
Monte-Carlo Simulation Balancing

David Silver silver@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, AB

Gerald Tesauro gtesauro@us.ibm.com

IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY

Abstract

In this paper we introduce the first algo-
rithms for efficiently learning a simulation
policy for Monte-Carlo search. Our main idea
is to optimise the balance of a simulation pol-
icy, so that an accurate spread of simulation
outcomes is maintained, rather than optimis-
ing the direct strength of the simulation pol-
icy. We develop two algorithms for balanc-
ing a simulation policy by gradient descent.
The first algorithm optimises the balance of
complete simulations, using a policy gradient
algorithm; whereas the second algorithm op-
timises the balance over every two steps of
simulation. We compare our algorithms to
reinforcement learning and supervised learn-
ing algorithms for maximising the strength
of the simulation policy. We test each al-
gorithm in the domain of 5 × 5 and 6 × 6
Computer Go, using a softmax policy that is
parameterised by weights for a hundred sim-
ple patterns. When used in a simple Monte-
Carlo search, the policies learnt by simulation
balancing achieved significantly better per-
formance, with half the mean squared error of
a uniform random policy, and similar overall
performance to a sophisticated Go engine.

1. Introduction

Monte-Carlo search algorithms use the average out-
come of many simulations to evaluate candidate ac-
tions. They have achieved human master level in
a variety of stochastic two-player games, including
Backgammon (Tesauro & Galperin, 1996), Scrabble
(Sheppard, 2002) and heads up Poker (Billings et al.,
1999). Monte-Carlo tree search evaluates each state

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

in a search-tree by Monte-Carlo simulation. It has
proven surprisingly successful in deterministic two-
player games, achieving master-level at 9 × 9 Go
(Gelly & Silver, 2007; Coulom, 2007) and winning
the General Game-Playing competition (Finnsson &
Björnsson, 2008).

In these algorithms, many games of self-play are sim-
ulated, using a simulation policy to select actions for
both players. The overall performance of Monte-Carlo
search is largely determined by the simulation policy.
A simulation policy with appropriate domain knowl-
edge can dramatically outperform a uniform random
simulation policy (Gelly et al., 2006). Automatically
improving the simulation policy is a major goal of
current research in this area (Gelly & Silver, 2007;
Coulom, 2007; Chaslot et al., 2008). Two approaches
have previously been taken to improving the simula-
tion policy.

The first approach is to directly construct a strong
simulation policy that performs well by itself, either
by hand (Billings et al., 1999), reinforcement learning
(Tesauro & Galperin, 1996; Gelly & Silver, 2007), or
supervised learning (Coulom, 2007). Unfortunately,
a stronger simulation policy can actually lead to a
weaker Monte-Carlo search (Gelly & Silver, 2007), a
paradox that we explore further in this paper.

The second approach to learning a simulation policy is
by trial and error, adjusting parameters and testing for
improvements in the performance of the Monte-Carlo
player, either by hand (Gelly et al., 2006), or by hill-
climbing (Chaslot et al., 2008). However, each param-
eter evaluation usually requires many complete games,
thousands of positions, and millions of simulations to
be executed. Furthermore, hill-climbing methods do
not scale well with increasing dimensionality, and fare
poorly with complex policy parameterisations.

Handcrafting an effective simulation policy is partic-

This work was supported in part under the DARPA
GALE project, contract No. HR0011-08-C-0110.

Monte-Carlo Simulation Balancing

ularly problematic in Go. Many of the top Go pro-
grams utilise a small number of simple patterns and
rules, based largely on the default policy used in MoGo
(Gelly et al., 2006). Adding further Go knowledge
without breaking MoGo’s “magic formula” has proven
to be surprisingly difficult.

In this paper we introduce a new paradigm for learning
a simulation policy. We define an objective function,
which we call imbalance, that explicitly measures the
performance of a simulation policy for Monte-Carlo
evaluation. We introduce two new algorithms that
minimise the imbalance of a simulation policy by gradi-
ent descent. These algorithms require very little com-
putation for each parameter update, and are able to
learn expressive simulation policies with hundreds of
parameters.

We evaluate our simulation balancing algorithms in
the game of Go. We compare them to reinforcement
learning and supervised learning algorithms for max-
imising strength, and to a well-known simulation pol-
icy for this domain, handcrafted by trial and error.
The simulation policy learnt by our new algorithms
significantly outperforms prior approaches.

