
Learning Complex Motions by Sequencing Simpler Motion

Templates

Gerhard Neumann gerhard@igi.tugraz.at

Wolfgang Maass maass@igi.tugraz.at

Institute for Theoretical Computer Science, Graz University of Technology, A-8010 Graz, Austria

Jan Peters mail@jan-peters.net

Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany

Abstract

Abstraction of complex, longer motor tasks
into simpler elemental movements enables
humans and animals to exhibit motor skills
which have not yet been matched by robots.
Humans intuitively decompose complex mo-
tions into smaller, simpler segments. For
example when describing simple movements
like drawing a triangle with a pen, we can
easily name the basic steps of this movement.

Surprisingly, such abstractions have rarely
been used in artificial motor skill learning al-
gorithms. These algorithms typically choose
a new action (such as a torque or a force) at a
very fast time-scale. As a result, both policy
and temporal credit assignment problem be-
come unnecessarily complex - often beyond
the reach of current machine learning meth-
ods.

We introduce a new framework for temporal
abstractions in reinforcement learning (RL),
i.e. RL with motion templates. We present a
new algorithm for this framework which can
learn high-quality policies by making only
few abstract decisions.

1. Introduction

Humans use abstractions to simplify the motor tasks
occurring during their daily life. For example when de-
scribing simple movements like drawing a triangle with
a pen, we can easily name the basic steps of this move-
ment. In a similar manner, many complex movements

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

can be decomposed into smaller, simpler segments.
This sort of abstraction is for example often used by
engineers for designing hybrid control solutions (Xu
& Antsaklis, 2002) where the single segments are im-
plemented as local, linear continuous controllers. We
will call these building blocks motion templates. Other
names that can be found in the literature are “motion
primitives”, “movement schemas”, “basis behaviors”
or “options” (Ijspeert et al., 2002; Arbib, 1981; Daut-
enhahn & Nehaniv, 2002; Sutton et al., 1999).

Motor skill learning is a challenging problem for ma-
chine learning and, in particular, for the subfield of
reinforcement learning (RL). Primarily used in motor
skill learning is the flat RL setting without the use of
abstractions. In this setting the agent has to choose
a new action (typically a motor force or torque) at
a very small sampling frequency. While this allows
the representation of arbitrary policies, this flexibility
makes the learning problem so complex that it is often
beyond the reach of current methods. A common ap-
proach for limiting the potential complexity of the pol-
icy in the flat RL setting is to use a parametrized pol-
icy. Ijspeert et al. (2002) introduced a special kind of
parametrized policies called motion primitives, which
are based on dynamical systems. In most applications
to date, only a single motion primitive is used for the
whole movement. Parametrized policy search methods
such as policy gradient descent and EM-like policy up-
dates (Kober & Peters, 2009) have been used in order
to improve single-stroke motor primitives.

Currently, only few abstractions are used in RL algo-
rithms for continuous environments, with few excep-
tions such as (Huber & Grupen, 1998; Ghavamzadeh
& Mahadevan, 2003). In (Huber & Grupen, 1998) the
policy acquisition problem is reduced to learning to
coordinate a set of closed loop control strategies. In
(Ghavamzadeh & Mahadevan, 2003) the given task is

Learning Complex Motions by Sequencing Simpler Motion Templates

manually decomposed into a set of subtasks. Both,
the lower-level subtasks and the higher-level subtask-
selection policies are learned. In all these approaches
the structure for the hierarchy of abstraction is man-
ually designed and fixed during learning which limits
the generality of these approaches. In our approach,
an arbitrary parametrization of the abstracted level
can be learned.

In this paper, we introduce a new framework for ab-
straction in RL, i.e. RL with motion templates. Mo-
tion templates are our building blocks of motion. A
template mp is represented as parametrized policy and
executed until its termination condition is fulfilled.
We assume that the functional forms of the motion
templates remain fixed, and thus, our task is to learn
the correct order and parameters of the motion tem-
plates by reinforcement learning. As motion templates
are temporally extended actions, they can be seen as
parametrized options in continuous time. There are
a few well-established learning algorithms for the op-
tions framework (Sutton et al., 1999). However, these
algorithms are designed for discrete environments.

