
Bandit-Based Optimization on Graphs

with Application to Library Performance Tuning

Frédéric de Mesmay⋆
fdemesma@ece.cmu.edu

Arpad Rimmel† rimmel@lri.fr

Yevgen Voronenko⋆
yvoronen@ece.cmu.edu

Markus Püschel⋆ pueschel@ece.cmu.edu

⋆ Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
† TAO (Inria), LRI, UMR 8623 (CNRS - Université Paris-Sud), 91405 Orsay, France

Abstract

The problem of choosing fast implementa-
tions for a class of recursive algorithms such
as the fast Fourier transforms can be for-
mulated as an optimization problem over
the language generated by a suitably defined
grammar. We propose a novel algorithm that
solves this problem by reducing it to maxi-
mizing an objective function over the sinks
of a directed acyclic graph. This algorithm
valuates nodes using Monte-Carlo and grows
a subgraph in the most promising directions
by considering local maximum k-armed ban-
dits. When used inside an adaptive linear
transform library, it cuts down the search
time by an order of magnitude compared to
the existing algorithm. In some cases, the
performance of the implementations found is
also increased by up to 10% which is of con-
siderable practical importance since it conse-
quently improves the performance of all ap-
plications using the library.

1. Introduction and Related Work

The computing platforms available today can differ
substantially in their memory hierarchies, numbers of
processors, and many other microarchitectural details.
Further, these details tend to change with every new
generation of processors. As a consequence, code that
runs fast on one platform may perform suboptimally if
not poorly on another: performance cannot easily be
ported. This problem particularly affects the devel-

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

opers of high performance libraries, who often create
different implementations for each platform and when-
ever new platforms are released (Intel, 2008).

One way to reduce the recurring development costs is
automatic performance tuning. The basic idea is to use
feedback-driven search or learning techniques to auto-
matically find the fastest implementation of a given
functionality on a given platform among a set of pos-
sible choices. Variants arise from different possibilities
of recursion for divide-and-conquer algorithms or from
implementation decisions such as unrolling and paral-
lelizing. Covered functionalities include dense (Wha-
ley & Petitet, 2005) and sparse (Vuduc et al., 2005)
linear algebra but we particularly focus on fast Fourier
transforms (FFT) with an adaptive library such as
FFTW (Frigo & Johnson, 2005) or the libraries gener-
ated by Spiral (Püschel et al., 2005; Voronenko, 2008).

In each of the above cases, the space of alternatives
is extremely large, requiring efficient search methods.
Various have been tried for FFTs: hill climbing, ge-
netic algorithms, regression trees (Singer & Veloso,
2002), etc. In practice, however, the most efficient
search method, denoted DP, seems to be restricting
the search space and using dynamic programming.

However, when the search space becomes even larger
(large problem sizes or more complicated libraries),
DP may take very long to terminate and the very best
solution might not even be in the restricted space–a
waste since the library may have the ability to run
faster, and also of considerable practical relevance if
the fastest existing code can be improved further.

Contributions. In this paper we first abstractly for-
mulate the performance tuning problem of adaptive
divide-and-conquer type libraries as an optimization
problem associated with a large acyclic formal gram-
mar. Each word in the language generated by the

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

grammar is a recursion strategy the library can per-
form. We then solve the problem using a novel online-
search algorithm, Threshold Ascend on Graph (TAG),
that exploits the inherent structure of the problem.
TAG is similar to UCT (Kocsis & Szepesvi, 2006),
in that it gradually builds up the graph generating
the language by considering local bandit problems and
by valuating the nodes with Monte-Carlo simulations.
TAG differs from UCT in that it optimizes for the best
single reward over a graph instead of maximizing the
accumulative reward over a tree.

We implemented TAG to be composable with adaptive
transforms libraries generated by Spiral (Voronenko,
2008). These libraries are vectorized and parallelized,
possess a very large search space and are in many cases
faster than any other existing code. We show that,
compared to the dynamic programming search (typi-
cally used for these kinds of problems), TAG can dra-
matically reduce the performance tuning time (i.e. a
good solution is found much faster) and in some cases
finds a better solution (and hence improves the library
performance). Therefore, it is a suitable optimization
technique in this domain. As an additional benefit,
TAG is an anytime algorithm.

