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Abstract

Given multiple possible models b1,b2, . . .bn
for a protein structure, a common sub-task
in in-silico Protein Structure Prediction is
ranking these models according to their qual-
ity. Extant approaches use MLE estimates
of parameters ri to obtain point estimates of
the Model Quality. We describe a Bayesian
alternative to assessing the quality of these
models that builds an MRF over the parame-
ters of each model and performs approximate
inference to integrate over them. Hyper-
parameters w are learnt by optimizing a list-
wise loss function over training data. Our
results indicate that our Bayesian approach
can significantly outperform MLE estimates
and that optimizing the hyper-parameters
can further improve results.

1. Introduction

The protein structure prediction problem is one of the
most challenging unsolved problems in Biology. Infor-
mally, it is the task of computing the three dimensional
structure of a protein, given its chemical description as
a sequence of amino acids. Knowing the three dimen-
sional structure of a protein can provide deep insights
into its working, and the mechanisms of its interaction
with the environment. This can be used, for exam-
ple, in the design of new drugs and bio-sensors. Un-
fortunately, despite significant progress, experimental
methods (i.e., X-ray crystallography and Nuclear Mag-
netic Resonance) to determine protein structures still
require months of effort and O($100K) — per protein.
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Therefore there has been a lot of focus on in-silico ap-
proaches to Protein Structure Prediction.

Given a protein sequence s, a common feature of struc-
ture prediction algorithms is the ability to (stochas-
tically) generate a large number of putative models,
b1,b2, . . .bn, and then assess the quality of each of
these models using a ranking algorithm. Extant algo-
rithms rank by first computing the optimal set riopt

of parameters ri and then computing a point estimate
E(bi, riopt

, s) of the model quality. A natural ques-
tion to ask, is if a Bayesian estimate of model quality
can be computed efficiently. Such an estimate involves
computing an integral over all possible ri, a computa-
tion that is infeasible to perform exactly for protein
structures.

There are a variety of computational techniques for es-
timating this integral in the structural biology commu-
nity. The more accurate amongst them require exten-
sive sampling or molecular dynamics simulations (e.g.,
(Alder & Wainwright, 1959)), which can take hours to
days on real-proteins, making them infeasible for the
task of in-silico Protein Structure Prediction. Faster
coarse-grained methods exist, e.g., (Muegge, 2006),
but it has been argued (Thomas & Dill, 1994) that
they are not accurate enough.

In contrast to these techniques, we estimate the inte-
gral for each bi by first discretizing ri and then per-
forming approximate inference on a discrete Markov
Random Field constructed over ri, s. The act of dis-
cretizing induces an error; we show how using a prior
distribution eliminates this source of error. We then
learn the hyper-parameters of our model by minimiz-
ing a loss-function for ranking over training data, using
gradient descent.

While we won’t discuss it in detail in this paper, there
is a very strong motivation based on statistical physics
to compute a Bayesian estimate. These Bayesian esti-
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mates are referred to as free-energies in that literature
and are quantities that govern the behavior of physi-
cal systems. Significantly, the approximate inference
algorithms that we use to compute these Bayesian es-
timates are mathematically equivalent to specific free-
energy approximations introduced by statistical physi-
cists. For example, it is now known that Pearl’s Be-
lief Propagation (BP) algorithm (Pearl, 1986) that we
use in this paper computes the Bethe approximation
(Bethe, 1935) of the free energy. Thus, there is rea-
son to believe that these approximations are physically
valid.

Our results on a database of in-silico models for 32
proteins show that moving from a point estimate to a
Bayesian estimate improves the accuracy of ranking by
multiple criteria: the average rank of best model im-
proves from nearly 27 to less than 7, the model ranked
first is significantly better in quality, and the rank cor-
relation improves by nearly 0.3 over point estimates.

To summarize,

• We describe a Bayesian approach to assessing Pro-
tein Model Quality by using approximate infer-
ence in a discrete MRF to integrate out model
parameters.

• We identify and address an important issue that
arises when computing partition functions of dis-
cretized configuration spaces.

• We develop an algorithm for learning to rank par-
tition functions based on optimizing a list-wise
loss function.

• We establish the utility of our approach by show-
ing that ranking accuracies significantly improve
on a dataset of models for 32 different proteins.

2. A Markov Random Field Model for
Proteins

In this section, we review some basic information
about protein structures and describe our approach
to computing the Bayesian estimate G(b) of quality of
a model b.