Choosing the parameters of a motion template is a
continuous-valued decision. However, a single decision
has now much more influence on the outcome of the
whole motion than in flat RL. Thus, the decisions have
to be made more precisely, though, the overall learning
problem is simplified because much fewer decisions are
needed to fulfill a task. As RL in continuous action
spaces is already challenging in the flat RL setting,
the requirement of learning highly-precise policies has
limited the use of this sort of abstraction for motor
control learning.

This paper introduces a new algorithm which satis-
fies this requirement and therefore permits learning
at an abstract level. The algorithm is based on the
Locally-Advantage WEighted Regression (LAWER)
algorithm. LAWER is a fitted Q-Iteration (Ernst
et al., 2005) based algorithm which has been shown to
learn high-quality continuous valued policies for many
flat RL settings (Neumann & Peters, 2009). However,
two substantial extensions are needed to render motion
template learning possible. Firstly, we propose an im-
proved estimation of the goodness of an state action
pair. Secondly, we introduce an adaptive kernel, which
is based on randomized regression trees (Ernst et al.,
2005).

We conduct experiments on 3 different tasks, a 1-link
and a 2-link pendulum swing-up task and also a 2-link
balancing task.

2. Motion Templates

A motion template mp is defined by its kp dimen-
sional parameter space Θp ⊆ Rkp , its parametrized
policy up(s, t; θp) (s is the current state, t represents
the time spent executing the template and θp ∈ Θp

is the parameter vector) and its termination condition
cp(s, t; θp).

At each decision-time point σk, the agent has to choose
a motion template mp from the set A(σk) and also the
parametrization θp of mp. Subsequently the agent fol-
lows the policy pp(s, t; θp) until the termination con-
dition cp(s, t; θp) is fulfilled. Afterwards, we obtain a
new decision-time point σk+1.

The functional forms of the policy up(s, t; θp) and the
termination condition cp(s, t; θp) are defined before-
hand and can be arbitrary functions. For example,
consider again the task of drawing a triangle. We can
define a motion template mline for drawing a line with
the endpoint of the line and the velocity of moving the
pen as parameters. The policy uline moves the pen
from the current position with the specified velocity
in the direction of the endpoint of the line. The tem-
plate is terminated when the pen has reached a certain
neighborhood of the endpoint.

In our experiments, sigmoidal functions and linear con-
trollers are used to model the motion templates.

2.1. Reinforcement Learning with Motion
Templates

Each motion template is a temporally extended,
continuous valued action. Thus, we deal with
a continuous-time Semi-Markov Decision Process
(SMDP). We will review only the relevant concepts
from the continuous-time SMDP framework. For a
detailed definition, please refer to (Bradtke & Duff,
1995).

Unlike in standard Markov Decision Processes
(MDPs), the transition probability function
P (s′, d|s, a) is extended by the duration d of an
action. The Bellman equation for the value function
V π(s) of policy π is given by

V π(s) =

∫

a

π(a|s) (r(s, a)+

∫

s′

∫ ∞

t=0

exp(−βt)P (s′, t|s, a)V π(s′)dtds′
)

da,

(1)

where β is the discount factor1. The action value func-

1In order to achieve the same discounting rate as in
a flat MDP, β can be calculated from the relation γ =

Learning Complex Motions by Sequencing Simpler Motion Templates

tion Qπ(s, a) is given by

Qπ(s, a) = r(s, a)+
∫

s′

∫ ∞

t=0

exp(−βt)P (s′, t|s, a)V π(s′)dtds′.
(2)

A policy is now defined as π(mp, θp|sk). It can be
decomposed into π(mp|sk)πp(θp|sk), where π(mp|sk)
is the template selection policy and πp(θp|sk) is the
policy for selecting the parameters of template mp.

