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Abstract

Many learning algorithms rely on the curvature
(in particular, strong convexity) of regularized
objective functions to provide good theoretical
performance guarantees. In practice, the choice
of regularization penalty that gives the best test-
ing set performance may result in objective func-
tions with little or even no curvature. In these
cases, algorithms designed specifically for regu-
larized objectives often either fail completely or
require some maodification that involves a sub-
stantial compromise in performance.

We present new online and batch algorithms for
training a variety of supervised learning models
(such as SVMs, logistic regression, structured
prediction models, and CRFs) under conditions
where the optimal choice of regularization pa-
rameter results in functions with low curvature.
We employ a technique callgatoximal regular-
ization, in which we solve the original learning
problem via a sequence of modified optimization
tasks whose objectives are chosen to have greater
curvature than the original problem. Theoreti-
cally, our algorithms achieve low regret bounds
in the online setting and fast convergence in the
batch setting. Experimentally, our algorithms
improve upon state-of-the-art techniques, includ-
ing Pegasos and bundle methods, on medium and
large-scale SVM and structured learning tasks.

In this optimization problem, thé, regularization penalty
plays two important roles: not only does the quadratic term
prevent overfitting to the empirical loss on the trainingadat
but in fact, it also controls a measure of curvature of the
objective function, known as itstrong convexity

In the past several years, a number of approaches have been
proposed for training linear SVMs, ranging from batch
methods such as the cutting plane algorithm (Joachims,
2006) to online methods such as the PEGASOS subgra-
dient algorithm (Shalev-Shwartz et al., 2007). In essen-
tially all of these algorithms (for which the relevant bosnd

are known), theory indicates that the number of itera-
tions required to obtain araccurate solution is roughly
O(1/Xe). For example, cutting-plane methods require
O(1/Xe) passes through the training set (Smola et al.,
2008), whereas PEGASOS must proc€sd /\e) train-

ing examples to ensukeaccuracy on expectation. In both
cases, the theoretical bounds depend largely on the chosen
value of the regularization hyperparameier

For many real world problems, however, the ideal choice
of A can be quite small. When this is the case, state-of-
the-art cutting plane and subgradient algorithms give un-
nacceptably slow convergence, both in theory and in prac-
tice. Recently, (Bartlett et al., 2008) describedaalaptive
online gradient descerdlgorithm based on the simple in-
tuition that an objective function with low curvature can
be stabilized by adding extra terms whose purpose is to
increase curvature. In this paper, we extend these ideas
to construct new online and batch algorithms suitable for
training a wide variety of supervised learning models.

Specifically, we design a sequence of optimization tasks,

each of which is a variant of the original problem modi-
Consider the task of training a linear SVM: fied to include an extragroximal regularizationterm. We

m show how to choose these proximal terms in an adaptive

min §||W||2 + 1 Z max(0,1 — y@wTx®). (1) fashion such that the resulting sequence of minimizers (or
weRm 2 m = approximate minimizers) converge to the solution of the
original optimization problem. Finally, we describe some

Appearing inProceedings of the6'” International Conference simple heuristic modifications to these algorithms that re-
on Machine LearningMontreal, Canada, 2009. Copyright 2009 tain all optimality guarantees while resulting in consider
by the author(s)/owner(s). able performance improvements in practice. In the on-
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line setting, our analysis leads naturally to a stochasti@lgorithm 1 Projected subgradient descent
subgradient-style algorithm along the lines of the PEGA- |nitialize w; « 0.

SOS. In the batch setting, our analysis yields an improved for ¢ — 1,...,7 do

cutting-plane/bundle method. Both in theory and in exper- Receive a\;-strongly convex functiory,.
iments, our methods exhibit comparable performance for  Choosez; € df;(w;).

large A (high curvature) compared to existing methods and Setn; «— 1/A1.;.

dramatic improvements for small(low curvature).! Setwy gy« Ils[w; — 1:8¢].
end for
2. Preliminaries return wr 1.

