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Abstract

We propose a method that detects the true
direction of time series, by fitting an autore-
gressive moving average model to the data.
Whenever the noise is independent of the pre-
vious samples for one ordering of the observa-
tions, but dependent for the opposite order-
ing, we infer the former direction to be the
true one. We prove that our method works
in the population case as long as the noise of
the process is not normally distributed (for
the latter case, the direction is not identifi-
able). A new and important implication of
our result is that it confirms a fundamental
conjecture in causal reasoning — if after re-
gression the noise is independent of signal for
one direction and dependent for the other,
then the former represents the true causal
direction — in the case of time series. We
test our approach on two types of data: sim-
ulated data sets conforming to our modeling
assumptions, and real world EEG time se-
ries. Our method makes a decision for a sig-
nificant fraction of both data sets, and these
decisions are mostly correct. For real world
data, our approach outperforms alternative
solutions to the problem of time direction re-
covery.

1. Introduction

The field of causal discovery has as its purpose the in-
ference of causal directions from observed data, where
explicit intervention is not permitted (due to consid-
erations of practicality or ethics). Several recent ad-
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vances in causal inference (Shimizu et al., 2006; Hoyer
et al., 2009) have been based around the following de-
sign principle: assume continuous random variables X
and Y are related according to Y = f(X) + ε, where
ε is additive i.i.d. noise independent of X. To fit the
model, regress both X on Y and Y on X, and test for
which direction the obtained noise is independent of
the predictor variable: when the residual noise ε is in-
dependent of X, we determine X to be the cause and
Y to be the effect. We will refer to this principle as
causal direction through noise dependence.

While the above strategy makes intuitive sense, it is
necessary to specify conditions on f and ε under which
it yields an unambiguous answer. Hoyer et al. (2009)
show that apart from certain highly contrived artificial
examples, the forward and reverse models will both ex-
hibit independence between predictors and noise only
when f is linear and the noise is Gaussian. Thus, apart
from these cases, the underlying causal direction can
be found according to the procedure outlined above
(Shimizu et al., 2006; Hoyer et al., 2009).

To further support this kind of causal inference rule we
demonstrate in the current paper that the principle of
causal direction through noise dependence can be ap-
plied to determine the direction of a time series. In our
main theorem, we prove that when the time series is a
causal autoregressive moving average (ARMA) process
with a non-Gaussian noise distribution, then the noise
is independent of all preceding values of the time series
only when the correct ordering is used. On the other
hand, when Gaussian noise is present, the random pro-
cess has no underlying direction. We use these insights
as the basis for a framework to detect time series di-
rection, and provide a specific implementation of this
framework based on a kernel independence test (Gret-
ton et al., 2008). A preliminary version of the method
(without proofs) can be found in (Peters et al., 2009).

While our main motivation is the issue of causality,
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the asymmetry between past and future is considered
a fundamental problem of physics (Reichenbach, 1999;
Hawking, 1995). Thermodynamics suggests to search
for asymmetries that can be phrased in terms of en-
tropy criteria. This is because the entropy of a closed
physical system can only increase or remain constant,
but never decrease in time (the entropy remains con-
stant but increases after appropriate coarse-graining
of the physical state space (Balian, 1992)). In this pa-
per, however, we will consider time series that do not
describe the state of any closed physical system. In-
stead, they stem from the measurement of a particular
quantity in a complex system (an EEG measurement
of brain activity). Some of the time-series are station-
ary, which shows that no entropy increase can indicate
the time direction. We will find the time direction by a
method that assumes that the corresponding stochas-
tic process has a simpler description in forward time
direction than in backward time direction. Models in
(Janzing, 2007) suggest that this kind of asymmetry is
linked to the arrow of time in statistical physics, even
though the connection to the above entropy criterion
is not obvious. Hence, our results can also help to
further understand subtle implications of the physical
arrow of time that appear in real-world data.