3. Fitted Q-Iteration

As LAWER is a Fitted Q-iteration (FQI) (Ernst et al.,
2005; Riedmiller, 2005) based algorithm we quickly
review the relevant concepts. FQI is a batch mode
reinforcement learning (BMRL) algorithm. In BMRL
algorithms we assume that all the experience of the
agent up to the current time is given in the form H =
{< si,ai, ri, s

′
i >}1≤i≤N . FQI estimates an optimal

control policy from this historical data. Therefore it
approximates the state-action value function Q(s,a)
by iteratively using supervised regression techniques.
New target values for the regression are generated by

Q̃k+1(i) = ri + γVk(s′i),

= ri + γ max
a′

Qk(s′i,a
′),

(3)

which are subsequently used to learn the Q-function
Qk+1(s,a). For more details please refer to (Neumann
& Peters, 2009).

3.1. Fitted Q-Iteration for SMDPs

For SMDPs we have to include the duration di of each
action to our historical data H = {< si,ai, ri, di, s

′
i >

}1≤i≤N . Instead of using Equation 3, new Q-values
can now be calculated by

Q̃k+1(i) = ri + exp(−βdi)max
a′

Qk(s′i,a
′). (4)

3.2. Locally-Advantage-WEighted Regression
(LAWER)

A severe problem when using fitted Q-iteration for con-
tinuous action spaces is the use of the greedy opera-
tion Vk(s) = maxa′ Qk(s,a′) which is hard to perform.
LAWER (Neumann & Peters, 2009) is a variant of FQI
which avoids this max operator and is therefore well
suited for continuous action spaces. The algorithm has
been shown to learn high quality policies for many flat
RL settings.

exp(−β∆t), where γ is the discount factor and ∆t is the
time step of the flat MDP.

Instead of using the max operator, a soft-max op-
erator is used which can be efficiently approximated
by an advantage-weighted regression. The advantage-
weighted regression solely uses the given state action
pairs (si,ai) to estimate the V-function and therefore
avoids an exhaustive search in the action space. State-
action pairs with an higher expected advantage2 have
a higher influence on the regression.

The regression uses the state vectors si as input
dataset, the Q-values Q̃k+1(i) as target values and
an additional weighting ui for each data point. The
authors proved that the result of the advantage-
weighted regression is an approximation of the V-
function V (s) = maxa′ Qk(s,a′). The weighting ui

can be seen as goodness of using action ai in state si.
It is estimated by ui = exp(τĀ(si,ai)), where Ā(si,ai)
denotes the normalized advantage function and the pa-
rameter τ sets the greediness of the soft-max operator.
We skip the description of the normalization of the ad-
vantage function, because, for this paper, it is enough
to know that the normalization, and also the proof of
the algorithm, assume normally distributed advantage
values. For a more detailed description of Ā(si,ai)
please refer to (Neumann & Peters, 2009).

LAWER uses Locally Weighted Regression (LWR, by
Atkeson et al., 1997) for approximating the Q and the
V-function. It therefore needs to be able to calculate
the similarity wi(s) between a state si in the dataset
H and state s. The state similarities wi(s) can be
calculated by a Gaussian kernel wi(s) = exp(−(si −
s)T D(si − s)). In this paper we also introduce an
adaptive kernel in Section 4.1. For simplicity, we will
denote wi(sj) as wij for all sj ∈ H.

Standard LWR is used to estimate the Q-function.
The V-function is approximated by a combination of
LWR and advantage-weighted regression. In order to
do so, the advantage weighting ui is multiplicatively
combined with the state similarity weighting, resulting
again in a standard weighted linear regression. For the
exact equations, please refer to (Neumann & Peters,
2009).

The optimal policy π(a|s) = N (a|µ(s),Σ(s)) is mod-
elled as stochastic policy with Gaussian exploration.
The mean µ(s) can be determined by a similar locally
and advantage-weighted regression, just the actions ai

are used as targets instead of the Q-values. The covari-
ance matrix Σ(s) is given by calculating the advantage-
weighted covariance of locally neighbored actions.

Intuitively speaking, the V-function is calculated by

2The advantage function is given by A(si,ai) =
Q(si,ai) − V (si)

Learning Complex Motions by Sequencing Simpler Motion Templates

interpolating between the Q-values of locally neigh-
bored state action pairs, but only examples with a high
goodness ui (i.e. high normalized advantage value) are
used. The same is true for the policy, we just interpo-
late between the action vectors.