2. Strength and Balance

We consider deterministic two-player games of finite
length with a terminal outcome or score z ∈ R. During
simulation, move a is selected in state s according to
a stochastic simulation policy πθ(s, a) with parameter
vector θ, that is used to select moves for both players.
The goal is to find the parameter vector θ∗ that max-
imises the overall playing strength of a player based
on Monte-Carlo search. Our approach is to make the
Monte-Carlo evaluations in the search as accurate as
possible, by minimising the mean squared error be-
tween the estimated values V (s) = 1

N

∑N
i=1 zi and the

minimax values V ∗(s).

When the number of simulations N is large, the mean
squared error is dominated by the bias of the sim-
ulation policy with respect to the minimax value,
V ∗(s)−Eπθ [z|s], and the variance of the estimate (i.e.
the error caused by only seeing a finite number of sim-
ulations) can be ignored. Our objective is to minimise
the mean squared bias, averaged over the distribution
of states ρ(s) that are evaluated during Monte-Carlo
search.

θ∗ = argmin
θ

Eρ
[
(V ∗(s)− Eπθ [z|s])

2
]

(1)

where Eρ denotes the expectation over the distribution
of actual states ρ(s), and Eπθ denotes the expectation

over simulations with policy πθ.

In real-world domains, knowledge of the true min-
imax values is not available. In practice, we use
the values V̂ ∗(s) computed by deep Monte-Carlo tree
searches, which converge on the minimax value in the
limit (Kocsis & Szepesvari, 2006), as an approximation
V̂ ∗(s) ≈ V ∗(s).

At every time-step t, each player’s move incurs some
error δt = V ∗(st+1)− V ∗(st) with respect to the min-
imax value V ∗(st). We will describe a policy with a
small error as strong, and a policy with a small ex-
pected error as balanced. Intuitively, a strong policy
makes few mistakes, whereas a balanced policy allows
many mistakes, as long as they cancel each other out
on average. Formally, we define the strength J(θ) and
k-step imbalance Bk(θ) of a policy πθ,

J(θ) = Eρ
[
Eπθ

[
δ2t |st = s

]]
(2)

Bk(θ) = Eρ


Eπθ

k−1∑
j=0

δt+j |st = s

2
 (3)

= Eρ
[
(Eπθ [V ∗(st+k)− V ∗(st)|st = s])2

]
We consider two choices of k in this paper. The two-
step imbalance B2(θ) is specifically appropriate to two-
player games. It allows errors by one player, as long as
they are on average cancelled out by the other player’s
error on the next move. The full imbalance B∞ allows
errors to be committed at any time, as long as they
cancel out by the time the game is finished. It is ex-
actly equivalent to the mean squared bias that we are
aiming to optimise in Equation 1,

B∞(θ) = Eρ
[
(Eπθ [V ∗(sT)− V ∗(s)|st = s])2

]
= Eρ

[
(Eπθ [z|st = s]− V ∗(s))2

]
(4)

where sT is the terminal state with outcome z. Thus,
while the direct performance of a policy is largely de-
termined by its strength, the performance of a policy
in Monte-Carlo simulation is determined by its full im-
balance.

If the simulation policy is optimal, Eπθ [z|s] = V ∗(s),
then perfect balance is achieved, B∞(θ) = 0. This
suggests that optimising the strength of the simula-
tion policy, so that individual moves become closer to
optimal, may be sufficient to achieve balance. How-
ever, even small errors can rapidly accumulate over

Monte-Carlo Simulation Balancing

-10

-5

 0

 5

 10

 0 10 20 30 40 50 60 70 80 90 100

M
in

im
ax

 v
al

ue

Time steps

Simulations
Mean

Monte-Carlo value

-10

-5

 0

 5

 10

 0 10 20 30 40 50 60 70 80 90 100

M
in

im
ax

 v
al

ue

Time steps

Simulations
Mean

Monte-Carlo value

Figure 1. Monte-Carlo simulation in an artificial two-player game. 30 simulations of 100 time steps were executed from
an initial state with minimax value 0. Each player selects moves imperfectly during simulation, with an error that
is exponentially distributed with respect to the minimax value, with rate parameters λ1 and λ2 respectively. a) The
simulation players are strong but imbalanced: λ1 = 10, λ2 = 5, b) the simulation players are weak but balanced:
λ1 = 2, λ2 = 2. The Monte-Carlo value of the weak, balanced simulation players is significantly more accurate.