We begin our presentation in Section 2, where we in-
troduce our framework for determining time series di-
rection, and specify the statistical tests used in our
implementation (we note that other choices of tests
would also yield valid algorithms). Section 3 provides
a proof of Theorem 1, which is the main theoretical re-
sult of our document, and demonstrates that the direc-
tion of time is identifiable for an ARMA process with
non-Gaussian noise. In Section 4 we provide results
of experiments both with simulated and real (EEG)
data. We compare with LiNGAM (Shimizu et al.,
2006), which has been applied to test time series di-
rectionality (these earlier experiments were inconclu-
sive). LiNGAM follows the principle of causal direc-
tion through noise dependence, but it infers the causal
structure among n random variables from data gen-
erated by independent sampling from the same joint
distribution. Given a single time series, we can arti-
ficially generate a statistical sample by cutting it into
windows of equal length, but this does not take the
full dependence structure into account: thus, while it
can distinguish time direction in toy data, it provides
ambiguous results on EEG data. By contrast, our ap-
proach performs well on both toy and EEG data.

2. Method

2.1. Model

A time series (Xt)t∈Z is called stationary if the dis-
tribution of a random vector (Xt1+h, . . . , Xtn+h) does
not change for any value of h. It is called weakly
stationary if the mean is constant: EXt = µ and
the auto-covariance function only depends on the time
gap: cov(Xt, Xt+h) = γh ∀t, h ∈ Z.

We call a time series (Xt)t∈Z an autoregressive moving
average process of order (p, q), if it is weakly stationary
and there is an iid noise εt with mean zero, such that

Xt =
p∑
i=1

φiXt−i +
q∑
j=1

θjεt−j + εt ∀t ∈ Z .

For q = 0 the process reduces to an autoregressive
process and for p = 0 to a moving average process.
The short-hand notations are ARMA(p, q), AR(p) and
MA(q).
Defining the backward shift operator B via BjXt =
Xt−j the ARMA equation simplifies to

φ(B)Xt = θ(B)εt ∀t ∈ Z , (1)

with the polynomials φ(z) = 1− φ1z − . . .− φpzp and
θ(z) = 1 + θ1z + . . .+ θqz

q.

An ARMA process is called causal if the noise εt is
independent of all preceding values of the time series
Xi , i < t. There exist equivalent characterizations of
causal time series:

Lemma 1 For an ARMA(p, q) process satisfying
φ(B)Xt = θ(B)εt, where φ(z) and θ(z) have no com-
mon zeros, the following are equivalent:1

(i) The process is causal.
(ii) There exists a sequence (ψi), such that∑∞

i=0 |ψi| <∞ and

Xt =
∞∑
i=0

ψiεt−i . (2)

(iii) φ(z) does not have any zeros in the unit circle
|z| ≤ 1.

If this is the case, the coefficients ψi of (2) are deter-
mined by ψ(z) =

∑∞
i=0 ψiz

i = θ(z)
φ(z) |z| ≤ 1 .

(i) ⇔ (ii) is easily checked, (ii) ⇔ (iii) is proved by
Brockwell & Davis (1991).

1Note that in (Brockwell & Davis, 1991) causal pro-
cesses are actually defined as those satisfying condition (ii).
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We call an ARMA process time-reversible if there is
an iid noise sequence ε̃t, such that

Xt =
p̃∑
i=1

φ̃iXt+i +
q̃∑
j=1

θ̃j ε̃t+j + ε̃t ,

where ε̃t is independent of all Xi with i > t. In Sec-
tion 3 we prove that causal ARMA processes are time-
reversible if and only if the noise is Gaussian.

In their work (Weiss, 1975) and (Breidt & Davis, 1991)
the authors call a strictly stationary process time-
reversible if (X0, . . . , Xh) and (X0, . . . , X−h) equal in
distribution for all h. Their theoretical result about
the characterization of time-reversible processes is re-
lated to the Gaussian distribution, too. Diks et al.
(1995) use this notion of time-reversibility to test
whether a process is Gaussian. For our purposes, how-
ever, this notion is not appropriate because, a priori,
both forward and backward process could be ARMA
processes even though they do not coincide in distri-
bution. Moreover, we do not want to restrict ourselves
to strictly stationary processes.

From now on we assume the data to follow a causal
ARMA process with non-Gaussian noise (model as-
sumption).