4. Fitted Q-iteration for Motion

Templates

In order to apply the LAWER algorithm to the mo-
tion template framework we use a separate dataset Hp

and individual estimations Qp and V p of the Q and V-
function for each motion template mp. The functions
V p and Qp represent the state and state-action value
function when choosing motion template mp in the
first decision and subsequently following the optimal
policy. We implement the template selection policy
π(mp|sk) by a soft-max policy. The overall value func-
tion is determined by V (σk) = maxmp∈A(σk) V p(σk).
LAWER is used to learn the single Q and V-function
estimates Qp and V p.

In this section we present two extensions which im-
prove the accuracy of LAWER and render learning
with motion templates possible. Firstly, adaptive tree-
based kernels are used to improve the estimation of the
state similarities wij . This kernel also adapts to spa-
tially varying curvatures of the regression surface and
therefore needs an estimate of the V-function. Sec-
ondly, we show how to improve the estimate of the
goodness ui by the use of an additional optimization.
Based on the current estimate of the state similari-
ties wij , new ui values, and subsequently also new
estimates of the V-function are calculated. Both al-
gorithms are applied intertwined to get improved esti-
mates of wij and ui.

4.1. Adaptive Tree-based Kernels

The use of an uniform weighting kernel is often prob-
lematic in the case of high dimensional input spaces
(’curse of dimensionality’), spatially varying data den-
sities or spatially varying curvatures of the regression
surface. This problem can be alleviated by varying the
’shape’ of the weighting kernel.

We use the Extremely Randomized Tree (Extra-Tree)
algorithm (Ernst et al., 2005) to obtain a varying ker-
nel function. This algorithm has been particularly
successful for approximating the Q-function in FQI.
We modify this approach to calculate the weighting
kernel. The resulting kernel has the same properties
as the Extra-Trees, and therefore adapts to the local
state density as well as to the local curvature of the
V-function.

The standard Extra-Tree algorithm builds an ensemble
of regression trees. It has 3 parameters, the number
M of regression trees, the number K of randomized
splits to evaluate per node and the maximum number
of samples per leaf nmin. For more details about the
algorithm please refer to (Ernst et al., 2005).

We use the trees for calculating the state similarities
wij instead of approximating the Q-function. In order
to do so, we learn the mapping from the states si to the
V-values V (si) with the Extra-Tree algorithm. The
kernel is then given by the fraction of trees in which
two states si and sj are located in the same leaf

wij =
1

M

M
∑

k=1

isSameLeaf(Tk, si, sj), (5)

where Tk is the kth tree in the ensemble and
isSameLeaf is a function returning 1 if both examples
are located in the same leaf and 0 otherwise. In our
experiments we will show the superiority of the tree-
based kernels to the Gaussian kernels.

4.2. Optimized LAWER

As already pointed out in Section 3.2, LAWER as-
sumes normally distributed advantage values. Often
this assumption does not hold or the normalization of
the advantages is imprecise due to too few data points
in the neighborhood. This effect is even more drastic if
high τ values are used because the inaccuracies may re-
sult in low activations in areas with a low sample den-
sity and therefore also in inaccurate regressions. This
restriction on the τ parameter also limits the quality
of the estimated policy.

But how can we improve the estimation of the weight-
ings ui? Let us first consider a greedy policy πD in
a discrete environment. We formulate πD as stochas-
tic policy uij = πD(aj |si). The uij can be found by
solving the following constraint optimization problem

u = argmaxu

∑

i,j uijA(si,aj)

subject to:
∑

j uij = 1 for all states si

0 ≤ uij ≤ 1 for all i, j,

(6)

where u is the vector of all uij and A is again the ad-
vantage function. In our setting, we also have a finite
number of state-action pairs (si,ai), but typically all
the states are different. However, the states are linked
by the state similarities wij . The first constraint of the
optimization problem can therefore be reformulated as

∑

j

wijuj = 1 for all states si, (7)

Learning Complex Motions by Sequencing Simpler Motion Templates

while the remaining formulation of the optimization is
unchanged. We also skipped the second index of uij

because there is only one action for each state si. Due
to this optimization we only use the ui with the high-
est advantage values while ensuring that the summed
activation

∑

j wijuj is high enough at each state si for
applying an accurate weighted linear regression.