A protein consists of some number of amino acids
across one or more polypeptide chains. Each amino
acid comprises of some number of atoms. It is cus-
tomary to partition the set of atoms into two disjoint
sets: backbone and side-chain. Backbone atoms refer
to those that are common to all 20 amino acid types,
while side-chain atoms are those that differ among the
different kinds of amino acids. A configuration of the

protein corresponds to the geometry of each of its con-
stituent atoms. We will use s to denote the amino
acid sequence of a protein and b, r to denote the con-
figuration of all backbone and side-chain atoms in the
protein respectively. Additionally, we will use super-
scripts (su) to denote the corresponding variables at a
specific position.

A common and convenient approach to modeling the
protein structure prediction problem is to first deter-
mine a possible configuration of the backbone atoms b
for protein sequence s, and then determine the optimal
configuration of the side-chain atoms ropt for this set
of backbone atoms The quality of the model is then es-
timated using a function E(b, ropt, s) which computes
an energy for the configuration. Given multiple pos-
sible configurations b1,b2, .. . . .bn, the configuration
with the best (i.e., lowest) E(bi, riopt

, s) is considered
the best guess for the (unknown) structure of the pro-
tein.

From a statistical standpoint, each of these bi can be
considered a model for the data s, ri can be considered
the parameters of the model, and E(bi, riopt

), a point
estimate of the model quality. A natural question to
ask then, is if a Bayesian estimate of model quality is
possible, and if so, if it could be computed efficiently.
This paper addresses these questions.

To do this, using Boltzmann’s law, we first define a
probability distribution over the r, s variables:

P (r, s|b) ∝ exp(−E(b, r, s)) (1)

For a Bayesian estimate of model quality, we need
to integrate over all parameters r, i.e. we need to
compute

∫
r
P (r, s|b)dr ∝

∫
r

exp(−E(b, r, s)) = Zb =
exp (−G(b)) i.e, we need to compute the partition
function Zb over the side-chain conformational space
consistent with s given a model b.

Computing Zb, or equivalently, the negative log parti-
tion function G(b) thus involves computing an integral
over an extremely large state space. In what follows,
we will approximate this integral by first discretizing
the space and representing the probability distribu-
tion using a discrete Markov Random Field (MRF),
and then using approximate inference to approximate
the discrete summation over the distribution.

The assumption of a discrete library of possible side-
chain configurations (called rotamers) is common, and
well-founded physically (cf. (Canutescu et al., 2003)).
Yanover and Weiss (2003) use this discretization in a
graphical model to determine the optimal set of pa-
rameters (i.e. riopt), which can then be used to deter-
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Figure 1. (A) An example b(in color), r (in black) for a
small, 4 amino acid fragment of a protein. (B) Figure show-
ing configurations of r consistent with s. (C) A graphi-
cal model encoding the conditional Boltzmann distribution
over rs. For notational, and visual clarity, the b variable
that is observed, is not shown in the MRF.

mine a point estimate of model quality. In contrast, we
use a graphical model to compute a Bayesian estimate
by marginalizing out ri. (Canutescu et al., 2003) pro-
vide a discrete set of conformations for each of the 20
naturally occurring amino acids. The number of dis-
crete conformations varies from amino acid to amino
acid – some amino acids can have as many as 81 con-
figurations while others might have only one.

Given a specific backbone configuration b, due to the
nature of the physical forces in action, pairs of amino-
acids distally located according to b are expected to
exert very little direct influence on one another. In sta-
tistical terms, we say that such residues are condition-
ally independent of each other given b. We will exploit
these conditional independencies present in P (r, s|b)
to compactly encode it as a Markov Random Field over
the rs variables1. Since only a subset of the r confor-
mations are possible for a given sequence, we build an
MRF over rs, the set of side-chain conformations that
have non-zero probability for sequence s.

The MRF has single and pair-wise factors φu, φuv of
the form φu(rus ) = exp

(
−E(b, rus )

)
and φuv(rus , r

v
s) =

exp(−E(b, rus , r
v
s)). where E(·) is the energy of those

atoms as defined by the Rosetta force-field ERosetta.
ERosetta is a linear combination wTE = wljatrEljatr+
wljrepEljrep + wsolEsol + whbEhb + wdunEdun where
Eljatr, Eljrep, are the attractive and repulsive parts of

1Since b is observed, its energetic contribution can be
moved into other factors (Kamisetty et al., 2008). Thus
we will drop its explicit mention in the MRF, in order to
improve notational clarity.

a 6−12 Lennard-Jones potential used to model van der
Waals interactions; Esol, is the Lazardus-Karplus sol-
vation energy and Ehb, is the Hydrogen bond energy.
The vector w that defines the linear combination is
a hyper-parameter of the model, which we will learn
using training data.