Finally we remark that our definition of ARMA pro-
cesses requires only weak stationarity at the cost of re-
stricting the model to variables with finite variances.
However, to include long-tailed distributions with infi-
nite variance we will replace weak stationarity with
strict stationarity. Brockwell & Davis (1991) show
that then the expansion (2) is still valid. To ensure
strict stationarity we consider Levy skew stable (or α-
stable) distributed noise. As an interesting example of
a non time-reversible process we will later use Cauchy
distributed noise in the experiments.

2.2. Algorithm

The algorithm is built on the idea that non-Gaussian
causal ARMA processes are not time-reversible. Thus
we proceed as in Algorithm 1.

Here, “(resa, a) independent” means that the residuals
resa = (ε1, . . . , εn) are independent of the preceding
time series values, id est εt+1 is independent of xt.

To implement this algorithm we need tests for nor-
mality and independence, and a method to fit ARMA
processes. We now describe these components, bear-
ing in mind that the method will also work with other
choices (though possibly with altered performance).

Algorithm 1 Detecting true Time Direction
1: Input: a = (x1, . . . , xn), b = (xn, . . . , x1)

2: modela=armafit(a)
3: resa = modela.residuals
4: modelb=armafit(b)
5: resb = modelb.residuals

6: if resa normally distributed then
7: output =“I do not know (Gaussian process)”
8: break
9: end if

10: if (resa, a) independent then
11: if (resb, b) dependent then
12: output =“(x1, . . . , xn) correct time direction”
13: end if
14: else if (resa, a) dependent then
15: if (resb, b) independent then
16: output =“(xn, . . . , x1) correct time direction”
17: else if (resb, b) dependent then
18: output =“I do not know (bad fit)”
19: end if
20: end if

• Normality Test
We chose the Jarque-Bera test (Jarque & Bera,
1987), which is a simple test for normality based
on skewness and kurtosis of the distribution.

• Independence Test
Choosing a good independence test is important
for the performance of our method. Since there is
no obvious way to discretize the continuous data,
standard tests (like χ2) are not very well-suited
for this method. In our implementation we used
a statistical test of independence based on the
Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005; Smola et al., 2007; Gretton
et al., 2008). This criterion estimates the distance
between the joint distribution of two random vari-
ables and the product of their distributions in a
Reproducing Kernel Hilbert Space. Depending on
the choice of the kernel it can be shown that the
HSIC is zero if and only if the two random vari-
ables are independent. The distribution of the
HSIC itself under the hypothesis of independence
converges (scaled with the number of data points)
to a weighted sum of Chi-Squares, which can be
estimated by a Gamma distribution (Kankainen,
1995).
In our method we test if the residuals resa are
independent of the time series values a and if the
residuals resb are independent of b. This yields
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two different p-values: pa and pb. If pa = 0.003
and pb = 0.43, for example, we reject the inde-
pendence in the first case and we do not reject
it in the second case. Thus we infer direction b
to be the true one (see Figure 1). But how shall
we decide if pa = 0.021 and pb = 0.033? To this
end we introduce two parameters to our method
(which would be needed for any other indepen-
dence test): the minimal difference in p-values δ,
and a significance level α. We only decide if the
difference in p-values is larger than δ and if ex-
actly one p-value is below α. If we chose a large
value for δ and a small value for α our method
makes fewer decisions, but also fewer mistakes.
Technically we need iid data of the residuals ε
and the time series values Xt to perform the in-
dependence test. Clearly, the time series values
(x1, . . . , xn) are not iid. If the ARMA process is
strictly stationary, the values are identically dis-
tributed. But it lies in the nature of time se-
ries models that (x1, . . . , xn) are not independent.
This dependence within the values of xt, however,
does not influence the independence test much,
since the test is looking for a dependence between
the joint samples of (res and xt). To reduce the
effect further we also introduce a gap (3 in all ex-
periments) between the values of the time series
being considered.

• Fitting an ARMA process
We use the program R (RProject, 2009) to fit an
ARMA process to the data. R computes a Gaus-
sian Likelihood via a state-space representation
of the ARMA process and uses a Kalman filter to
find the innovations. We use an information cri-
terion (AICC) to select the order of the process.
In the experiments we fitted ARMA processes of
order up to (5,5).

