learn successful control policies with as little as
1000 training episodes. The efficient application of BAS in mul-
tidimensional action spaces is current work in progress.
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bined state-action space may contain several local action
maxima in any given state, the optimal BAS value function
yields binary decisions that point to the global action max-
imum and uses only twice as much memory space. There-
fore, the identification of the maximizing action becomes
a fairly easy task within BAS, avoiding intensive optimiza-
tion methods.

Policy gradient methods (Prokhorov & Wunsch, 1997;
Kimura & Kobayashi, 1998; Peters & Schaal, 2006)
rely on (approximate) policy representations, which output
continuous-action values directly and use estimated gradi-
ents to update the representation parameters and gradually
improve the quality of the policy. Such methods typically
make specific assumptions about the smoothness of the rep-
resentation (so that it is differentiable) and require huge
amounts of samples to make accurate improvement steps.
These local optimization steps can only guarantee a locally
good policy. The BAS approach makes no smoothness as-
sumptions and can exploit (approximate) policy iteration
learning methods, which are able to make large steps and
explore the policy space much more efficiently.

Specialized methods exist for exploiting certain domain
properties, such as temporal locality of actions. While such
methods have shown promising results, their performance
is limited by the implicit presence or explicit use of a low
pass filter (Riedmiller, 1997; Pazis & Lagoudakis, 2009).

5. Experimental Results
We have integrated BAS with two well-known reinforce-
ment learning algorithms: Least-Squares Policy Iteration
(LSPI) and Fitted Q-Iteration (FQI) with either Least-
Squares Regression or Extremely Randomized Trees.

5.1. Inverted Pendulum

The inverted pendulum problem (Wang et al., 1996) re-
quires balancing a pendulum of unknown length and mass
at the upright position by applying forces to the cart it is
attached to. The 2-dimensional continuous state space in-
cludes the vertical angle θ and the angular velocity θ̇ of
the pendulum. Three discrete actions are typically used,
left force (−50 Newtons), right force (+50 Newtons), or
no force (0 Newtons), and the problem is formulated as an
avoidance task, whereby the goal is to keep the pendulum
above the horizontal axis. In our experiments we chose to
formulate the problem as a regulation task with a reward of
−((2θ/π)2 + (θ̇)2 + (F/50)2), as long as |θ| ≤ π/2, and a
reward of −1000, as soon as |θ| > π/2, which also signals
the termination of the episode. The discount factor of the
process was set to 0.95. This formulation is significantly
more difficult, since smoothness of motion and use of mini-
mum force are also required while balancing the pendulum.
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Figure 1. Inverted pendulum: Force histograms of policies
learned by LSPI. Left: 10N noise. Right: 20N noise.

The action space in our formulation consists of the entire
range of forces [−50N, 50N ] approximated to a resolution
of 28 equally spaced actions. The state was augmented
with the current action value F during the binary search,
therefore it becomes a 3-dimensional vector (θ, θ̇, F ). All
actions are noisy (uniform noise in [−10N, 10N ] is added
to the chosen action) and the transitions are governed by
the nonlinear dynamics of the system (Wang et al., 1996),
which depend on the current state and the current (noisy)
control u:

θ̈ =
g sin(θ)− αml(θ̇)2 sin(2θ)/2− α cos(θ)u

4l/3− αml cos2(θ)
,

where g is the gravity constant (g = 9.8m/s2), m is the
mass of the pendulum (m = 2.0 kg), M is the mass of the
cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5
m), and α = 1/(m + M). A control interval of 100msec
was used, which is an update frequency low enough to ren-
der approaches depended on temporal locality of actions,
such as AAM, inapplicable.

The approximation architecture for representing the value
function in this problem consists of a total of 56 basis func-
tions. In particular, for each one of the two choices of the
modification policy (increase/decrease), there is a separate
block of 28 basis functions, including a constant term and
27 radial basis functions arranged in a 3 × 3 × 3 grid over
the 3-dimensional normalized augmented state space:

φ =
(

1 , e−
√

(θ/nθ−θ1)2+(θ̇/n
θ̇
−θ̇1)2+(F/nF−F1)2

2σ2 ,

· · · , e−
√

(θ/nθ−θ3)2+(θ̇/n
θ̇
−θ̇3)2+(F/nF−F3)2

2σ2

)>
,

where the θi’s, θ̇i’s and Fi’s are in {−1, 0, +1}, while
nθ = π/2, nθ̇ = 2, nF = 50, and σ = 1. For the discrete
controllers, a similar 3×3 grid over the 2-dimensional nor-
malized state space (without the F term) was used along
with a constant term, giving a block of 10 basis functions
for each discrete action.