Notice that the due to the choice of the Boltzmann
factor for Φs, this distribution is consistent with the
Boltzmann distribution of Eq. 1.

Fig. 1 illustrates the construction of G using a toy pro-
tein with 4 amino acids. The MRF has one vertex for
each amino acid, and edges between vertices that “in-
teract”. The MRF has single-node and pair-wise po-
tentials, each defined in terms of the Boltzmann factor
exp(−Euv) as shown in the figure.

3. Approximating the log-partition
function

Computing the log-partition function is computation-
ally intractable in the general case (Dagum & Chavez,
1993). However, there exist a number of efficient ap-
proximation algorithms for performing probabilistic
inference over MRFs which can be used to compute
an approximation to the log-partition function.

Probabilistic inference in an MRF involves computing
marginal distributions over the random variables in
the graph. Inference algorithms implicitly or explic-
itly obtain an estimate of the log-partition function.
For example, sum-product BP, which we use in this
paper, performs inference by minimizing the difference
between the log-partition function and a functional FP
of the form −〈E〉P + SP where 〈E〉p and SP are, re-
spectively, the expected energy and the entropy of the
current distribution P . The value of this functional
equals the discrete log-partition function exactly when
the current distribution equals the actual distribution.

Therefore, by using Loopy Belief Propagation on the
MRF that encodes the conditional distribution, and
computing the functional at convergence, we can ob-
tain an estimate of the partition function Zb for each
backbone configuration b. While Loopy BP is not
guaranteed to converge, it has always done so in our
experiments.

On a simpler model, we have previously shown the
efficacy of Loopy BP on computing folding free en-
ergies of protein structures. We have also demon-
strated the utility of the entropic component of the
functional in distinguishing the native structure from
near-native models (Kamisetty et al., 2008; Kamisetty
et al., 2007). Our current approach extends this to
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the ranking problem by significantly enhancing the
model and introducing a learning algorithm to learn
the hyper-parameters.

3.1. Discretization

We now briefly discuss a subtle, yet important issue
that we have glossed over so far in our presentation:
the effects of discretizing the parameter space over r.

This approach of using a set of discrete rotameric
states to compute the entropy faces a subtle problem.
If we call logZcont the log-partition obtained by com-
puting an integral, and logZdiscrete the estimate of
the log-partition function obtained by computing the
functional F , we have the following theorem:

Theorem 1. | logZcont − logZdiscrete| is unbounded
from above

Proof. Consider a single random variable X with a pdf
of the form 1

Z e
0, i.e. with a uniform distribution over

its state space. Consider its discretized counterpart,
a discrete random variable Xdisc having state space
of size n, each representing an equal fraction of the
continuous state space with a uniform distribution U
over this state space.

Consider the functional FU = −〈E〉U + SU . It is easy
to see that 〈E〉U = 〈0〉U = 0. The entropy SU , on the
other hand = −

∑n
i=1−

1
n log( 1

n ) = − log(n).

Thus n −→∞, S −→ −∞ leading to the theorem.

In other words, as the granularity of the discretiza-
tion increases arbitrarily, the discrete entropy increases
arbitrarily. This is, of course, at odds with our in-
tuition that the original continuous variables have fi-
nite amount of information, or entropy. This problem
arises in many scenarios, most notably for our pur-
poses, in information-theoretic treatments of statisti-
cal physics (Jaynes, 1963; Jaynes, 1968). Fortunately,
a solution to this problem is available, which to the
best of our knowledge is due to E.T. Jaynes (1963).

Theorem 2 (Relative Entropy). The discrete relative
entropy Sreln = −

∑n
i=1 P (xi) log P (xi)

m(xi)
, with respect to

a measure m approaches Srelcontinuous as n −→∞.

Proof. Proof due to E.T. Jaynes (1963).

Thus, by using a measure m over the configurational
space and replacing the discrete entropy by the rela-
tive entropy S = −

∑
r P (r) log P (r)

m(r) , we now obtain
a quantity that behaves correctly in the limit. To use
this for our purposes, we point out that the library of

discrete conformations that we use (Canutescu et al.,
2003) provides such a measure mdun, which we utilize.