We are aware of the ambiguity between the need
for a non-Gaussian distributed process for our
method to work and the assumption of a normal
distribution for the fit at the same time. It can be
shown, however, (see Chapter 9.3 in (Brockwell &
Davis, 1991)) that fitting a model to non-Gaussian
ARMA processes using a Gaussian Likelihood and
AICC still leads to good results. It is possible to
avoid the normality assumption by performing a
fit using the innovations algorithm (see Chapter
8.4 in (Brockwell & Davis, 1991)).

3. Time Identifiability

This section justifies the key procedure of our method.
As the main theoretical result of this work we prove
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Figure 1. Simulated AR(1) process with uniformly dis-
tributed noise: The fitted residuals of the forward model
(left) and of the backward model (right) are plotted against
the preceding time series values. The fit in the wrong di-
rection leads to a strong dependence between residuals and
time series (p-value of 0.0001), the residuals of the forward
model are regarded as independent (p-value of 0.6744).

that if a time series follows a causal ARMA model with
non-Gaussian noise, it is not time-reversible.

Theorem 1 Let (Xt) be a causal ARMA process with
iid noise and non-vanishing AR part. Then the process
is time-reversible if and only if the noise is normally
distributed.

Proof. For the only if part of this proof we need
a characterization of the normal distribution that is
based on Mamai and Skitovich (Darmois, 1953; Ski-
tovic, 1962). Together with a technical detail of the
proof this characterization is provided in the appendix.
First we prove the easy direction of the theorem:

⇐: A Gaussian distribution is characterized by
its mean and its covariance matrix, meaning
weak and strict stationarity coincide. For an
ARMA process with Gaussian noise we have
(Xt+p, . . . , Xt)

d= (X−t−p, . . . , X−t) because the
covariance matrix is symmetric. If for the forward
direction an iid sequence (εt) exists such that (Xt)
is a causal ARMA process, it is clear that there is a
(different) iid sequence (ε̃t) with the same properties
with respect to the reversed direction.

⇒: By assumption, we have

Xt =
p̃∑
i=1

φ̃iXt+i +
q̃∑
j=1

θ̃j ε̃t+j + ε̃t ∀t ∈ Z .

Thus using (2) we can write

q̃∑
j=1

θ̃j ε̃t−p̃+j + ε̃t−p̃ = Xt−p̃ −
p̃∑
j=1

φ̃jXt−p̃+j

=
∞∑
i=0

ψi−p̃ − p̃∑
j=1

φ̃jψi+j−p̃

 εt−i ,
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where ψi = 0 for all i < 0. Additionally we have

Xt−p̃+q̃+1 =
∞∑
i=0

ψi εt−p̃+q̃+1−i

=
∞∑

i=q̃−p̃+1

ψp̃−q̃−1+i εt−i .

Both sums are converging absolutely with probability
one (see (Brockwell & Davis, 1991)) and by assump-
tion, the left hand sides are independent of each other.
Now we can apply Lemma 2, which is a generaliza-
tion of the Darmois-Skitovich theorem and stated in
the Appendix. Lemma 3 shows that the boundedness
conditions from Lemma 2 are satisfied. We can there-
fore conclude that the noise εt is Gaussian distributed
(note that some εt occur on both sides because of the
non-vanishing AR part). But then Xt is Gaussian
distributed, too: Define X(n)

t :=
∑n
i=1 ψiεt−i. Since

(X(n)
t )n is converging in L2 and in distribution, Xt is

Gaussian distributed. �

Note that we excluded all MA processes. This is neces-
sary because an MA(1) process with coefficient θ1 = 1,
for example, can be reversed for all noise distribu-
tions. In the following section the experiments with
simulated data underline the necessity of non-Gaussian
noise.

4. Experiments

We applied our method to simulated and real data.
Recall that the method does not apply to processes
with Gaussian noise, for which no “true” direction ex-
ists. Normally distributed noise is often used in appli-
cations because of its nice computational properties,
but there remains controversy as to how often this is
consistent with the data. In many cases using noise
with heavier tails than the Gaussian would be more
appropriate (e.g. (Mandelbrot, 1967), also (Pearlmut-
ter & Parra, 1997)). In the finance sector especially,
heavy-tailed distributions can explain the occurrence
of extreme events better than the normal distribution.