The performance of the learned BAS controllers coupled
with both LSPI and FQI was excellent; the pendulum
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Figure 2. Inverted pendulum : Total accumulated reward.

stayed at the upright position (θ ≈ 0) for the duration of
testing (3,000 steps or 5 minutes). Angular velocity and ac-
celeration were concentrated close to zero, with no sudden
spikes. Figure 1 (left) is a histogram of the applied force
for a test run with a BAS controller learned using LSPI.
The majority of applied forces is concentrated around zero.
The average mean force magnitude over 100 such learned
policies was 6.65N for LSPI and 6.53N for FQI. In con-
trast, 100 3-action controllers achieve an average mean
force magnitude of 17.91N for LSPI and 20.09N for FQI.

In the above experiments, the BAS controllers yield small
mean force magnitudes, since they do not need very large
forces to counteract the [−10N, 10N ] uniform noise. It
is natural to ask whether the learned controllers can use
the rest of the action range when the situation requires
it. To answer this question, we fixed 100 learned BAS
controllers and tested them (100 times each) under in-
creasing noise levels. It was observed that the higher the
noise level, the larger the force magnitudes used. Figure 1
(right) shows the force histogram of a policy learned under
[−10N, 10N ] noise and tested under [−20N, 20N ] noise.
The BAS controllers were able to keep the pendulum bal-
anced up to noise levels in the low 20’s. In particular, for a
[−20N, 20N ] noise level the success rate of the BAS con-
trollers was 99.64%. In contrast, 100 3-action discrete con-
trollers in the same experiment were able to succeed less
than half of the time (39.49%).

A number of systematic experiments were conducted to as-
sess the effectiveness of learning under the BAS scheme.
Training samples were collected in advance from “random
episodes”, that is, starting the pendulum in a randomly per-
turbed state close to the equilibrium state (0, 0) and fol-
lowing a purely random policy. For each batch of train-
ing episodes, the learned policy was evaluated 100 times

to estimate accurately the average cumulative reward. This
experiment was repeated 100 times for the entire horizon-
tal axis to obtain average results and the 95% confidence
intervals over different sample sets. Each episode was al-
lowed to run for a maximum of 3,000 steps correspond-
ing to 5 minutes of continuous balancing in real-time. Fig-
ure 2 shows the total accumulated reward as a function of
the number of training episodes. Clearly, the more actions
available to the controller, the better its performance on the
regulation task. The BAS controllers learn much faster than
their discrete counterparts and achieve far better rewards.

We also experimented with learning an approximation to
the optimal value function over the combined state-action
space using a single block of the same 28 basis functions
described above as the approximation architecture. The
policy over this value function was extracted by exhaus-
tively identifying the maximizing action over a discrete set
of points uniformly spread along the action range. This
approach is commonly used for approximating continuous
actions. However, these controllers were unable to balance
the pendulum when more than 5 actions were used. This
can be explained by the limited opportunity for general-
ization over neighboring actions in this highly non-linear
problem.

5.2. Double Integrator

The double integrator problem requires the control of a
car moving on a one-dimensional flat terrain. The 2-
dimensional continuous state space (p, v) includes the cur-
rent position p and the current velocity v. The goal is
to bring the car to the equilibrium state (0, 0) by control-
ling the acceleration a, under the constraints |p| ≤ 1 and
|v| ≤ 1. The cost function p2 + a2 penalizes positions
differing from the home position (p = 0), as well as large
acceleration (action) values. The linear dynamics of the
system are: ṗ = v and v̇ = a.