Our earlier treatment of inference can be modified to
use the relative entropy instead of the discrete entropy,
by observing that

S = −
∑
r

(P (r) logP (r)− P (r) logm(r))

and therefore, FP =∑
r

P (r)Er +
∑
r

(P (r) logP (r)− P (r) logP (m(r)))

=
∑
r

P (r)(Er − logm(r))−
∑
r

P (r) logP (r)

In other words, the move from the discrete entropy to
the discrete relative entropy can be made by adding a
− logm(r) term to the energy function. Furthermore,
due to the properties of the measure mdun we use in
practice, any (mdun)wdun is also a valid measure; we
can therefore use any linear combination wdunEdun in
the energy function leading to E, the “pseudo” energy
function being ERosetta + wdunEdun.

4. Learning to Rank (log) Partition
Functions

Given the partition function (or equivalently, Gb) for
each model, our next step is to learn a set of hyper-
parameters w that performs well on ranking tasks.

Given models B = {b1,b2, . . .bn}, and a ranking
(permutation over 1 . . . n) y for these models, the
learning task involves finding a function G that com-
putes a numerical score for each model that minimizes
some loss-function L between G and y on B. Many ap-
proaches have been developed for the task of learning
to rank, especially in IR tasks like document-retrieval
(Herbrich et al., 2000) and web-search (Joachims,
2002). These tasks differ in their choice of the loss
function L and the algorithms used to minimize it.
While initial approaches to ranking approached the
ranking problem as a large number of pair-wise clas-
sifications (Herbrich et al., 2000; Joachims, 2002), re-
cent approaches have shown the utility of using loss-
functions based on the entire rank, or the so-called
“list-wise” approaches (Cao et al., 2007; Xia et al.,
2008). Further, a “soft” approach to ranking (Burges
et al., 2005) has allowed the use of gradient-based con-
tinuous optimization techniques instead of combinato-
rial optimization.

We use a “list-wise” soft-ranking approach to ranking
since it has been shown to have good performance. We
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study the properties of two loss-functions under this
approach – the negative log-likelihood and the cross-
entropy as described below.

4.1. Negative Log-Likelihood

The negative log-likelihood loss defines a probability
distribution over all rankings (permutations) and at-
tempts to maximize the likelihood of the true ranking.
The loss-function for the models B of a single protein is
defined as LnegLL(G(B),y) = − logP (y|B;G) where

P (y|B;G) =
n∏
i=1

exp(−G(byi
))∑n

k=1 exp(−G(byk
))

and P (y|b;G) is the probability of seeing the observed
ranking y. The probability distribution defined over
the permutations follows a Plackett-Luce model (Mar-
den, 1995).

The notable advantages of this loss-function are that it
is convex, consistent, sound, and efficient to compute
(Xia et al., 2008).

4.2. Cross-Entropy

The cross-entropy loss assumes the existence of a scor-
ing function ψ, that retains the order of the permuta-
tion ψ(y1) < ψ(y2) < . . . < ψ(yn).

This scoring function is then used to compute a prob-
ability distribution over all permutations π.

P (π|b;ψy) =
n∏
i=1

exp(−ψy(bπi))∑n
k=1 exp(−ψy(bπk

))

Using a similar probability distribution this time de-
rived using G,

P (π|b;G) =
n∏
i=1

exp(−G(bπi))∑n
k=1 exp(−G(bπk

))

we can then compute a loss-function based on the KL-
Divergence between the two distributions.

Since ψ and y are given, the KL-Divergence can
be simplified by dropping to self-entropy term, lead-
ing to the cross-entropy loss function: L(G(b),y) =
D(P (π|b;ψy)||P (π|b, G))

Note however, that the cross-entropy between distri-
butions over all permutations cannot be computed ef-
ficiently in practice since there are n! of them. A
common practice is to therefore use a probability dis-
tribution (the so-called top-one distribution) over the

objects as follows Pψ(j) = exp(−ψ(j))Pn
i=1 exp(−ψ(i)) and a simi-

lar distribution PG and use the cross-entropy between
them: LcrossEnt(y, GB) =

∑n
i=1 Pψ(bi) logPG(bi).

Cross-entropy as defined in this manner is also convex,
sound, and efficient to compute. However, it is not
consistent, implying that in the limit of the amount of
data tending to∞, it is not guaranteed to converge to
the true values of the hyper-parameters. In contrast,
a useful feature of this loss function is the ability to
incorporate additional information about the models
using ψ. We believe this is a strong advantage of this
loss function. (Nallapati, 2006) studies the properties
of this loss function in more detail.