the course of long simulations if they are not well-
balanced. It is more important to maintain a diverse
spread of simulations, which are on average representa-
tive of strong play, than for individual moves or sim-
ulations to be low in error. Figure 1 shows a sim-
ple scenario in which the error of each player is i.i.d
and exponentially distributed with rate parameters λ1

and λ2 respectively. A weak, balanced simulation pol-
icy (λ1 = 2, λ2 = 2) provides a much more accu-
rate Monte-Carlo evaluation than a strong, imbalanced
simulation policy (λ1 = 10, λ2 = 5).

In large domains it is not usually possible to achieve
perfect strength or perfect balance, and some approxi-
mation is required. Our hypothesis is that very differ-
ent approximations will result from optimising balance
as opposed to optimising strength, and that optimising
balance will lead to significantly better Monte-Carlo
performance.

To test this hypothesis, we implement two algorithms
that maximise the strength of the simulation policy,
using apprenticeship learning and reinforcement learn-
ing respectively. We then develop two new algorithms
that minimise the imbalance of the simulation policy
by gradient descent. Finally, we compare the perfor-
mance of these algorithms in 5× 5 and 6× 6 Go.

3. Softmax Policy

We use a softmax policy to parameterise the simulation
policy,

πθ(s, a) =
eφ(s,a)T θ∑
b e
φ(s,b)T θ

(5)

where φ(s, a) is a vector of features for state s and
action a, and θ is a corresponding parameter vector
indicating the preference of the policy for each feature.

The softmax policy can represent a wide range of
stochasticity in different positions, ranging from near
deterministic policies with large preference disparities,
to uniformly random policies with equal preferences.
The level of stochasticity is very significant in Monte-
Carlo simulation: if the policy is too deterministic then
there is no diversity and Monte-Carlo simulation can-
not improve the policy; if the policy is too random
then the overall accuracy of the simulations is dimin-
ished. Existing paradigms for machine learning, such
as reinforcement learning and supervised learning, do
not explicitly control this stochasticity. One of the mo-
tivations for simulation balancing is to tune the level
of stochasticity to a suitable level in each position.

We will need the gradient of the log of the softmax
policy, with respect to the policy parameters,

∇θ log πθ(s, a) = ∇θ log eφ(s,a)T θ −∇θ log

 X
b

eφ(s,b)T θ

!

= ∇θ
“
φ(s, a)T θ

”
−
∇θ
P
b e
φ(s,b)T θP

b e
φ(s,b)T θ

= φ(s, a)−
P
b φ(s, b)eφ(s,b)T θP

b e
φ(s,b)T θ

= φ(s, a)−
X
b

πθ(s, b)φ(s, b) (6)

which is the difference between the observed feature

Monte-Carlo Simulation Balancing

vector and the expected feature vector. We denote
this gradient by ψ(s, a).

4. Optimising Strength

We consider two algorithms for optimising the strength
of a simulation policy, by supervised learning and re-
inforcement learning respectively.

4.1. Apprenticeship Learning

Our first algorithm optimises the strength of the sim-
ulation policy by apprenticeship learning. The aim of
the algorithm is simple: to find a simulation policy
that behaves as closely as possible to a given expert
policy µ(s, a).

We consider a data-set of L training examples (sl, a∗l)
of actions a∗l selected by expert policy µ in positions sl.
The apprenticeship learning algorithm finds parame-
ters maximising the likelihood, L(θ), that the simula-
tion policy π(s, a) produces the actions a∗l

1. This is
achieved by gradient ascent of the log likelihood,

L(θ) =

LY
l=1

π(sl, a
∗
l)

logL(θ) =

LX
l=1

log π(sl, a
∗
l)

∇θ logL(θ) =

LX
l=1

∇θ log π(sl, a
∗
l)

=

LX
l=1

ψ(sl, a
∗
l) (7)

This leads to a stochastic gradient ascent algorithm, in
which each training example (sl, a∗l) is used to update
the policy parameters, with step-size α,

∆θ = αψ(sl, a∗l) (8)

4.2. Policy Gradient Reinforcement Learning

Our second algorithm optimises the strength of the
simulation policy by reinforcement learning. The ob-
jective is to maximise the expected cumulative reward
from start state s. Policy gradient algorithms adjust
the policy parameters θ by gradient ascent, so as to
find a local maximum for this objective.