2. Formal Problem Statement

Below, we formally state the problem considered in
this paper. Later, we will show that automatic tuning
in the considered transform libraries is an instantiation
of this problem.

Problem 1 Given is an acyclic formal grammar F =
(T, N, P, S) with T the set of terminals, N the set of
nonterminals, P the set of production rules or simply
rules, and S the starting symbol. L(F) is the asso-
ciated language and f is an objective function from
L(F) into the positive reals R

+. We want to compute

wbest = argmax
w∈L(F)

f(w).

F has an associated derivation graph G = G(F) which
is directed, acyclic and weakly connected as shown in
Figure 1: S is the root, the directed edges (arrows)
correspond to applications of rules in P , the nodes are
partially derived words in the language, and the sinks
(outdegree = 0) are precisely the elements of L(F).
Hence we can reduce Problem 1 to:

Problem 2 Given a weakly connected, acyclic, directed
graph G = (V, E) and an objective function f (as
above) on the sinks S(G) of G. We want to compute

wbest = argmax
w∈S(G)

f(w).

T = {a, b, ac}
N = {S, A, B}
P = {S → AB,

A → a,

B → b,

aB → ac}
ab ac

S

AB

aBAb

Figure 1. Formal grammar F = (T, N, P, S) (left) and as-
sociated derivation graph G(F) (right). S, A, B are nonter-
minals and a, b, c are terminals. The graph has two sinks
(double circled), i.e., the language L(F) has two elements.

We assume the graph G(F) to be large such that it
is impossible to generate and evaluate all sinks in a
reasonable time. Our goal is an algorithm that finds a
“very good” sink with a small number of evaluations.

3. The TAG Algorithm

TAG is an anytime algorithm that determines an ap-
proximate solution to Problem 2. Due to the size of the
graph it is not meant to run until completion, in which
case it would be equivalent to an exhaustive search.

TAG finds solutions by incrementally growing and ex-
ploiting the subgraph Ĝ = (V̂ , Ê) of G = (V, E):
V̂ ⊂ V , Ê ⊂ E, starting with Ĝ = ({S}, {}). Evalu-
ations are used to direct the growth of Ĝ towards the
expected bests sinks.

Assume the current subgraph is Ĝ. Then TAG pro-
ceeds in three high level steps visualized in Figure 2:

1. Descend: G is traversed starting at its root. Each
choice along the way is solved by a bandit algo-
rithm. The descent stops when it uses an arrow e
that is not in Ê.

2. Evaluate: If e is incident with a vertex not in
V̂ , this vertex is evaluated using a Monte-Carlo
expansion.

3. Backpropagate: The evaluation is stored in all an-
cestors of the vertex.

We proceed with describing the three steps in detail,
describe the pseudocode and conclude the section with
a presentation of related algorithms.

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

S

sinks

G

G

S

f(w)

S

store

f(w)

Descend Evaluate Backpropagate

Monte
Carlo

Figure 2. Visualization of the three main steps in TAG.
Note that Ĝ (shaded area) and G are not trees (e.g., see
Figure 1).

3.1. Descend

The goal of the descent step is to select the next edge
to add to the subgraph Ĝ. It is chosen so that Ĝ
grows towards the sinks that present the best expected
rewards. Starting from the root S, the most promis-
ing path is layed out by successively chosing the most
promising outgoing edges. Each choice is solved using
a bandit algorithm that we describe first.

Background: Max k-Armed Bandit Problem.

The maximum k-armed bandit problem considers a
slot machine with k arms, each one having a differ-
ent pay-out distribution (Figure 3). The goal is to
maximize the single best reward obtainable over n̄ tri-
als (Cicirello & Smith, 2005). Formally, if each arm
has distribution Di and Rj(Di) denotes the j-th re-
ward obtained on arm i, the goal is to solve

max
P

k

i=1
n̄i=n̄

max
1≤i≤k

max
1≤j≤n̄i

Rj(Di).