We solve the constraint optimization problem by max-
imizing the performance function C

C =
1

Z

∑

j

uj(Q(sj ,aj) − V (sj))−

λ
∑

i

(
∑

j wijuj − η)2
∑

j wij

,

(8)

with η = 1, where Z is a normalization constant for
the advantage values given by Z =

∑

i |Q(si,ai)|/N .
The second term of Equation 8 specifies the squared
summed activation error for each state si. It is nor-
malized by the summed state-similarity of this state
(i.e.

∑

j wij). This ensures that the activation error is
equally weighted throughout the state space, indepen-
dent of the local state density. We also introduced a
new parameter λ which sets the tradeoff between max-
imizing the greediness of ui or minimizing the summed
activation error. It replaces the greediness parameter
τ of the LAWER algorithm.

The function C can be maximized with respect to ui

using gradient ascent, the derivation of C is given by

dC

duk

=
1

Z
(Q(sk,ak) − V (sk))

− 2λ
∑

i

(
∑

j wijuj − η)
∑

j wij

wik.
(9)

The learning rate for the gradient ascent algorithm is
always chosen such that the maximum change of an
activation ui is fixed to 0.01. After each gradient up-
date the weights ui are restricted to the interval [0; 1].
The gradient ascent update is repeated for Nopt iter-
ations, every Mopt << Nopt iterations the value esti-
mates V (si) are recalculated using the current weights
ui. When using the tree-based kernels, we also recal-
culate the state similarities wij with the new estimate
of V (si). Typical values for Nopt and Mopt are 1000
and 100.

The covariance matrix of the exploration policy is also
calculated slightly differently to the original LAWER
algorithm. We require that always the best ηexp lo-
cally neighbored actions are used. We therefore use
a separate set of advantage weightings uexp for the
covariance calculation which can be obtained by the

same optimization defined in Equation 8, we just have
to set η to ηexp. With ηexp we can scale the exploration
rate of the algorithm.

5. Results

We evaluated the motion template approach on a 1-
link and a 2-link pendulum swing-up task and a 2-
link balancing task. For each task the immediate re-
ward function was quadratic in the distance to the
goal position xG and in the applied torque/force, i.e.,
r = −c1|x−xG|2 − c2|a|

2. For all our experiments we
assume that the goal position xG is known.

We collect L new episodes with the currently estimated
exploration policy and one episode with the greedy
policy (without exploration). After estimating the op-
timal policy, its performance is evaluated (without ex-
ploration) and the data collection is repeated. The
initial distributions of the motion template parame-
ters were set intuitively and were by no means opti-
mal. We compared the motion template approach to
flat RL with the standard LAWER algorithm.

5.1. Swing-Up Tasks

In this task a pendulum needs to be swung up from
the position at the bottom to the top position.

5.1.1. 1-link Pendulum

The link of the pendulum had a length of 1m and a
mass of 1kg, no friction was used. The used motion
templates represent positive (m1 and m2) and negative
peaks (m3 and m4) in the torque trajectory. There is
also an individual template m5 for balancing the robot
at the top position. One peak consists of 2 successive
motion templates, one for the ascending and one for
the descending part of the peak.

The parametrization of the motion templates can be
seen in Table 1. In order to form a proper peak, tem-
plate m2 and m4 always start with the last torque
ut taken in the end of the previous template. There-
fore parameter a2 of these templates is already deter-
mined by ut and consequently the outcome of template
m2 and m4 depend on ut. For this reason, the state
space of template m2 and m4 was extended by ut.
The balancing template m5 is implemented as linear
PD-controller (see Table 1). The duration of the peak
templates is an individual parameter of the templates
(di), m5 is always the final template and runs for 20s.
Subsequently the episode is ended.

The agent always started from the bottom position
with motion template m0. Afterwards it could either

Learning Complex Motions by Sequencing Simpler Motion Templates

Table 1. MTs for the swing up motion. The functional
forms resemble sigmoid functions. Parameter ai core-
sponds to the height of the peak, oi to the initial time offset
and di to the duration of the motion template. k1 and k2

are the PD-controller constants of the balancer template.
m3 and m4 resemble m1 and m2 except for a negative sign.
The sketches illustrate the torque trajectories of these tem-
plates (x-axis: time, y-axis: acceleration).