We define X (s) to be the set of possible games ξ =
(s1, a1, ..., sT , aT) of states and actions, starting from

1These parameters are the log of the ratings that
maximise likelihood in a generalised Bradley-Terry model
(Coulom, 2007).

s1 = s. The policy gradient can then be expressed as
an expectation over game outcomes z(ξ),

Eπθ [z|s] =
X

ξ∈X (s)

Pr(ξ)z(ξ)

∇θEπθ [z|s] =
X

ξ∈X (s)

∇θ(πθ(s1, a1)...πθ(sT , aT))z(ξ)

=
X

ξ∈X (s)

πθ(s1, a1)...πθ(sT , aT)

„
∇θπθ(s1, a1)

πθ(s1, a1)
+ ...+

∇θπθ(sT , aT)

πθ(sT , aT)

«
z(ξ)

= Eπθ

"
z

TX
t=1

∇θ log πθ(st, at)

#

= Eπθ

"
z

TX
t=1

ψ(st, at)

#
(9)

The policy parameters are updated by stochastic gra-
dient ascent with step-size α, after each game, leading
to a REINFORCE algorithm (Williams, 1992),

∆θ =
αz

T

TX
t=1

ψ(st, at) (10)

5. Optimising Balance

We now introduce two algorithms for minimising the
full imbalance and two-step imbalance of a simulation
policy. Both algorithms learn from V̂ ∗(s), an approxi-
mation to the minimax value function constructed by
deep Monte-Carlo search.

5.1. Policy Gradient Simulation Balancing

Our first simulation balancing algorithm minimises the
full imbalance B∞ of the simulation policy, by gradient
descent. The gradient breaks down into two terms.
The bias, b(s), indicates the direction in which we need
to adjust the mean outcome from state s: e.g. does
black need to win more or less frequently, in order to
match the minimax value? The policy gradient, g(s),
indicates how the mean outcome from state s can be
adjusted, e.g. how can the policy be modified, so as to
make black win more frequently?

b(s) = V ∗(s)− Eπθ [z|s]
g(s) = ∇θEπθ [z|s]

B∞(θ) = Eρ
ˆ
b(s)2

˜
∇θB∞(θ) = Eρ

ˆ
b2
˜

= −2Eρ [b(s)g(s)] (11)

Monte-Carlo Simulation Balancing

We estimate the bias, b̂(s), by samplingM simulations
XM (s) from state s,

b̂(s) = V̂ ∗(s)− 1

M

X
ξ∈XM (s)

z(ξ) (12)

We estimate the policy gradient, ĝ(s), by sampling N
additional simulations XN (s) from state s and using
Equation 9,

ĝ(s) =
X

ξ∈XN (s)

z(ξ)

NT

TX
t=1

ψ(st, at) (13)

In general b̂(s) and ĝ(s) are correlated, and we need
two independent samples to form an unbiased estimate
of their product (Algorithm 1). This provides a simple
stochastic gradient descent update, ∆θ = αb̂(s)ĝ(s).

Algorithm 1 Policy Gradient Simulation Balancing
θ ← 0
for all s1 ∈ training set do
V ← 0
for i = 1 to M do

simulate (s1, a1, ..., sT , aT ; z) using πθ
V ← V + z

M
end for
g ← 0
for j = 1 to N do

simulate (s1, a1, ..., sT , aT ; z) using πθ
g ← g + z

NT

∑T
t=1 ψ(st, at)

end for
θ ← θ + α(V̂ ∗(s1)− V)g

end for

5.2. Two-Step Simulation Balancing

Our second simulation balancing algorithm minimises
the two-step imbalance B2 of the simulation policy, by
gradient descent. The gradient can again be expressed
as a product of two terms. The two-step bias, b2(s), in-
dicates whether black needs to win more or less games,
to achieve balance between time t and time t+ 2. The
two-step policy gradient, g2(s), indicates the direction
in which the parameters should be adjusted, in order
for black to improve his evaluation at time t+ 2.

b2(s) = V ∗(s)− Eπθ [V ∗(st+2)|st = s]

g2(s) = ∇θEπθ [V ∗(st+2)|st = s]