In this paper, we use a variation: an anytime version
of the problem where the total number of pull n̄ is not
known in advance. Only the n previous pulls and their
associated rewards are known.

bandit

D1

arm 1

D2

 arm 2

D3

arm 3

Figure 3. A 3-armed bandit. The choice of the arm i leads
to a realization of the distribution Di.

Streeter & Smith (2006) solve the problem using
Threshold Ascend, an algorithm that makes no as-
sumptions on the form of the distributions. Using their
notations, we present here a straightforward adapta-
tion to the anytime variation.

The main idea of the algorithm is to track only the
s best rewards and the arms they are coming from.

Let si be the number of such rewards among the ni

rewards received by the arm i. Also, let δ be a positive
real parameter. The algorithm advises to pull the arm
ibest given by

ibest = argmax
1≤i≤k

h(si, ni),

with h(si, ni) =

{

si+α+
√

2siα+α2

ni

, if ni > 0

∞, else

and α = ln(2nk/δ).

Descend. The graph descent is responsible for in-
crementally building the subgraph Ĝ ⊂ G, initially
restricted to the root. The purpose of the descent is
to select an arrow in E \ Ê that leads towards an ex-
pected good sink. It does so by tracing a path starting
from the root and considering each successor choice as
a max k-armed bandit problem (Figure 4). For now,
assume that a table of positive real rewards R(v) has
been maintained for each vertex v ∈ V̂ .

Let v denote the current vertex in the descent. Start-
ing from v, there are multiple ways to continue the
path since it can follow any of the arrows originating
from v (we denote these with E(v)). The arrows in
E(v) that are also in Ê(v) lead to vertices of V̂ cor-
responding to “arms” that have already been played
(they have previous rewards attached to them). The
other arrows lead to arms that have never been played.
The bandit algorithm discussed above decides which
arrow to follow, which has to be one that was not fol-
lowed before if such an arrow exists (due to the infinite
weight in h(si, ni)). If the arrow belongs to Ê(v) and
the successor is not a sink, the successor becomes the
new descent vertex and the descent continues. If not,
the descent ends.

bandit A

bandit B

arm A1
 arm A3arm A2

arm B1 arm B2

Figure 4. The descent in the graph is done as a cascade of
multi-armed bandits. Solid arrows, circles and boxes are
in Ĝ, dashed arrows and circles are in G \ Ĝ. For bandit A
all arms had been played before, and A1 is chosen based
on the stored rewards. Bandit B will now choose B1, since
it is the only arrow not played before.

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

3.2. Evaluate

Assume the descent ended on an arrow pointing to a
vertex v that is not part of V̂ . The arrow and vertex
are then immediately added to Ĝ and v is evaluated.

If v is a sink of G, then f(v) can be directly computed.
Otherwise a path to a sink of G is chosen by “Monte-
Carlo,” which means in each step a (uniformly drawn)
random choice is made until a sink w is obtained. The
evaluation f(w) gives a value for v.

Also, if the evaluation is better than f(wbest), the cur-
rent best sink is replaced.

3.3. Backpropagate

After v has been evaluated, the reward is added to
its reward list R(v) and to the reward lists of all its
ancestors.

Note that if the descent ended on an arrow pointing
to a vertex v that is already a part of V̂ , we just dis-
covered a new way to connect to an already evaluated
vertex. In this case, we add the new arc to Ê and prop-
agate the rewards of v only to the vertices that would
not be ancestors of v without the new arrow (since the
other ancestors already have these rewards).

3.4. Pseudocode and Remark

Pseudocode. Algorithm 1, the pseudocode of TAG,
summarizes the previous discussion. After initializa-
tion, the graph Ĝ = (V̂ , Ê) is grown one arc at a time
until the user signifies an interruption. The vertex
pointed by an arrow e is denoted head(e). BANDIT

refers to the Treshold Ascend algorithm summarized
in subsection 3.1. RANDOM refers to an uniform draw.