We compare our approach to LiNGAM (Shimizu et al.,
2006), which has been proposed for the task of detect-
ing the direction of real world time series. Using iid
samples of a random vector (X1, . . . , Xm), LiNGAM
produces a causal graph with possible links between
the random variables. Given a time series the data is
separated into time windows of a length that equals the
number p of included variables (e.g. X1, . . . , X5). The
different windows are then treated as samples of these
variables (x1, x6, x11, . . . are all assigned to X1). If the

resulting graph of the included variables is time con-
sistent in the sense that all causal links go from lower
to higher labelled variables (or vice versa), this direc-
tion is proposed to be the true one. Note that even
if the data comes from an autoregressive process the
problem of possibly confounding can cause difficulties
for the algorithm. Another drawback of this approach
is that there is no canonical way to choose the number
p of included variables. In their experiments the au-
thors used 3 or 5 variables (Shimizu et al., 2006). For
14 out of 22 time series LiNGAM proposed a direction
(in the other cases the result was inconsistent); 5 out
of these 14 decisions were correct. While we obtained
somewhat more promising results for LiNGAM on our
artificial data, our experience with LiNGAM on the
real data set was not convincing.

Simulated Data. In order to support the theoreti-
cal result given above, we simulated many instances of
an ARMA(2,2) process, each time with the same fixed
parameters. Additionally we used varying noise distri-
butions. For r ranging between 0.1 and 2 we sampled
εt ∼ sgn(Z) · |Z|r, where Z is normally distributed,
and scaled it to variance 1. Only r = 1 results in a
normal distribution. We expect our method to work
for r sufficiently different from 1. In this experiment
we did not perform the normality test (line 6-9 in the
algorithm) and we set δ = 0.05 and α = 0.96; chang-
ing these values does not have a big influence on the
results. The left panel of Figure 2 shows results. Note
that the indistinguishability for the Gaussian case is
not a problem of our method, but due to the theoret-
ical result given by Theorem 1.
For the right panel of Figure 2 we used a χ2 indepen-
dence test instead of the HSIC independence test. The
discretization for the χ2 was chosen such that there
was at least one data point in every bin. It performed
worse than the HSIC. The same phenomenon occurs
when comparing the two independence tests on real
data.

We further simulated AR(p) processes of different
orders (p = 1, . . . , 5) with randomly chosen coeffi-
cients. Given five distributions for the noise (Gaus-
sian, Laplace, Cauchy, Student-t and uniform) we used
our method to predict the true time direction. Again,
the noise was simulated such that the variance was
one, except for the Cauchy distribution. For each or-
der/noise combination we received the proportion of
correctly and wrongly classified time series (both out
of 100). See Figure 3 for details. The method works
well on all distributions except for the Gaussian. Note
that it works best for the Cauchy distribution, which
is an example of an α stable distribution with infi-
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Figure 2. For each value of r (i.e. for each kind of noise)
we simulated 100 instances of an ARMA(2,2) process. The
graphs show the proportion of correctly and wrongly classi-
fied time series depending on r. Because Gaussian ARMA
processes are symmetric in time, the method has to fail for
r ≈ 1. The left panel shows our method using the HSIC
independence test, for the right one we used a χ2 indepen-
dence test instead, which results in a worse performance.

nite variance. For higher order processes estimating
the parameters of the true model becomes more dif-
ficult. Thus we sometimes find dependencies between
the noise and the values of the time series even in the
true direction. This already shows possible difficulties
in dealing with real data.
We also included a comparison with LiNGAM (see Fig-
ure 4). Although the authors of (Shimizu et al., 2006)
did not mention it, the method clearly works for sim-
ulated AR processes. Since there is no way of choos-
ing the number of included variables automatically, we
had to set it manually to 4 and 7. For some orders the
performance is comparable to our method, for others
it is worse.
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Figure 3. The histogram shows the proportion of correctly
and wrongly classified time series (out of 100). The param-
eters are chosen as before: minimal difference in p-values
δ = 5%, significance level α = 4%. A change in the pa-
rameters leads respectively to slightly more decisions losing
accuracy or less decisions gaining accuracy. In most cases
(except the Gaussian) the correct classification rate signif-
icantly exceeds 50%.
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Figure 4. Same experiment as in Figure 3, but using
LiNGAM. The performance is comparable to our method
for p = 4, but worse for p = 7.