B2(s)(θ) = Eρ
ˆ
b2(s)2

˜
∇θB2(s)(θ) = −2Eρ [b2(s)g2(s)] (14)

The two-step policy gradient can be derived by ap-
plying the product rule,

g2(s) = ∇θEπθ [V ∗(st+2)|st = s]

= ∇θ
X
a

X
b

πθ(st, a)πθ(st+1, b)V
∗(st+2)

=
X
a

X
b

πθ(st, a)πθ(st+1, b)V
∗(st+2)„

∇θπθ(st, a)

πθ(st, a)
+
∇θπθ(st+1, b)

πθ(st+1, b)

«
= Eπθ [V ∗(st+2)(ψ(st, at) + ψ(st+1, at+1))|st = s]

(15)

Both the two-step bias b2(s) and the policy gradient
g2(s) can be calculated analytically, with no require-
ment for simulation, leading to a simple gradient de-
scent algorithm (Algorithm 2), ∆θ = αb2(s)g2(s).

Algorithm 2 Two-Step Simulation Balancing
θ ← 0
for all s1 ∈ training set do
V ← 0, g2 ← 0
for all a1 ∈ legal moves from s1 do
s2 = s1 ◦ a1

for all a2 ∈ legal moves from s2 do
s3 = s2 ◦ a2

p = π(s1, a1)π(s2, a2)
V ← V + pV̂ ∗(s3)
g2 ← g2 + pV̂ ∗(s3)(ψ(s1, a1) + ψ(s2, a2))

end for
end for
θ ← θ + α(V̂ ∗(s1)− V)g2

end for

6. Experiments in Computer Go

We applied each of our algorithms to learn a simula-
tion policy for 5× 5 and 6× 6 Go. For the apprentice-
ship learning and simulation balancing algorithms, we
constructed a data-set of positions from 1000 games
of randomly played games. We used the open source
Monte-Carlo Go program Fuego to evaluate each po-
sition, using a deep search of 10000 simulations from
each position. The results of the search are used to ap-
proximate the optimal value V̂ ∗(s) ≈ V ∗(s). For the
two-step simulation balancing algorithm, a complete
tree of depth 2 was also constructed from each position
in the data-set, and each leaf position evaluated by a
further 2000 simulations. These leaf evaluations are
used in the two-step simulation balancing algorithm,
to approximate the optimal value after each possible
move and response.

Monte-Carlo Simulation Balancing

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 20000 40000 60000 80000 100000

W
ei

gh
t

Training games

Two Step Simulation Balancing

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 20000 40000 60000 80000 100000

W
ei

gh
t

Training games

Policy Gradient Simulation Balancing

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 20000 40000 60000 80000 100000

W
ei

gh
t

Training games

Policy Gradient Reinforcement Learning

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 20000 40000 60000 80000 100000

W
ei

gh
t

Training games

Apprenticeship Learning

Figure 2. Weight evolution for the 2×2 local shape features: (top left) apprenticeship learning, (top right) policy gradient
simulation balancing, (bottom left) policy gradient reinforcement learning, (bottom right) two-step simulation balancing.

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 20000 40000 60000 80000 100000

M
S

E

Training games

Uniform Random
Apprenticeship Learning

Policy Gradient Reinforcement Learning
Policy Gradient Simulation Balancing

Two Step Simulation Balancing

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 20000 40000 60000 80000 100000

M
S

E

Training games

Figure 3. Monte-Carlo evaluation accuracy of different simulation policies in 5 × 5 Go (left) and 6 × 6 Go (right). Each
point is the mean squared error over 1000 positions, between Monte-Carlo values from 100 simulations, and deep rollouts
using the Go program Fuego.

Monte-Carlo Simulation Balancing

We parameterise the softmax policy (Equation 5) with
local shape features (Silver et al., 2007). Each of these
features has a value of 1 if it matches a specific config-
uration of stones within a square region of the board,
and 0 otherwise. The feature vector φ(s, a) contains
local shape features for all possible configurations of
stones, in all 1 × 1 and 2 × 2 squares of the board,
for the position following action a in state s. Two
different sets of symmetries are exploited by weight-
sharing. Location dependent weights are shared be-
tween equivalent features, based on rotational, reflec-
tional and colour inversion symmetries. Location inde-
pendent weights are shared between these same sym-
metries, but also between translations of the same con-
figuration. Combining both sets of weights results in
107 unique parameters for the simulation policy, each
indicating a preference for a particular pattern.