As the control frequency becomes lower, the car becomes
more and more difficult to control. Large control inputs
can easily make the car overshoot the target or even move
outside its operating range. A control interval of 500msec
was chosen in order to make the problem more challenging.
Acceleration was restricted in the range [−1, 1] and was ap-
proximated with an 8-bit resolution (256 values) resolution
for the BAS controllers. A simple polynomial approxima-
tor with 10 terms was used for each BAS action:

φ = (1, p, v, a, p2a, v2a, a2, pv, pa, va, a2p, a2v)>

For the discrete controllers, a similar polynomial approxi-
mator (without any a terms) was used. Once again training
samples were collected in advance from “random episodes”
with a maximum length of 200 steps. For accurate assess-
ment of performance, 100 controllers were trained in each
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Figure 3. Double Integrator (LSPI) : Total accumulated reward.

case and tested starting at state (1, 0) (maximum allowed
p, zero v) for a maximum of 200 steps. The discount factor
of the process was set to 0.98.

Figure 3 shows the total accumulated reward as a func-
tion of the number of training episodes. Once again, the
BAS controllers learn much faster than their discrete coun-
terparts and achieve far better rewards. Using a combined
state-action approximator and evaluating for all 256 possi-
ble action choices yielded successful policies for this do-
main, albeit at a 16-fold increase in computational cost
compared to BAS. This is to be expected since it is very
easy to generalize over neighboring actions for the linear
dynamics of the Double Integrator. Even though the perfor-
mance of the combined state-action approximator is better
than that of the discrete controllers, it still falls short of the
performance achieved by the BAS controllers.

5.3. Car on the Hill

The car on the hill problem (Ernst et al., 2005) involves
driving an underpowered car stopped at the bottom of a
valley between two hills, to the top of the steep hill on the
right. The 2-dimensional continuous state space (p, v) in-
cludes the current position p and the current velocity v. The
controller’s task is to (indirectly) control the acceleration
using a thrust action u in [−4,+4], under the constraints
p > −1 and |v| ≤ 3 in order to reach p = 1. The task
requires temporarily driving away from the goal in order
to gain momentum. The agent receives a reward of −1,
if a constraint is violated, a reward of +1, if the goal is
reached, and a zero reward otherwise. The discount factor
of the process was set to 0.95. It has been noted that this is
a domain where optimal controllers are of the “bang-bang”
type (Ernst et al., 2005) and introducing more actions hurts
performance. Therefore, we don’t expect to achieve better

results using BAS. Instead, we aim to assess performance
in a domain that presents the worst possible match to our
algorithm. Even in such domains, assuming learning has
converged to an optimal policy, the BAS controller can-
not be worse than any discrete controller, since all actions
of the discrete controller are also available to BAS. How-
ever, learning the uselessness of the extraneous actions rep-
resents a hard learning problem and may have an impact on
the learning performance of BAS.

Fitted Q-Iteration with Extremely Randomized Trees was
used for learning both BAS (continuous, 8-bit resolution)
and discrete (2 actions, −4 or +4) controllers. Our results
for a 100msec control interval confirm that there is indeed
a penalty for using continuous actions. For 10, 000 sam-
ples and starting at the bottom of the hill (−0.5, 0) the dis-
crete controller is able to reach the goal in 18− 22 steps in
most runs. In contrast, the BAS controller requires 20− 45
steps on average. To a large extent this is because random
sampling in the continuous action space has low chances
of sampling good action choices (that is, the extreme ac-
tions at the limits of the range). As the number of samples
increases and important parts of the state-action space are
covered, the performance of BAS controllers improves sig-
nificantly. Note that in an online learning setting, where
the agent has the ability to focus on sampling promising
parts of the state-action space, the performance of BAS
controllers would be comparable to that of the discrete con-
trollers. When the time step is increased to 500msec the
advantage of discrete controllers over BAS controllers is
lost. In fact, while discrete controllers frequently fail when
the number of samples is limited (< 1000) BAS is able to
reach the goal in 3− 6 steps.

6. Discussion and Conclusion
The proposed Binary Action Search approach offers sev-
eral advantages: i) It is simple and easy to implement. ii) It
requires no tuning of parameters. iii) It has low computa-
tional requirements. iv) It easily achieves fine resolutions
impossible to reach with discrete actions. v) It makes no
assumptions about the properties of the action space. vi) It
requires only learning an internal binary-decision policy.
vii) It can be used in conjunction with any RL algorithm
supporting discrete actions and continuous states. viii) It
can be used in online, offline, on-, or off- policy settings.