Let||-|| denote the Euclidean norrix|| := vx"x. Given . . . .
a pointx € R” and a compact (i.e., closed, bounded) Sub_AIgonthm 2 Proximal projected subgradient descent

sets C R", letIls[x] := arg miny g |[x — y]| denote the Initialize w; < 0.

Euclidean projection ok onto S. For notational conve- for t — _1» ...,Tdo )
nience, we use notational shorthang, := 3" ¢; for Rﬁcewe a\;-strongly convex functiory;.
any sequence of scalatg, co11,---,¢—1,¢ € R. Fora Chooseg; € 0fi(wy).

G2

vectorx € R™ andc € R, let[x; ¢] € R"*! denote the con- S A=t Qe+ rie-1)2+ 26
catenation of: onto the end ok. Forx,y € R", letx >y SetTt - Ui 2 :
denote the component-wise inequalities > v;, Vi. Let0 ety 1/(Ar:e + T1t)-

and1 denote the vectors of all 0's and all 1's, respectively. eni?‘g:,tﬂ o Ls[we — 7.8y

A function f : R™ — R is said to be\-strongly convexf return wr. ;.

for anyx,y € R™ and any subgradiemt belonging to the

subdifferentiad 0 f (x) of f atx, f(y) > f(x) +g' (y —

x) + % [ly — x||*. Here, we consider learning problems as- 3, Online proximal learning

sociated with the optimization of-strongly convex func-

tions in both the online and batch settings. As a starting point, we recall the projected subgradient
i ) algorithm for strongly convex repeated games proposed

In the online setting, we base our analyses on the conceptq?)fy (Hazan et al., 2007) and later generalized by (Bartlett

aconvex repeated gamé convex repeated game is a two- ¢ g 2008), as stated in Algorithm 1. In this algo-

player game consisting @f rounds. During round, the  yithm 'the first player updates his parameter vector in each

first player proposes a vecter; belonging to some com- yoynd py taking a projected subgradient steg,.; «

pact convex seb, the second player responds by choos-y¢[w, — 5,g,]. When the step sizg, = 1/)1.;, we ob-

ing a A;-strongly convex function of the fornfi,(w) :=  tain the following regret bound (Bartlett et al., 2008):

At ||w||? + £, (w) for some convex functiofy, and then the

first player suffers losg; (w;). We assume that; > 0, and : o

that the same sétis use(d in)each round; for simplicity, we L,...,T. Then, foranyu € S, Algorithm 1 satisfies

assume throughout thatis an origin-centered closed ball T T o2

of radiusR. Here, we seek an algorithm to minimize the > (filwe) = fr(w) < 3 > Ttt 2

first player'sregret 3.1, f;(w;) — minges 31, f:(u), =1 _ =1 _

i.e., the excess loss suffered compared to the minimum losé’/hen\; = A andG; = G in each round, then the right

possible for any fixed choice of < S. hand side of the inequality can be further upper-bounded

by g—j(l + log T'). Algorithm 1, thus, is an example of an

algorithm withlogarithmic regret When\ is small, how-

ever, this guaranteed regret can still be large.

Lemma 1. Suppose thah;, > 0 and||g;|| < G, fort =

In the batch setting, we are givenastrongly convex func-
tion of the formf(w) = 3 [|w|* + ¢(w), where/ is again

a convex function. Here, we will assume> 0 in order

to ensure that the optimization problem is well-posed. If
w* = argmin g~ f(W), then our goal will be to find an
approximate minimizew such thatf(w) — f(w*) <. Now, suppose we run Algorithm 1 on the sequence of mod-
— ified functions,