6.1. Balance of shapes

We trained the simulation policy using 100000 train-
ing games of 5× 5 Go, starting with initial weights of
zero. The weights learnt by each algorithm are shown
in Figure 3. All four algorithms converged on a sta-
ble solution. They quickly learnt to prefer capturing
moves, represented by a positive preference for the lo-
cation independent 1× 1 feature, and to prefer central
board intersections over edge and corner intersections,
represented by the location dependent 2 × 2 features.
Furthermore, all four algorithms learnt patterns that
correspond to basic Go knowledge: e.g. the turn shape
attained the highest preference, and the dumpling and
empty triangle shapes attained the lowest preference.

In our experiments, the policy gradient reinforcement
learning algorithm found the most deterministic pol-
icy, with a wide spectrum of weights. The apprentice-
ship learning algorithm converged particularly quickly,
to a moderate level of determinism. The two simu-
lation balancing algorithms found remarkably similar
solutions, with the turn shape highly favoured, the
dumpling shape highly disfavoured, and a stochastic
balance of preferences over other shapes.

6.2. Mean squared error

We measured the accuracy of the simulation policies
every 1000 training games by selecting 1000 random
positions from an independent test-set, and perform-
ing a Monte-Carlo evaluation from 100 simulations.
The mean squared error (MSE) of the Monte-Carlo
values, compared to the deep search values, is shown
in Figure 4, for 5× 5 and 6× 6 Go.

All four algorithms significantly reduced the evalua-
tion error compared to the uniform random policy.

Table 1. Elo rating of simulation policies in 5 × 5 Go and
6 × 6 Go tournaments. The first column shows the per-
formance of the simulation policy when used directly. The
second column shows the performance of a simple Monte-
Carlo search using the simulation policy.

5x5 6x6
Simulation Policy Direct MC Direct MC
Uniform random 0 1031 0 970
Apprenticeship learning 671 1107 569 1047
Policy gradient RL (20k) 816 1234 531 1104
Policy gradient RL (100k) 947 1159 850 1023
Policy gradient sim. balancing 719 1367 658 1301
Two-step simulation balancing 720 1357 444 1109
GnuGo 3.7.10 (level 10) 1376 N/A 1534 N/A
Fuego simulation policy 356 689 374 785

The simulation balancing algorithms achieved the low-
est error, with less than half the MSE of the uni-
form random policy. The reinforcement learning al-
gorithm initially reduced the MSE, but then bounced
after 20,000 steps and started to increase the evalu-
ation error. This suggests that the simulation policy
became too deterministic, specialising to weights that
achieve maximum strength, rather than maintaining a
good balance. The apprenticeship learning algorithm
quickly learnt to reduce the error, but then converged
on a solution with significantly higher MSE than the
simulation balancing algorithms. Given a source of
expert evaluations, this suggests that simulation bal-
ancing can make more effective use of this knowledge,
in the context of Monte-Carlo simulation, than a su-
pervised learning approach.

6.3. Performance in Monte-Carlo search

In our final experiment, we measured the performance
of each learnt simulation policy in a Monte-Carlo
search algorithm. We ran a tournament between play-
ers based on each simulation policy, consisting of at
least 5000 matches for every player. Two players were
included for each simulation policy: the first played
moves directly according to the simulation policy; the
second used the simulation policy in a Monte-Carlo
search algorithm. Our search algorithm was intention-
ally simplistic: for every legal move a, we simulated
100 games starting with a, and selected the move with
the greatest number of wins. We included two sim-
ulation policies for the policy gradient reinforcement
learning algorithm, firstly using the parameters that
maximised performance (100k games of training), and
secondly using the parameters that minimised MSE
(20k and 10k games of training in 5× 5 and 6× 6 Go
respectively). The results are shown in Table 1.

When the simulation policies were used directly, policy
gradient RL (100k) was by far the strongest, around
200 Elo points stronger than simulation balancing2.

2The Elo scale is a statistical rating system, such that
a difference of 200 Elo corresponds to a 75% winning rate.

Monte-Carlo Simulation Balancing

However, when used as a Monte-Carlo policy, simu-
lation balancing was much stronger, 200 Elo points
above policy gradient RL (100k), and almost 300 Elo
stronger than apprenticeship learning.