MT Functional Form Parameters Sketch

m0 a0(1 −

2

1+exp(o0−
o0

d0
t)

) a0, o0, d0

m1,3 a1(
2

1+exp(−
6o1

d1
t)

− 1) a1, o1, d1

m2,4 a2(1 −

2

1+exp(o2−
o2

d2
t)

) o2, d2

m5 −k1θ − k2θ
′ k1, k2

−5
0
5

m
0

m
3

m
5

c
2
 = 0.005

−5
0
5

m
0
m

3
m

4
m

1
m

5

c
2
 = 0.025

0 1 2 3 4 5
−5

0
5

m
0

m
3
m

4
m

1
m

2
m

3
m

4
m

1
m

5

c
2
 = 0.075

Time [s]

(a)

−5
0
5

c
2
 = 0.005

−5
0
5

c
2
 = 0.025

0 1 2 3 4 5
−5

0
5

c
2
 = 0.075

Time [s]

(b)

Figure 1. (a) Torque trajectories and motion templates
learned for different action punishment factors c2. (b)
Torque trajectories learned with flat RL

choose to use the peak templates in the predefined or-
der (m3, m4, m1, m2, m3...) or use the balancing
template m5. Thus, the agent had to learn the cor-
rect parametrization of the motion templates and the
number of swing-up motions.

For all experiments a discount factor of β = 0.2 was
used, λ was set to 0.025 and ηexp to 20. For the
Gaussian kernel we used a bandwidth matrix of D =
diag(30, 3) for m1, m3 and m5 and D = diag(30, 3, 1)
for the extended state space of templates m2 and m4.
For the tree-based kernels we used the parameters
nmin = 7, M = 80 and K = 20. For the compar-
ison with the flat LAWER algorithm τ was set to 4
and a time step of 50ms was used. We used L = 50
episodes per data collection.

We carried out 3 experiments with different torque
punishment factors (c2 = 0.005, c2 = 0.025 and
c2 = 0.075). We compared the learning process of
flat RL, motion template learning with Gaussian state

0 20 40 60
−80

−60

−40

−20

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

MT Tree
MT Gauss
Flat

(a)

0 20 40 60
−200

−150

−100

−50

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

MT Tree
MT Gauss
Flat

(b)

Figure 2. Learning curves for the Gaussian kernel (MT
Gauss) and the tree-based kernel (MT Tree) for (a) c2 =
0.025 and (b) c2 = 0.075

10
−3

10
−2

10
−1

−35

−30

−25

λ
A

ve
ra

ge
 R

ew
ar

d

MT Gauss
MT Tree

(a)

2 4 6 8 10 12
−30

−29

−28

−27

−26

n
min

A
ve

ra
ge

 R
ew

ar
d

MT Tree

(b)

Figure 3. (a) Evaluation of the influence of λ for the Gaus-
sian (MT Gauss) and the tree-based kernel (MT Tree,
nmin = 5) (b) Evaluation of the nmin parameter for λ =
0.025. c2 was set to 0.025 for both evaluations.

similarities (MT Gauss) and with adaptive tree-based
state similarities (MT Tree) (see Figure 2). In the
initial learning phase, the flat RL approach is supe-
rior to motion template learning, probably due to the
larger number of produced training examples. How-
ever, RL with motion templates is able to produce
policies of significantly higher quality and quickly out-
performs the flat RL approach. This can also be seen
in Figure 1(a) and (b), where the resulting torque tra-
jectories are compared. Flat RL has difficulties par-
ticularly with the hardest setting (c2 = 0.075) where
we received a maximum average reward of −48.6 for
flat RL and −38.5 for the motion template approach.
From Figure 2 we can also see that the tree-based ker-
nel is much more sample efficient than the Gaussian
kernel. An evaluation of the influence of the λ param-
eter can be seen in Figure 3(a) and of the parameter
nmin of the tree-based kernel in Figure 3(b). The ap-
proach works robustly for a wide range of parameters.