3.1. Proximal regret bound

For an extended version of this paper with proofs, see

http://ai.stanford.edu/"chuongdo/papers/proxipalofs.pdf f{(w) = fi(w) + Tt |w — WtH2 . 3)
The subdifferentiald f (x) of a convex functiorf : R™ — R 2

atx is the set of all vectorg such thatf(y) > f(x) + g (y — for some setting of constants, ..., € R. We refer to

x) for ally € R"; elements belonging to the subdifferential are the additional quadratic term in each of our modified func-

known assubgradients tions as groximal regularization termWhereas eaclfy is

A¢-strongly convex, each modified functighis (\; + 7¢)-
strongly convex. Also, since the gradient of the proximal
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regularization term is zero when evaluateavat it follows ~ Theorem 1. The regret obtained by Algorithm 2 is at most
immediately thad f/(w;) = dfi(w;). Thus, the updates twice that of the optimal offline choice of, .. ., 7, i.e.,

in the proximal regularization case differ from the non- 7 I A ) G?
proximal algorithm only in the choice of step sizes, sincey  (fe(w:) — fi(u)) < 2 min o > {sz S v b
we can still use the same subgradients. =1 t=1 ‘ ‘

Strategy 2: Bound optimization. In the second approach,

The idea of adding temporary regularization terms in ordety s o, nd the regret directly, via the following proposition
to achieve better bounds on the regret of a learning algo-

fithm was first introduced in (Bartlett et al., 2008), who Froposition 1. Let

considered modified objective functions of the form (r{,...,77) = arg miilo Rr(mi,....mr).  (7)
T T1yeeey TT
1 (w) = fulw) + o W 4)  Thenrr =0forall i # 1.
Unlike in the proximal case)f/ (w;) # df:(w;). In Sec-  The benefit of the above proposition is that it allows us to
tion 5, we compare empirically these two choices. reduce an optimization over many variables to a much sim-

. o ler convex optimization problem over just a single vari-
To analyze the proximal regularization method, we applygme 7+ (which we simply callr). If A, = A > 0,% and

Lemma 1 to the sequence of functions in (3) to obtain G, = G, then we can upper bound the regret with a simple
Corollary 1. Define - closed form expression, parameterizedrby

2
Roy(r, ..., 7r) = lz {4%32 + Gi ] (5)  Theorem 2. Under the above assumptions, 1é{- denote

2= ALt + T1 the worst-case regret suffered by Algorithm 2. Then, for
For any fixedr;, ..., 7 > 0, running Algorithm 1 on the anyr > 0, we have the upper boun®; < B(r), where
sequence of functionf, . . ., f7. from(3) gives a2 1 T +7/\
r B(r) = arR? + & [ ()}
Z(ft(wt)_ft(u)) <Rr(m1y..., 7). (6) _ A _1+T/>\ . 1+_T/)\
=1 Since the upper bound is a convex differentiable function of

Here, the proof depends on the fact that — w,|| < 2R 7 over the domairr > 0, one could optimize the bound di-
for anyw,w, € S. The strength of the regret bound, de- rectly using standard line search techniques. Alternigtive
pends on the choice of constants. .., 7. The key tothe by substituting different values for into the expression
proximal regularization algorithm, then, is picking these above, we can obtain various upper bounds on the regret
constants so as to ensure that the regret is small. that Algorithm 2 will achieve. In particular,

Corollary 2. Whenr = 0, thenB(r) := %2(1 +logT).

3.2. Choosing proximal parameters
P g Corollary 3. Whenr = SYT thenlim B(r) = 4RGVT.
Suppose that the values andG; fort = 1,...,T are A—0
determined independently of the choices made in the algolhe key intuition behind the efficiency of Algorithm 2 is
rithm. We describe two approximate schemes for choosinghat in some cases, one of these bounds may be better than
7's. The first scheme is a practical online balancing heuristhe other.2 For example, wheRG is sufficiently small rel-

tic due to (Bartlett et al., 2008). The second scheme, makeative to%, the seemingly inferior square root bound can
the additional assumptions that theandG; do not vary  actually be better than the logarithmic regret bound for val
with ¢ but has the benefit of allowing us to choose tiie  ues ofT" that are not too large. Regardless of the situation,
so that the regret bound is as tight as possible. Theorem 1 implies that Algorithm 2 achieves a total regret