4.3. Gradient Descent

In order to optimize the loss functions using gradient
descent, we need to compute the derivative ∂L

∂w . Uti-
lizing the fact that

∂G

∂w
= −∂ logZb

∂w
= − 1

Zb

∂
∑

r exp(−wTE(r, s))
∂w

= 〈E〉b
(2)

where Eb is the vector containing the average of
E(b, r, s) over all rs.

The required derivatives are then as follows:
∂

∂w
LnegLL(G(B),y) =∑n

i=1(〈E〉bi
−

Pn
k=1 Zbk

〈E〉bkPn
k=1 Zbk

) (3)

∂

∂w
LcrossEnt(G(B),y) =∑n
i=1−Pψ(i)〈E〉bi

−
∑n
i=1

Zbi
〈E〉biPn

k=1 Zbk

(4)

Given sets of models B1, . . .Bd, . . .BD for D distinct
protein sequences in a database, the two loss func-
tions (and therefore their derivatives) over the entire
database are defined as the sum of the corresponding
functions over each Bd.

5. Implementation and Results

We computed energies using our implementation of
the Rosetta force-field as specified in (Kortemme &
Baker, 2002). We used the soft-rep force-field set-
ting since previous studies (Yanover et al., 2007) have
indicated that it is better suited for computations with
discrete conformations.

Recall that in our approach, the functions in G (i.e.,
φu, φuv) are defined in terms of a Boltzmann factor
of exp(−wTE) where wTE = ERosetta + wdunEdun
and ERosetta = wljatrEljatr+wljrepEljrep+wsolEsol+
whbEhb + wdunEdun. The vector of hyper-parameters
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w that defines the linear combination is learnt by
minimizing a loss function, as described in Sec. 4.

We studied the efficacy of our approach on a database
of 32 proteins selected from (Wroblewska & Skolnick,
2007). For each protein, this database contains a set of
50 plausible models generated in-silico and the actual
structure of the protein (“native”). Each of them con-
tain b and ropt and an associated “distance” – the root
mean square displacement (RMSD) in Å (angstroms)
between the coordinates of the atoms in the model to
the native. When minimizing the cross-entropy loss
function, we use the RMSD as the score, ψ, of the
model. This dataset covers all four classes of proteins
according to the CATH classification, and the models
for each protein cover a large fraction of the model
space – very close (< 2 RMSD) to very distant ( > 10
RMSD). This is in contrast to the well-known and
commonly used “Decoys R Us” collection of datasets,
where most datasets are close homologs of each other
and/or have very low variation in model space. Thus,
we believe that we have chosen the most representative
of the datasets available for this purpose2.

We split this database of 32 proteins into five, ran-
domly generated, equal-sized train/test partitions.
Thus, each training set contains 16 proteins, contain-
ing the native and 50 plausible models for each of these
proteins, along with the RMSD of these models to
the native. Each test set contains 16 proteins con-
taining 50+1 (in-silico+native) models which have to
be ranked based on their quality. Ideally, the native
should always be ranked first, along with the models
in increasing order of RMSD to ground truth.

To perform approximate inference, we used Belief
Propagation with synchronous updates. We used gra-
dient descent to learn the hyper-parameters w for
both loss functions listed earlier – Cross Entropy and
Negative Log-likelihood. For gradient descent, η was
set to η0/

√
(i) at iteration i with η0 = 0.1. To test

the sensitivity of our results to the choice of η0, we
performed gradient descent on one of the training sets
increasing the value of η0 from 0.05 to 0.25 in incre-
ments of 0.05. On this set, our final solution did not
change appreciably, though the number of steps taken
for convergence changed. On this basis, we believe
that our solutions are fairly robust to the choice of η.

We compare the performance of four methods: (i)
a point estimate obtained by computing ERosetta
on the optimized parameters, (ii) a Bayesian esti-
mate G obtained using default hyper-parameters, and

2Supplementary information is available at http://
www.cs.cmu.edu/~cjl/papers/icml09suppl/

Table 1. Rank of Native and Quality of Best Decoy across
5 test sets

Method Rank of Native Best - closest
(out of 51 total) (RMSD)

Point Estimate 26.75 3.413
G 8.05 1.85
G-NegLL 21.19 3.71
G-Cross Entropy 6.60 1.743

the Bayesian estimates of G using the learnt hyper-
parameters with the two loss functions, which we shall
refer to as (iii) G-neg LL and (iv) G-Cross Entropy.