5.1.2. 2-link Pendulum

We also conducted experiments with a 2-link pendu-
lum. The lenghts of the links were set to 1m, each link
had a mass of 1kg (located at the center of the link).
We use the same templates as for the 1-dimensional

Learning Complex Motions by Sequencing Simpler Motion Templates

1 2

−5

0

5
m

0
m

3
m

4
m

5

Time [s]

T
ou

rq
ue

 [N
m

]

u
1

u
2

(a) (b)

Figure 4. (a) Torque trajectories and decomposition in the
motion templates for the 2-link pendulum swing-up task.
(b) Illustration of the motion. The bold postures represent
the switching time points of the motion templates.

0 50 100 150
−70

−60

−50

−40

−30

−20

−10

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

MT Tree
Flat

(a)

0 50 100
−6000

−4000

−2000

0

A
ve

ra
ge

 R
ew

ar
d

Number of Data Collections

(b)

Figure 5. Learning curves for motion template learning
with tree-based kernels for the (a) 2-link swing-up task
and the (b) 2-link balancing task.

task, the peak templates have now 2 additional pa-
rameters, the height of the peak ai and the time offset
oi for the second control dimension u2. Including the
duration parameter, this results in 5 parameters for
m0, m1 and m3 and 3 parameters for m2 and m4.
The parameters of the balancer template m5 consists
of two 2 × 2 matrices for the controller gains.

Experiments were done for the tree-based kernels with
nmin = 8, λ = 0.025 and ηexp = 25. At each data
collection, 50 new episodes were collected. For com-
parison to the flat RL approach we used a bandwidth
matrix of D = diag(6.36, 2.38, 3.18, 1.06) and τ = 4.
The evaluation of the learning process can be seen in
Figure 5(a) and the learned motion and torque tra-
jectories are shown in Figure 4. Also for this chal-
lenging task, the motion template approach was able
to learn high-quality policies. While the flat RL ap-
proach stagnates at an average reward of −28.7, the
motion template approach reaches an average reward
of −15.6.

5.2. 2-link Balancing

In this task a 2-link pendulum needs to be balanced at
the top position after being pushed. The model param-

eters were chosen to loosely match the characteristics
of a human, i.e. li = 1m and mi = 35kg. The hip-
joint was limited to [−0.1; 1.5]rad and the ankle-joint
to [−0.8; 0.4]rad. Whenever the robot left this area of
the state space, we assumed that the robot had fallen,
i.e. a negative reward of −10000 was given. The hip-
torque was limited to ±500Nm and the ankle torque
to ±70Nm.

In the beginning of an episode, the robot stands up-
right and gets pushed with a certain force F . This re-
sults in an immediate jump of the joint velocities. The
agent has to learn to keep balance for different pertur-
bations. In (Atkeson & Stephens, 2007) this problem
was solved exactly using Dynamic Programming tech-
niques. The authors found out that two different bal-
ancing strategies emerge. For small perturbations, the
ankle strategy, which uses almost only the ankle joint,
is optimal. For larger perturbations (F > 17.5Ns),
the ankle-hip strategy, which results in a fast bending
movement, is optimal. In this experiment we want to
reproduce both strategies by motion template learn-
ing.

We use two motion templates to model the balancing
behavior, both resemble linear controllers. The first
motion template (m0) keeps the robot at the upright
position and is similar to m5 from the previous exper-
iment. The second template m1 additionally defines
a set-point of the linear controller for each joint and
a duration parameter d1. In addition to the 8 con-
troller gains, this results in 11 parameters. The agent
can now choose to use m0 directly in the beginning or
to use m1 and subsequently m0. We used 4 different
perturbations, i.e., F = 10, 15, 20 and 25Ns. For each
perturbation, we collected L = 20 episodes.

We again used the tree-based approach with the same
parameter setting as in the previous experiment. The
learning curve can be seen in Figure 5(b). The result-
ing torque trajectories are shown in Figure 6(a) and
(b). We can clearly identify the ankle strategy for the
two smaller perturbations and the ankle-hip strategy
for larger perturbations using both motion templates.