Strategy 1: Balancing heuristic. In the first approach, no worse than twice the best bound for any

observe that the expression in (5) consists of two terms3 3. Application: Li sy
one of which increases and one of which decreases as -3 APplication: Linear SVMs

increases. During theh step of the algorithm, consider the |n this section, we consider the task of training a linear
choice ofr; > 0 that ensures that the two terms are equal.SvM. The approach we take here was inspired by the Pe-

ie,2nR* = Q(A%im) This is a quadratic equation, gasos algorithm (Shalev-Shwartz et al., 2007), currertly r
with positive solution, garded as one of the fastest methods for SVM training on

=3 Gt EN T )
Tt =5 (—)\m — Ti:—1 + \/(/\u +T1-1)? + R2‘>- Z(ft(wf) — fi(u)) < min Z |:37_tR2 i QL]’
In Algorithm 2, we provide pseudocode for the proximal ‘= =1 :

projected subgradient descent algorithm using the balanavhen using the modified functions in (4). These two expression

ing heuristic. Applying Lemma 3.1 from (Bartlett et al are not directly comparable, though as we show in Section 5, the
2008), we ot;tain the following bou.n’ij' " proximal algorithm performs better in our experiments.

“Note that if A\ = 0, then the bound reduces &rR* +
®For comparison, (Bartlett et al., 2008) derived a bound of ~ S°7_, G7 /27, whose minimum occurs at= /3", G?/4R2.
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large-scale datasets. At its core, the Pegasos algorithm Idsing Corollaries 2 and 3 from Section 3.2, and applying

essentially a wrapper for Algorithm 1. Proposition 2 we have
Given training inputs{x(?, y(}™ the Pegasos algo- e With probability at leastl — 8, f(w,) — f(w*) <
rithm defines a sequence of functiofis ..., fr. In the GQ(IJ{;gT). To ensure that the right hand side is no
tth round, Pegasos randomly samples a sulsetf fixed ter th resT > O( S iterat
sizek from {1,2,...,m}, definesf;(w) to be grfea er am_ requwe > O(3x;) iterations. 4
e With probability atleast —4, f(w,)—f(w*) < 32
A [wl® + L Z max(0,1 — yPDwTx®). (8) To ensure that the right hand side is no greater than
2 |At| ; ’ ) requires? > 16R?G? i
icA, quiresT” > 5~ iterations.

and runs Algorithm 1 with\, = X\, G, = VA +  |nthe first bound, we recover th@( & ) convergence rate

max; [[x?|, R = % ands = {w e R" : [|w] < %}-5 of the Pegasos algorithm. In the second bound, we recover
2 ~2 . . .

To characterize the relationship between the strongly conth€O(’&5-) rate of (Zinkevich, 2003), that, at least at first,

vex game defined by Pegasos and the linear SVM trainingPPears not to depend on suggesting that perhaps the

problem, we state the following theorem and its corollary,Proximal algorithm ought to give improved convergence

both of whose proofs closely mirror that of Theorems 2 and¥hen A is small. On a closer examination, however, the

3 from (Shalev-Shwartz et al., 2007): dependence on is “hidden” inside theR = oy bound

Theorem 3. Let f : R" — R be a (strongly) convex fr(?m the Peg.asos algorithm. Malélpg t7h|s dependence ex-
plicit, we achieve a rate of oniQ (535 ).

function, letS C R™ be compact, and suppose* := FEDY

argminy ¢ f(w). Let A be an algorithm for (strongly) Here, the weak link in our analysis is the dependence of
convex repeated games with regret bodg. Now, SUp- i on X. In practice, however, the bounlt = — is
pose we rund on a sequence of (strongly) convex func- ogen, quite loose. Knowing ahead of time the norm of
tions fy,..., fr which Satley, for alt € {1, .. ..,T}, (1) w* = arg min,, f(W) would help by allowing us to de-
Efyrotowiw [fe(w)] < f(w) forall w € S;and (2)  fine 4 smaller feasible sstand thus obtain tighter bounds.
Ef o foowsewer jwe ft(We)] = f(wy). If ris drawn uni-

formly at random fron{1, ..., T}, then 3.4. An optimistic strategy

oy~ R
EvEfytiwswr [f(We) = fF(WH)] < == (9)  with the above motivation in mind, we propose the adap-