Remark. Practically, if the objective function is de-
terministic, it is useless to evaluate a sink twice. It
is therefore possible to modify the algorithm to guar-
antee that it never returns in a branch where choices
have been exhausted. While we implemented this ver-
sion we do not present it due to lack of space.

3.5. Related Algorithms

The “classic” multi-armed bandit problem involves
maximizing the expected sum of rewards of multi-
ple slot machines with different pay-out distributions.
Many proposed algorithms are based on optimism in
front of uncertainty: the score of a slot machine is
its current estimated value plus a term that grows
with the uncertainty. For instance, Upper Confidence
Bounds (UCB) proposes a term in

√

log(n)/ni (Lai &
Robbins, 1985; Auer et al., 2002).

Algorithm 1 TAG

Ĝ← S
wbest ← ∅
R(V̂)← ∅
while not interrupted do

e← BANDIT(E(S)) Descend

while e ∈ Ê & E(head(e)) 6= ∅ do
e← BANDIT(E(head(e))

end while

v ← head(e)

if v /∈ Ĝ or e ∈ Ĝ then
add v and e to Ĝ
e← RANDOM(E(v)) Evaluate
while E(head(e)) 6= ∅ do

e← RANDOM(E(head(e))
end while
w← head(e)
if f(w) > f(wbest) then

wbest ← w
end if

r ← f(w)

add r to R(v) Backpropagate

for a ancestor of v in Ĝ do
add r to R(a)

end for
else

for a ancestor of v in Ĝ do
mark a

end for

add e to Ĝ

for a ancestor of v in Ĝ do
if a is marked then

unmark a
else

add all R(v) to R(a)
end if

end for

end if
end while
return wbest

Other Monte-Carlo based algorithms could be used to
perform an optimization on a leaves-evaluated graph
but, besides the fact that they usually are designed
for trees, they differ from TAG by biasing the sub-
graph towards zones that are good on average which
can be distinct from zones that are likely to contain
maximums. Guillaume Chaslot et al. proposed an
algorithm derived from the central limit theorem that
gives good result on the production management prob-
lem (2006). UCT uses UCB as a local branch selector
(Kocsis & Szepesvi, 2006) and is particularly efficient
with huge search-spaces: it is at the origin of the cur-
rent best computer Go players (Coulom, 2006; Wang
& Gelly, 2007; Gelly & Silver, 2007).

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

4. Application: Performance Tuning in

Adaptive Libraries

Our target application for TAG is the automatic per-
formance tuning in adaptive libraries based on divide-
and-conquer algorithms with inherent degrees of free-
dom. Specifically, we implemented TAG to operate
as a search strategy in the adaptive general-size lin-
ear transform libraries generated by Spiral (Voronenko
et al., 2009).

We first give brief background on transforms, trans-
form algorithms, their implementations, and the no-
tion of an adaptive library. Then we discuss the need
for search and finally match the performance tuning
problem to Problem 1, which shows that TAG is ap-
plicable.

4.1. Background: Linear Transforms

Transforms. A linear transform is a matrix-vector
product y = Mx, where x is the input vector, y the
output vector, and M the fixed transform matrix. We
focus on the discrete Fourier transform (DFT) defined
as

DFTn = [e−2πikℓ/n]0≤k,ℓ<n, i =
√
−1.

Näıve computation of the matrix-vector product in-
curs O(n2) operations, however, fast, O(n log(n)), al-
gorithms, which exploit the particular structure of ma-
trix M , exist for many transforms including the DFT.

Fast algorithms. One way of writing transform al-
gorithms is as sparse factorizations of the transform
matrix. For example, the famous Cooley-Tukey fast
Fourier transform (FFT) algorithm can be written as

DFTn = (DFTk ⊗ Im)Tn
m(Ik ⊗DFTm) Ln

k , n = km.
(1)

Here, In is the identity matrix of size n; Tn
m is a diag-

onal matrix and Ln
k a permutation matrix, whose pre-

cise definition is not relevant here. Finally, the tensor
(or Kronecker) product ⊗ of two matrices is defined as

A⊗B = [ak,l B], where A = [ak,l].