6. Conclusion and Future Work

In this paper we proposed a new framework for tem-
poral abstraction for RL in continuous environments,
i.e. RL with motion templates. Learning the overall
control task is decomposed into learning a sequence of
simpler controllers. Because of the used abstractions
the agent has to make fewer decisions, which simplifies
the learning task. We strongly belief that this kind of
abstractions may help scaling RL algorithms to more

Learning Complex Motions by Sequencing Simpler Motion Templates

−50

0

50

u A
nk

le
 [N

m
]

0 0.5 1 1.5
−50

0

50

Time [s]

u H
ip

 [N
m

]

F = 10Ns
F = 15Ns

−50

0

50

u A
nk

le
 [N

m
]

0 0.5 1 1.5
−500

0

500

Time [s]

u H
ip

 [N
m

]

F = 20Ns
F = 25Ns

t = 0.36s

F
 =

 1
5

t = 0.72s t = 1.08s t = 1.44s t = 1.80s

(a)

t = 0.36s

F
 =

 2
5

t = 0.72s t = 1.08s t = 1.44s t = 1.80s

(b)

Figure 6. Learned solutions for the 2-link balancing prob-
lem for (a) F = 10Ns and F = 15Ns (ankle strategy)
(b) F = 20Ns and F = 25Ns (ankle-hip strategy). The
sketches bellow illustrate the temporal course of the bal-
ancing movement for the ankle strategy (a) and the ankle-
hip strategy (b)

complex domains.

The motion templates approach also raises several in-
teresting research questions to which we will dedicate
our future work. For example, how can we efficiently
add feedback to the motion templates? Which func-
tional forms of the templates can facilitate learning?
When do we terminate a motion template, in partic-
ular in the case of unforeseen events? Future work
will also concentrate on applying the approach to more
complex environments such as planar walking robots.

7. Acknowledgment

Written under partial support by the Austrian Science
Fund FWF project # P17229-N04 and the projects #
FP7-216593 (SECO) and # FP7-506778 (PASCAL2)
of the European Union.

References

Arbib, M. A. (1981). Perceptual structures and dis-
tributed motor control. Handbook of physiology, sec-
tion 2: The nervous system vol. ii, motor control,
part 1, 1449–1480.

Atkeson, C., & Stephens, B. (2007). Multiple bal-
ance strategies from one optimization criterion. 7th
IEEE-RAS International Conference on Humanoid
Robots.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997).
Locally weighted learning. Artificial Intelligence Re-
view, 11, 11–73.

Bradtke, S. J., & Duff, M. O. (1995). Reinforcement
learning methods for continuous-time markov deci-

sion problems. Advances in Neural Information Pro-
cessing Systems 7, 7, 393–400.

Dautenhahn, K., & Nehaniv, C. L. (2002). Imitation
in animals and artifacts. Campridge: MIT Press.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-
based batch mode reinforcement learning. J. Mach.
Learn. Res., 6, 503–556.

Ghavamzadeh, M., & Mahadevan, S. (2003). Hierar-
chical policy gradient algorithms. Twentieth Inter-
national Conference on Machine Learning (ICML-
2003) (pp. 226–233).

Huber, M., & Grupen, R. A. (1998). Learning robot
control—using control policies as abstract actions.
In NIPS’98 Workshop: Abstraction and Hierarchy
in Reinforcement Learning.

Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Learn-
ing attractor landscapes for learning motor primi-
tives. Advances in Neural Information Processing
Systems 15 (NIPS2002) (pp. 1523–1530).

Kober, J., & Peters, J. (2009). Policy search for mo-
tor primitives in robotics. Advances in Neural In-
formation Processing Systems 22 (NIPS 2008) (pp.
849–856). MA: MIT Press.

Neumann, G., & Peters, J. (2009). Fitted Q-iteration
by Advantage Weighted Regression. Advances in
Neural Information Processing Systems 22 (NIPS
2008) (pp. 1177–1184). MA: MIT Press.

Riedmiller, M. (2005). Neural fitted Q-iteration - first
experiences with a data efficient neural reinforce-
ment learning method. Proceedings of the European
Conference on Machine Learning (ECML) (pp. 317–
328).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial In-
telligence, 112, 181–211.

Xu, X., & Antsaklis, P. (2002). An approach to op-
timal control of switched systems with internally
forced switchings. Proceedings of the American Con-
trol Conference (pp. 148–153). Anchorage, USA.