Real Data. In order to show that our method is ap-
plicable to real data, we used a publicly available EEG
data set (EEGdata, 2008) consisting of 118 channels
of a single subject. The sampling rate was 1000Hz and
we considered the first 5 seconds of each channel, cut
into 10 pieces. In total this gave 1180 time series of
length 500. The results of our method for different val-
ues of α and δ are shown in Figure 5. As α shrinks and
δ grows, the algorithm makes fewer mistakes, but also
classifies fewer time series. That said, classification ac-
curacy consistently exceeds 50%. By comparison, the
performance of LiNGAM is provided in Table 1, and
is worse than our approach: indeed, it does not always
exceed chance level.
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Figure 5. EEG data: The left panel shows the number of
classified time series (out of 1180), and the right panel the
proportion of correctly classified time series, depending on
the parameters α and δ. The results are consistently better
than chance, reaching a correct classification rate of up to
82%.

Note that our method is not restricted to EEG data.
In (Peters et al., 2009) we did an experiment on a
mixed collection of 200 time series from different areas.
Our method also exceeded chance level on these data.
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Table 1. Same experiment as in Figure 5, this time us-
ing LiNGAM for detecting the true time direction. The
columns show the number of included variables p, the num-
ber of classified time series and the proportion of those that
were correctly classified. The performance is worse than
our method, even chance level is not always exceeded.

included classified cor. classified
variables (p) time series time series

2 1100 0.4636
3 451 0.6563
4 102 0.5294
5 133 0.5489
6 109 0.4954
7 242 0.5372
8 200 0.5150
9 130 0.5538
10 114 0.4561
11 116 0.5603

5. Discussion and Future Work

In this work we have shown that causal inference based
methods are able to detect the true time direction in
time series. We have introduced a method which as-
sumes the data to follow an ARMA process with inde-
pendent non-Gaussian noise. We proved its ability to
work in the population case and showed that it works
well on simulated data. For real world data, our algo-
rithm proposes a direction for a significant fraction of
the time series, most of which are correct.
We argued that our method is closely related to causal
inference methods like LiNGAM, which in principle
can also be used for detecting the time direction. We
showed that LiNGAM works on simulated data, but
performs worse than our method.
In the experiments our method did not propose a
time direction for many time series, because the fit
led to dependent noise in both directions. This sug-
gests that the model class of causal ARMA processes
may still be too small. Generalizing our method and
the theoretical results to other time series models like
GARCH, which allows heteroscedastic noise, or to non-
linear models, may further improve our method. It is
also worth investigating if we can change the fit of an
ARMA process. Instead of minimizing a loss function
related to the likelihood or the sum of squares, we
should use the instance of an ARMA model that leads
to the “most independent” noise. These are important
topics for future work.

A. Characterizing the Normal
Distribution

The Darmois-Skitovich theorem ((Darmois,
1953),(Skitovic, 1962)) states that if two non-trivial
linear combinations of independent random variables
are themselves independent then all summands are
normally distributed. This fact can be used to prove
the AR(1) case, for example. It turns out, however,
that the Darmois-Skitovic can be generalized to an
infinite sum, which we need for our purposes. This
was first done by Mamai (Mamai, 1963):

Lemma 2 Let (Xt) be a sequence of independent ran-
dom variables and assume that both

∑∞
i=1 aiXi and∑∞

i=1 biXi converge almost surely. Further suppose
that the sequences {ai

bi
: bi 6= 0} and { bi

ai
: ai 6= 0}

are bounded. If
∞∑
i=1

aiXi and
∞∑
i=1

biXi

are independent, then each Xi for which aibi 6= 0 is
normally distributed.