. . . tive strategy shown in Algorithm 3. In this method, we as-
Informally, this result provides an estimate of the average L . .

o > I sume that we are initially given some desired level of sub-
suboptimality Pegasos obtains in terms of the existing re:

. . . optimality e. Optimization proceeds in several phases. At
gret bound for its underlying algorithm for convex garfies. 7 o o -
. . I . the beginning of each phase, we “hypothesize” a setting of
Using Markov’s inequality, it turns out that convergence in

expected suboptimality implies convergence to optimalityR ) D_urlng each phas_e, we run the pI’OXImiﬂ prolfzcted sub-
NS L X } gradient strategy until either (1)w;|| gets “close” toR,
with high probability in the following sense: . .

- » forcing us to increas® by a factor ofy/2 and start a new
Proposition 2. Letd € (0,1). Under the COFLdItIOI’;ZS above, phase; or (2) enough iterations pass without this occurring
with probability at leastl — 4, f(w,) — f(w*) < 5F. allowing us to declare convergence. The algorithm is “op-

timistic” in the sense that it initially assumésto be small

Now, we turn .to the task of converting Algorithm 2 in_to an gnd only increases it as necessary. One can prove that:
SVM solver, in the same manner as Pegasos. This time,

we again assume that the functiofis. . ., f, are sampled Lemma 2. Suppose that some particular phase ends with-
as in the same manner for the Pegasos algorithm, and f@ut any increase irk. Definew” = argming,cg f(w).
now, we assume the same settings of the constaramd L€t 7 be chosen uniformly at random froft, ..., T'}.

G,. We now analyze the efficiency of our optimization al- Then with probability at least — 4, w, is e-optimal, i.e.,
gorithm by characterizing the number of iterations needed (w,) — f(w*) <.

to guarantee-optimality with high probability. Theorem 4. For ¢ < £, Algorithm 3 terminates after pro-

. ~ 2 . o

5As shown in (Shalev-Shwartz et al., 2007), one can guarancessing at mosb (&) examples; with probability at least
tee using a strong duality argument that the optimal solution willl — §, the resulting parameters,. will be e-optimal.
always have norm at mos‘%, so usingS as the feasible set does
not impose any additional restrictions. Our analysis thus shows that the modified algorithm, in the

®Note that a version of the theorem replaciwg with W = worst case, is asymptotically equivalent to Pegasos up to
% Zthl w follows easily from Jensen’s inequality. Thoughthis —
leads to a potentially more stable version of Algorithm 3, the  "These results are not particularly surprising, given the recent
resulting algorithm in practice often converges less quickly andminimax analysis of (Abernethy et al., 2008), who showed that
may be less computationally efficient to implement (for problemsunder certain assumptions, the regret bound of the regular pro-
where the feature vectoss are sparse). jected subgradient algorithm is worst case optimal.
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Algorithm 3 Optimistic proximal SVM solver Algorithm 4 Proximal bundle method
input  Training set{ (x(*), y(¥)}m Initialize w; < 0.
Regularization parameter fort—1,...,Tdo
Desired suboptimality Choosen; € 6£(wt)T.
Allowed failure probabilitys Seth, — {(wy) — a; w.
.. . 2
Mini-batch sizek Setr, — ,)\t,.,-l:t71+\/()\t+71:t71)2+(XR;;&H .