We show below a visualization of the non-zero values
in the matrices for k = m = 4.

DFT16 DFT4 ⊗ I4 T4

4
I4 ⊗DFT4 L16

4

=

In both tensor products, all parts of equal gray shade
constitute a single DFT4. We observe that all four
matrices are sparse, that the computation uses a

10
0

10
3

10
6

10
9

2
0

2
5

2
10

2
15

2
20

DFT size

Number of di!erent DFT algorithms using only Cooley-Tukey

Figure 5. Number of DFT algorithms based on standard
Cooley-Tukey FFT, implemented näıvely. All algorithms
for a given DFT input size have roughly the same opera-
tions count.

divide-and-conquer approach, and that there is a de-
gree of freedom (choice of k|n). Assuming that n is a
power of two1, recursive applications of the algorithm
yield O(n log(n)) computations.

Implementation and search space. The above
FFT suggests a library implementation using a recur-
sive function dft. Given the input x, the function
would first permute (t = Ln

k x), then call dft on multi-
ple segments of x, then scale the result with the entries
of Tn

m, and then call again dft on segments, extracted
in a stride, of the result. The resulting library would
have a simple call graph, as shown in Figure 6(a).
Even such a simple implementation has a degree of
freedom in the recursion due to the choice of k. Re-
cursively compounded this yields an algorithm space
of Θ(5t/t3/2) that this library covers (see Figure 5)
(Johnson & Püschel, 2000). All of these have roughly
the same operations count, yet, the performance can
differ widely due to cache misses and other effects.

The above implementation makes four passes through
a vector of length n and has hence poor memory hi-
erarchy performance. The performance can consid-
erably improved as done in FFTW 2.x by replacing
the explicit (and expensive) permutation Ln

k with a
readdressing in the subsequent smaller DFTs. Simi-
larly, scaling by Tn

m can be fused with the subsequent
DFTs. However, this creates the need for additional
functions—variants of the DFT with modified inter-
faces. The call graph of such a library is shown in
Figure 6(b).

The situation gets considerably more complicated with
state-of-the-art libraries on current off-the-shelf com-
puters. The reason is that to get maximal performance

1Recursive application of equation (1) require to pro-
vide base cases for all prime factors of n. For simplicity,
this paper will therefore only consider power-of-two sizes
n = 2t. Note that these sizes also happen to be the most
important usage cases of the DFT.

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

the libraries need to apply several restructuring trans-
formations to (1). In particular, the algorithm must
be 1) vectorized, to take advantage of vector instruc-
tions (e.g., SSE on x86 architectures); 2) parallelized,
to exploit multiple processor cores using threading; 3)
transformed by loop optimizations for buffering; 4) al-
lowed to load from a precomputed table the constant
elements of Tn

m from (1), also called “twiddle factors”
(Frigo & Johnson, 2005; Püschel et al., 2005; Voro-
nenko, 2008; Voronenko et al., 2009).

Applying the restructuring transformations described
above increases the number of different mutually re-
cursive functions that comprise the library, and also
enlarge the algorithm search space. For example the
Spiral-generated DFT library with all optimizations
1–3 contains 31 different functions which form the call
graph in Figure 6(c).

dft

(a)

dft

dft_scaled

dft_strided

(b)

1

2

3

46

57

9

8

11

10

13

12

15

14

16 17

18

19 20 21

24

25

27

26 28

29

30

3132

33

(c)

Figure 6. Call graphs of three different recursive libraries:
(a) näıve, (b) optimized scalar and (c) optimized vectorized
parallelized.

The above discussion holds for many other linear
transforms including the discrete cosine transforms,
the real discrete Fourier transform, finite impulse re-
sponse filters, and the discrete wavelet transform. Fur-
ther, not all algorithms decompose a transform into
transforms of the same type. In this case the search
space is further increased.