Of course, everything comes at a cost. The state space of
the problem we are trying to handle is now more complex.
It includes the original state variables and one new state
variable (the continuous action). Although it definitely puts
a strain to the underlying learning algorithm, its overhead
is far less than naively increasing the number of possible
discrete actions beyond a certain point. Using the learn-
ing scheme proposed, the number of samples is essentially



Binary Action Search for Learning Continuous-Action Control Policies

multiplied by the number of resolution bits. For resource-
intensive RL algorithms, the increased number of samples
may have an impact on computational performance, but
thankfully such algorithms are usually the ones that need
less samples to learn a good policy.

One could argue that the proposed approach does not truly
offer continuous actions the way other approaches do. Par-
titioning an action range to a resolution of 28 or even 216

does provide a large number of actions over that range, but
actions are still discrete, not continuous. While in princi-
ple this statement is true, one has to take into considera-
tion that precision over a continuous-action range is practi-
cally limited due to hardware constraints, representational
capacities, numerical errors, time discretization, etc. Our
approach allows for approximating any continuous-action
range to arbitrary precision with modest increase in com-
putational cost.

In conclusion, this paper introduced Binary Action Search
a generic approach for learning continuous-action control
policies. The proposed approach offers several attractive
features and can be used in conjunction with any RL algo-
rithm. It is our belief that the proposed scheme will enable
RL researchers to broaden their application domains and
extend their favorite RL algorithms to a variety of practical
real-world control problems.

Acknowledgments
The authors would like to thank Damien Ernst for shar-
ing the code for the Extremely-Randomized Trees and the
Car on the Hill and Bicycle domains, and the anonymous
reviewers for their helpful comments. This work was par-
tially supported by the Marie Curie International Reintegra-
tion Grant MCIRG-CT-2006-044980 within the EU FP6.

References
Baird, L. C., & Klopf, A. H. (1993). Reinforcement learn-

ing with high-dimensional, continuous actions (Techni-
cal Report WL-TR-93-1147). Wright Laboratory.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6, 503–556.

Gaskett, C., Wettergreen, D., & Zelinsky, E. (1999). Q-
learning in continuous state and action spaces. Proceed-
ings of the 12th Australian Joint Conference on Artificial
Intelligence (pp. 417–428).

Gross, H. M., Stephan, V., & Krabbes, M. (1998). A neural
field approach to topological reinforcement learning in
continuous action spaces. Proceedings of the IEEE Intl
Joint Conference on Neural Networks (pp. 1992–1997).

Kimura, H., & Kobayashi, S. (1998). Reinforcement learn-
ing for continuous action using stochastic gradient as-
cent. Proceedings of the 5th Intl Conference on Intelli-
gent Autonomous Systems (pp. 288–295).

Lagoudakis, M. G., & Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research, 4,
1107–1149.

Lazaric, A., Restelli, M., & Bonarini, A. (2008). Rein-
forcement learning in continuous action spaces through
sequential monte carlo methods. In Advances in neural
information processing systems 20, 833–840.

Millán, J. D. R., Posenato, D., & Dedieu, E. (2002).
Continuous-action Q-learning. Machine Learning, 49,
247–265.

Pazis, J., & Lagoudakis, M. G. (2009). Learning
continuous-action control policies. Proceedings of the
IEEE Intl Symposium on Adaptive Dynamic Program-
ming and Reinforcement Learning (pp. 169–176).

Peters, J., & Schaal, S. (2006). Policy gradient methods for
robotics. Proceedings of the IEEE/RSJ Intl Conference
on Intelligent Robots and Systems (pp. 2219–2225).

Prokhorov, D., & Wunsch, D. (1997). Adaptive critic de-
signs. IEEE Trans. on Neural Networks, 8, 997–1007.

Riedmiller, M. (1997). Application of a self-learning
controller with continuous control signals based on the
DOE-approach. Proceedings of the European Sympo-
sium on Neural Networks (pp. 237–242).

Sallans, B., & Hinton, G. E. (2004). Reinforcement learn-
ing with factored states and actions. Journal of Machine
Learning Research, 5, 1063–1088.

Santamarı́a, J. C., Sutton, R. S., & Ram, A. (1998). Ex-
periments with reinforcement learning in problems with
continuous state and action spaces. Adaptive Behavior,
6, 163–218.
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