Tab. 1 compares the average rank of the native struc-
ture across the 5 test sets and the average difference
between the RMSD of the best in-silico model as pre-
dicted by the method, to the RMSD of the actual clos-
est model. The average rank of the native structure
is significantly improved by moving from a point esti-
mate (26.75) to a Bayesian estimate (8.05). Further,
by optimizing the hyper-parameters using the cross
entropy loss function, this can be further improved to
6.6.

While the rank of the native is a useful metric of com-
parison, in practice, a more important metric than the
rank of the native is the quality of the best in-silico
model. The average difference in RMSD between the
predicted best model and the actual closest model is
significantly reduced, from 3.4 Å to nearly half its
value – 1.85 Å using G and 1.74 Å using G-Cross
Entropy.

Surprisingly, optimizing the hyper-parameters using
the likelihood loss function is almost as bad as the
point estimate, indicating that the likelihood loss func-
tion isn’t suitable for this task. We believe that this
is due to the fact the likelihood function neglects the
RMSD information while computing the likelihood of
a ranking. In a data-scarce setting such as ours, this
could lead to a significant difference in the optimal
solution.

Fig. 2 compares the hyper-parameters learnt for the
two loss functions. In both cases, the weights of
Eljatr, Eljrep and Elk are significantly lower than the
weights of Ehb, Edun. Additionally, the neg − ll loss
function learns a significantly lower weight for Edun.
It must be pointed out that on typical proteins, the
numerical contribution of the first three terms is one
or two orders of magnitude more than the numerical
contribution of the other two terms. Thus, while the
weights for these terms are similar, the difference be-
tween them is significant enough to cause a large dif-
ference predictions. We believe that this could be one
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Figure 2. A comparison of the weights learnt using the two
different loss-functions
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Figure 3. Pearson’s rank correlation coefficient between
predicted ranking and actual ranking for the four meth-
ods listed.

of the reasons the negative-log likelihood loss function
did not perform well.

While the rank of the top structure and the quality of
top prediction are important metrics of performance,
the quality of the overall ranking is also important.
This is because, often, the models are iteratively gen-
erated, ranked, and selectively refined. Thus, it is im-
portant that the ranking is reasonably accurate at all
positions.

To measure this, we compute the rank-correlation of
the ranks with the ranks obtained by ranking ac-
cording to RMSD from native. Fig. 3 shows the
rank-correlation of the ranks computed in this man-
ner. Again, it can be seen that the performance im-
proves significantly by moving from a point-estimate
to a Bayesian estimate, and learning using the cross-
entropy loss function improves it further.

Fig. 4 shows the values of the point estimates (first
column) and the Bayesian estimates learnt using the
cross-entropy (second column), for three protein struc-
tures (rows) in a particular test set. The native struc-
ture in each of these proteins is shown as a red asterisk
while the 50 in-silico models are shown in blue.

These three proteins were selected to show the differ-
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Figure 4. Scatter plots showing ranking for three different
proteins in a test set, using the point estimate and the
Bayesian estimate. The x-axis is the value of the corre-
sponding estimate, while the y-axis shows the RMSD from
the ground truth (shown with a red diamond)

ent types of behavior in learnt ranking. In 1btn, the
first protein, using the Bayesian estimate the native
structure is ranked correctly, the best in-silico model
is ranked next and there is a good correlation between
G and the RMSD. In the second protein, 1bm8, the
native structure is not ranked the best, but the best
in-silico model is correctly identified. However, there
is no strong correlation between RMSD and G for the
distant models. Notice also, that in this case, the point
estimate performs almost as well. In the third dataset,
while the native structure is not ranked at the top, its
rank is significantly better than using the point esti-
mate. However, the model closest in RMSD is neither
ranked well, nor is the top ranked structure of good
quality. It must be noted that while there is variabil-
ity in the ranking performance across the datasets, in
all these cases, there is an improvement in results due
to the Bayesian approach.

6. Conclusion

We have presented a Bayesian alternative to tradi-
tional methods for evaluating the quality of predicted
protein structures. Our experimental results show
that our approach significantly out performs MAP es-
timates of quality assessment. Additionally, we pre-
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sented a practical algorithm for learning to rank us-
ing partition functions by optimizing a list-wise loss
function over training data. We compared two loss
functions, the negative log-likelihood and the cross en-
tropy, and found that optimizing the cross-entropy ob-
jective function improves on the unoptimized hyper-
parameters.

Protein structure prediction is an important, and un-
solved problem in Biology, and we believe that our
method might be able to improve the accuracy of exist-
ing techniques. There are a number of areas for future
improvement, the most important being incorporat-
ing Bayesian Model Averaging by modeling a limited
amount of backbone flexibility.
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