2

— /
Defines := {w € R" : [|w|| < 1/v/A}. Computea; = arg maXacgraxo.ar1<e Di(@):

t W — ja;
Set( + max; ||x(i)|| + V. Setwy 1 = —Zml(;i;l::y'“a ).
N end for
08y return W71

In?t@al?ze R « min(1, %).
Initialize w; < 0.

repeat inference may involve either a computationally expensive
Set NVERGED «— true. P (b10gT) 4RG dynamic programming step, or even solving a combinato-
Find smalles” such thatmin (=252, $72) <. rial optimization problem as a subroutine.
fort—1,...,Tdo ) _ ) _
Sample4; C {1,...,m} such thatA;| = k. The prototypical batch algorithm from which we start is
Define f,(w) according to (8). the cutting plane optimization method of (Joachims, 2006)
Chooseg; € 9f,(w). as reformulated and generalized in (Teo et al., 2007) and
7A1-t7r1-t71+\/m (Smola et al., 2008). In this method,is assumed to be
Setr; «— — T £ everywhere nonnegative, and one creates a sequence of
Setn «— 1/(A1:t + T1e)- lower-bound approximations tp of the form,
Setwy 1« Ils[w; — ;8] \
if |wit1]] > R — \/%then Pi(w) = B [w|* + max (0, _e?llaxt} (a] w+ bi)>.
SetR — v2R. o
Set ®MNVERGED «+ false Initially, w; = 0. During each iteration € {1,...,T},
break a; andb; are chosen so that/ w + b; is the first-order
end if Taylor expansion of(w) at w;, andw,,; is chosen to
end for be the minimizer ofP,. To date, the best convergence re-
until CONVERGED sults known for bundle methods state that at n@ét:-)
Chooser uniformly at random from{1,...,T'}. iterations are needed to achieveptimality, as proved in
return w,. (Teo et al., 2007) and (Smola et al., 2008). However, when

A = 0, the number of iterations needed can still be very
large, just as in the online case.

logarithmic factors. In practice, however, Algorithm 3 can 14 counter these problems, we proposeraximal bundle

H - * 1 . ) . .
be significantly faster whefiw”|| < Jz. In these cases, methog as shown in Algorithm 4. In particular, consider
the algorithm will tend to operate in the regime of smiaJl  the sequence of primal and dual optimization problems,

and will achieveO (£,5") regret, independent of8
min P;(w) for t=1,2,...,T (10)

wEeR™

4. Batch proximal learning max Di(a) for t=1,2,...., T (11)

acRt:a=0,aT1<t
In the batch learning setting, we are no longer presented
with a sequence of objective functions but rather we aré’vhere t
given a single)-strongly convex objective functiorf : Pi(w) =t - Pr(w) +Z% llw — wi?
R™ — R that we would like to optimize. Batch algorithms , = . ,
are often appropriate when the training set is not partic- pj(a) =32 (Q w12 +aibi> IS owi —esm)) |
ularly large, but the cost of inference with respect to any =% 2AEF T1ee)
individual training example is high. This type of scenariofOr some constants;. .
occurs frequently in structured prediction problems, weher dle algorithm, wy , '

..,7r. As in the standard bun-
= argmingcgn Pe(w). If o =

8As an anecdotal example, on the “combined” dataset in ou’8 maxaeRf:ato,aT}St Dj(c), then the two optima are
experiments, the parameter norm bound corresponding ta the (g|ated b _ Zim(miwi—at i) using strona dualit
which gave the best test set performance wgs ~ 3 x 10°, th.+1 Ab+T1 9 9 4
whereas|w*| = 12.94. On this run, the proximal algorithm In most cutting plane analyses, convergence rates are es-
estimated an upper bound Bf= 16. tablished by lower-bounding the dual improvement in each



Proximal regularization for online and batch learning

Table 1.Convergence dPegasosAdaptive andProximalon nine binary classification tasks. The second through fifth columestigés
size of the training and testing sets, number of features, and the optigugdrieation parameter. The last two sets of three columns
report the best SVM training losg,= min,c1,.._7 f(w:), seen for each tested algorithm, and the number of iterations needelitere
the initial objective function by.99(f(w1) — f). n/a is reported for cases where the optimizer failed to find a better olgjehbtn the
starting parameter set. The best numbers in each group are showd.in bo