The two simulation balancing algorithms achieved sim-
ilar performance in 5×5 Go, suggesting that it suffices
to balance the errors from consecutive moves, and that
there is little to be gained by balancing complete sim-
ulations. However, in the more complex game of 6× 6
Go, Monte-Carlo simulation balancing performed sig-
nificantly better than two-step simulation balancing.

Finally, we compared the performance of our Monte-
Carlo search to GnuGo, a deterministic Go program
with sophisticated, handcrafted knowledge and spe-
cialised search algorithms. Using the policy learnt by
simulation balancing, our simple one-ply search algo-
rithm achieved comparable strength to GnuGo. In
addition, we compared the performance of the Fuego
simulation policy, which is based on the well-known
MoGo patterns, handcrafted for Monte-Carlo search
on larger boards. Surprisingly, the Fuego simulation
policy performed poorly, suggesting that handcrafted
patterns do not generalise well to different board sizes.

7. Conclusions

We have presented a new paradigm for simulation
balancing in Monte-Carlo search. Unlike supervised
learning and reinforcement learning approaches, our
algorithms can balance the level of stochasticity to
an appropriate level for Monte-Carlo search. They
are able to exploit deep search values more effectively
than supervised learning methods, and they maximise
a more relevant objective function than reinforcement
learning methods. Unlike hill-climbing or handcrafted
trial and error, our algorithms are based on an an-
alytical gradient based only on the current position,
allowing parameters to be updated with minimal com-
putation. Finally, we have demonstrated that our al-
gorithms outperform prior methods in small board Go.

We are currently investigating methods for scaling up
the simulation balancing paradigm both to larger do-
mains, using actor-critic methods to reduce the vari-
ance of the policy gradient estimate; and to more so-
phisticated Monte-Carlo search algorithms, such as
UCT (Kocsis & Szepesvari, 2006). In complex do-
mains, the quality of the minimax approximation
V̂ ∗(s) can affect the overall solution. One natural idea
is to use the learned simulation policy in Monte-Carlo
search, and generate new deep search values, in an it-
erative cycle.

One advantage of apprenticeship learning over simula-

tion balancing is that it optimises a convex objective
function. This suggests that the two methods could be
combined: first using apprenticeship learning to find
a global optimum, and then applying simulation bal-
ancing to find a local, balanced optimum.

For clarity of presentation we have focused on de-
terministic two-player games with terminal outcomes.
However, all of our algorithms generalise directly to
stochastic environments and intermediate rewards.

References

Billings, D., Castillo, L., Schaeffer, J., & Szafron, D.
(1999). Using probabilistic knowledge and simula-
tion to play poker. Proceedings of the 16th National
Conference on Artificial Intelligence (pp. 697–703).

Chaslot, G., Winands, M., Szita, I., & van den Herik,
H. (2008). Parameter tuning by the cross-entropy
method. 8th European Workshop on Reinforcement
Learning.

Coulom, R. (2007). Computing Elo ratings of move
patterns in the game of Go. Computer Games Work-
shop.

Finnsson, H., & Björnsson, Y. (2008). Simulation-
based approach to general game playing. 23rd Con-
ference on Artificial Intelligence (pp. 259–264).

Gelly, S., & Silver, D. (2007). Combining online and
offline learning in UCT. 17th International Confer-
ence on Machine Learning (pp. 273–280).

Gelly, S., Wang, Y., Munos, R., & Teytaud, O. (2006).
Modification of UCT with patterns in Monte-Carlo
Go (Technical Report 6062). INRIA.

Kocsis, L., & Szepesvari, C. (2006). Bandit based
Monte-Carlo planning. 15th European Conference
on Machine Learning (pp. 282–293).

Sheppard, B. (2002). World-championship-caliber
Scrabble. Artificial Intelligence, 134, 241–275.

Silver, D., Sutton, R., & Müller, M. (2007). Reinforce-
ment learning of local shape in the game of Go. 20th
International Joint Conference on Artificial Intelli-
gence (pp. 1053–1058).

Tesauro, G., & Galperin, G. (1996). On-line policy
improvement using Monte-Carlo search. Advances
in Neural Information Processing 9 (pp. 1068–1074).

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8, 229–256.