B. Boundedness Condition

Lemma 3 For all possible causal backward models
ARMA(p̃, q̃) both∣∣∣∣∣ ψp̃−q̃−1+i∑p̃

j=0 cjψi+j−p̃

∣∣∣∣∣ and

∣∣∣∣∣
∑p̃
j=0 cjψi+j−p̃

ψp̃−q̃−1+i

∣∣∣∣∣
(3)

are bounded in i (see (2) for the coefficients ψi).

Here, c1 := −φ̃1, . . . , cp̃ := −φ̃p̃ ∈ R and c0 := 1.

Proof.

We have the following expression for ψi (see Chapter
3.3 in (Brockwell & Davis, 1991)):

ψi =
S∑
s=1

Ts−1∑
t=1

αs,t i
t ξ−is ,

where αs,t are some coefficients, ξs are the distinct
(possibly complex) roots of φ(z) and Ts their multi-
plicity. Wlog assume that αs,Ts−1 6= 0 ∀s. We can
write the left fraction of (3) as∑S

s=1

∑Ts−1
t=1 αs,t (p̃− q̃ − 1 + i)t ξ−p̃+q̃+1−i

s∑p̃
j=0 cj

∑S
s=1

∑Ts−1
t=1 αs,t (i+ j − p̃)t ξ−i−j+p̃s

=
∑S
s=1

∑Ts−1
t=1 αs,t ξ

−p̃+q̃+1
s (p̃− q̃ − 1 + i)t ξ−is∑S

s=1

∑Ts−1
t=1 αs,t ξ

p̃
s
∑p̃
j=0 cj ξ

−j
s (i+ j − p̃)t ξ−is

.

(4)
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To investigate the limit behaviour we again consider
only leading terms in i. More specifically, all sum-
mands are going to zero since |ξ−1

s | < 1. The root
ξs0 with the smallest modulus converges towards zero
with the slowest rate and thus the corresponding sum-
mand determines the overall convergence. We divide
both numerator and denominator of (4) by iTs0−1 ξ−is0
to see that the fraction converges towards∣∣∣∣∣ αs0,Ts0−1 ξ

−p̃+q̃+1
s0

αs0,Ts0−1 ξ
p̃
s0

∑p̃
j=0 cj ξ

−j
s0

∣∣∣∣∣
for i→∞. This surely implies boundedness.
Note that the coefficient

αs0,Ts0−1 ξ
p̃
s0

p̃∑
j=0

cj ξ
−j
s0

does not vanish because this implies
∑p̃
j=0 cj ξ

−j
s0 =

φ̃(ξ−1
s0 ) = 0. That means ξ−1

s0 is a root of φ̃(z), which is
contrary to the restriction of a causal backward model
(|ξs0 | > 1, cf Lemma 1). �
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Mamai, L. V. (1963). On the theory of characteristic
functions. Select. Transl. Math. Stat. Probab., 4,
153–170.

Mandelbrot, B. (1967). On the distribution of stock
price differences. Operations Research, 15 (6), 1057–
1062.

Pearlmutter, B. A., & Parra, L. C. (1997). Maxi-
mum likelihood blind source separation: A context-
sensitive generalization of ica. In Advances in Neu-
ral Information Processing Systems 9, 613–619. MIT
Press.

Peters, J., Janzing, D., Gretton, A., & Schölkopf, B.
(2009). Kernel methods for detecting the direction
of time series. In: Proccedings of the 32nd An-
nual Conference of the German Classification So-
ciety (GfKl 2008), 1–10.

Reichenbach, H. (1999). The direction of time. Dover.

RProject (2009). The r project for statistical com-
puting. Website, 15.1.2009, 1:07pm. http://www.
r-project.org/.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kermi-
nen, A. (2006). A linear non-gaussian acyclic model
for causal discovery. Journal of Machine Learning
Research, 7, 2003–2030.

Skitovic, V. P. (1962). Linear combinations of indepen-
dent random variables and the normal distribution
law. Select. Transl. Math. Stat. Probab., 2, 211–228.

Smola, A. J., Gretton, A., Song, L., & Schölkopf, B.
(2007). A Hilbert space embedding for distributions.
In Algorithmic Learning Theory: 18th International
Conference (ALT), 13–31. Springer-Verlag.

Weiss, G. (1975). Time-reversibility of linear stochas-
tic processes. J. Appl. Prob., 12, 831–836.