Dataset Mitrain Miest n Abest Best training loss Eff. iterations to convergence
Pegasos  Adaptive  Proximal Pegasos Adaptive  Proximal
a%a 32,561 16281 123 1077 0.3537 0.3531 0.3533 28 19 18
combined 78,823 19705 100 107° 0.5299 0.2760 0.2336 100 99 8
connect-4 54,045 13512 126 10~ 7 6.8229 0.9698 0.5136 n/a 99 63
covtype 464,808 116204 54 1078 1.4852 0.7217 0.5830 n/a 96 12
ijcnnl 35,000 91701 22 1077 0.3582 0.2088 0.1857 89 98 3
mnist 60,000 10000 780 107° 0.1200 0.1033 0.1012 75 28 3
revl 20,242 677399 47,236 10" 0.0084 0.0035 0.0487 53 10 83
real-sim 57,846 14463 20,958 10~° 0.0602 0.0602 0.0602 6 5 7
w8a 49,749 14951 300 108 1.5146 0.1391 0.1292 n/a 45 13

iteration, and then arguing that only a limited number of Provided tha\R + A = 0(1), then our analysis yields a
iterations can occur before some termination criteria.(e.g worst case convergence rate(@(%), matching the con-
primal-dual gap) is satisfied. Here, we again use the duajergence rate of our online algorithm, as well as the best
improvement argument, though we obtain somewhat differknown convergence rates for bundle methods.

ent results, given that the dual objective function changes

after each iteration due to the changing proximal regular-We note that the idea of stabilizing standard bundle method

ization terms. Our analysis is closely related to the online?/90rithms to improve convergence has been suggested pre-

learning framework of (Shalev-Shwartz & Kakade, 2009). viously in the.bundle methqd .Iiterature. Proximal bundle
methods originated with (Kiwiel, 1983), and are closely

n t—1
Lemma 3. Ir_1ethw17 - ’Wt*dl < R< and o I? R q f?e related to trust region (Schramm & Zowe, 1992) and level
vectorszstl:llc( thatx _—Y)O anda’1 <t — 1 Itwedefine oo ) emagchal et al., 1995) techniques for bundle method
wy 1= Sl I ) then improvement. In practice, each of these prior methods re-

At—1)+T1:6—1 - . :
quire considerable parameter tuning on the part of the user.

(12)  In contrast, our bundle algorithm is straightforward, with
the curvature terms automatically chosen in order to min-

Using this lower bound, we can then bound the best subopl-mlze aregret bound.

timality obtained by our algorithm aftérsteps:
Proposition 3. Let w* = argmin g~ f(W). Suppose

[Aw: + a”

Di(le1]) = Dis(@) = f(wi) — 2\ + 7o)

5. Experiments

that[|w.|| < Rand|la;[| < A; fort =1,...,T. Then, We carried out two sets of experiments with proximal al-
1 X (AR + A))? gorithms. For the first §et of tasks_,_we_ tested online algo-

min - f(wi) = f(w') < > {%RQ + o= rithms for large-scale binary classification. For the secon
PEtl T = 2(At 4 7 set of tasks, we performed batch training of structured out-

o . put SVMs for RNA folding and web ranking. In both the
Remarkably, the suboptimality guarantees in the proposipnline and batch cases, we ran the optimistic version of our
tion above have essentially the same form as the regrgfroximal algorithm, setting = 0 ands = 1, stopping after
bounds stated in Corollary 1. As a result, we can make Us§ fixed number of iterations, and returning-. ; instead of
of the balancing heuristic for choosing the proximal con-y, a5 in (Shalev-Shwartz et al., 2007).
stantsry, ..., 7. Furthermore, the optimistic strategy for
bounding the optimal parameter norm, as described in Se
tion 3.4, also carries over with little modification. For the
sake of space, we show only the proximal bundle methodn this experiment, we tested the behavior of our algorithm
using the balancing heuristic in Algorithm 4; we do not on nine binary classification datasétdzor each of these
give pseudocode for the optimistic extension explicitlg-U datasets, we first determined the optimal setting\k:
ing Proposition 3 and the argument in Theorem 1, we havéor ensuring good generalization performance using cross-
the following theorem, validation. We then compared tiroximal online al-

Theorem 5. Suppose thafw;| < R and|la;|| < A for

©.1. Online learning with binary classification

Shttp://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/. For

t=1,...,T. Then, Algorithm 4 achieves, each dataset where a binary classification version was not avail-
9 i able, we reduced multiclass to a single class vs. rest problem.
min _ f(wy) — f(w*) < (AR + A)°(1 +logT) When separate testing sets were not available, we reserved 80%

te{l,....,T} - AT ' of the data set for training and 20% for testing.
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Figure 1.Convergence oPegasos Adaptive and Proximal for Figure 2.Test errors oPegasosAdaptive andProximalfor com-
combined and covtype. Left column: combined; Right column:bined and covtype during the course of optimization. Each row
covtype. Each row corresponds to a regularization parameter corresponds to a regularization parameterBottom row: A =
Bottom row: A = Apesy, Middle row: A\ = 10Apes, tOp row: Abesy Middle row: A = 10\pes, top row: A = 100\pest Effective

A = 100Xpest Effective iterations are shown on theaxis. iterations are shown on theaxis.

gorithm againsPegasogShalev-Shwartz et al., 2007) and In the RNA folding experiment, the dataset contained RNA
Adaptiveonline gradient descent (Bartlett et al., 2008) by sequences taken from 151 separate RNA families (Do et al.,
running each algorithm for 100 effective iteratiéhander  2006), and we used a model with approximately 350 dis-
a variety of regularization parameter settings. tinct features based largely on existing thermodynamic
Oscoring schemes for RNA folding. In the ranking experi-
ument, the dataset contained 1000 queries for training, 1000
qeueries for validation, with an average of 50 documents
er query. In both cases, we compared the performance
) ) . o ) _~of the proximal bundle method against the standard bundle
iterations needed to achieve a objective function rednctio

. ) s method for various values of.
of 0.99(f(wy) — f) for each algorithm. Th&roximalal-

gorithm achieves the best objective on 7 out of 9 datasetd;igure 3 shows training loss curves depicting the best-train
while consistently requiring few effective iterations. ing loss obtained so far for a standard bundle method com-

) . pared to our proximal variant. In both methods, many it-
Figures 1 and 2 show learning curve plots and test errogrations pass before the algorithms are able to identify pa-
plots for two of the datasets (combined and covtype). Asameters which improve upon the initial parameter set; for
shown, the proximal algorithm enjoys a comfortable ad-yhe standard bundle method, this problem is especially pro-
vantage over the other methods, especially for sl nounced for small regularization parameters. Again, the

results show that the proximal variant significantly outper
5.2. Batch learning with RNA folding and web ranking  forms the standard algorithm, especially wheis smalll.

In Table 1, we provide some statistics on the training an
testing datasets used. We record the best objective val

In this experiment, we compared our batch proximal learn-

ing algorithm against standard bundle algorithms (Smoléb. Discussion

etal., 2008) for learning RNA folding and web search rank- . . S

ing models. Both of these problems can be formulated:ur_mt_'ons_ with IOW curvature are the Aqhﬂless h?’e' of
as nonsmooth structured SVMs ((Chapelle et al., 2007fPtimization algorithms in machine learning. In this pa-
for ranking and (Do et al., 2006) for RNA folding). To €r, We propose new onl!ne and ba_tchllearmng_algorlthms,
date, the fastest approaches for dealing with this type of/Nich sequentially modify the objective functions used

nonsmooth optimization problem are cutting plane/bundl¢?uring optimization. - By choosing these modified tasks
methods (e.g., SVMPerf (Joachims, 2006) and BMRrMmcarefully, our methods ensure that (1) the sequence of solu-
(Teo et al. 2067))_ ' tions given by these modified tasks will lead to a good ap-

proximate minimizer of the original optimization problem,
%0ne pass through the entire dataset is an effective iteration. and (2) the regret bounds obtained in the online setting and
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