4.2. Adaptive Libraries and Search

Consider a recursive library as discussed above. In
each recursion step, the library has a degree of free-
dom. As a consequence, it can compute the transform
in many different ways. What makes the library adap-
tive is the use of online search to find a fast recur-
sion strategy. This search is part of an initialization
routine (called planner in FFTW) that takes the in-
put size n and returns a function pointer implement-
ing the fastest known recursion strategy. After this
initial overhead, the user can now compute as many
transforms of size n as desired, compensating for the
overhead.

The main search strategy in FFTW, UHFFT, and Spi-
ral generated libraries is dynamic programming (DP).
It is based on the assumption that the best solution
to a problem is built out of optimal solutions to sub-
problems. Here, this means that an algorithm’s per-
formance is independent of its context which, unfor-
tunately, does not always hold2. However, in prac-
tice, DP has shown to work quite well except for very
large transforms as we will see later in our benchmarks.
Over these large search spaces, DP has another weak-
ness which is that it is not an anytime algorithm: one
has to wait for DP to solve all subproblems before it
gives any solution. This waiting time is significant:
for FFTW it can amount to days in the case of large
transforms on multicore systems.

A simple anytime strategy is Monte-Carlo (MC) whi-
ch, each time there is a decision to take, chooses ac-
cording to a uniform distribution. At the end of the
descent, it evaluates the candidate and restarts. At
any point in time the user can interrupt the search to
retrieve the best known candidate. Since at each step,
there is an equal chance for all branches to be picked
but branches are not laid out uniformly, the overall
space is not sampled uniformly.

4.3. Applicability of TAG

Applying TAG in the context of adaptive libraries re-
quires to identify the grammar G = (T, N, P, S) and
the objective function f such that the performance op-
timization can be mapped to Problem 1.

The start symbol S is the transform specification as
entered by the user. The terminals T are the base
cases, the set of problems that can be directly solved
by the library. The non-terminals N are the set of all
non base case subproblems that could be needed to
solve the problem. The production rules P breakdown
a problem from N into one or more subproblems by fix-
ing a degree of freedom. The function to maximize, f ,
is the performance of the implementation. The acyclic-
ity of the grammar is guaranteed by the fact that the
underlying algorithms provably finish. Note that the
grammar itself changes with the problem size.

For instance, if a näıve DFT library based on Cooley-
Tukey is used to compute DFT8, we would define

S = DFT8 P = {DFT8 → (DFT2,DFT4),

T = DFT2 DFT8 → (DFT4,DFT2),

N = {DFT8,DFT4} DFT4 → (DFT2,DFT2)}

2It is fairly easy to build counter-examples: for instance,
an algorithm running on one core will be slower if another
core is active due to conflicts in the shared cache.

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90

Time (seconds)

Sensitivity to parameter s for DFT 512k
Performance (MFlop/s)

s = 5
s = 30
s = 100
s = 200

(a)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90

Time (seconds)

Comparison between anytime strategies for DFT 256k
Performance (MFlop/s)

TAG

MC

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90

Time (seconds)

Standard deviation of anytime strategies for DFT 256k
Performance (MFlop/s)

TAG

MC

(c)

Figure 7. (a) Parameters for TAG are optimized on DFT219 . (b) Mean performance (and standard error of the mean)
for DP and Monte-Carlo on DFT218 . Data is averaged over 100 runs. (c) Standard deviation on the same experiment.

5. Experiments

Experimental Setup. We evaluate our search al-
gorithm on a complex DFT C++ library generated
by Spiral from (1). The library is vectorized using
intrinsics, threaded using OpenMP, and optimized as
explained in Section 4.1.

We add TAG and Monte-Carlo (MC) methods to the
already existing DP search infrastructure . We compile
using the Intel Compiler 10.1 and benchmark on a 64-
bit Linux platform using two dual core 3 GHz Intel
Xeon 5160 processors.

We display performance using pseudo mega floating-
point operations per second (MFlops) with the com-
plex DFT operation count assumed to be 5n log2 n
(standard practice).

Parameter tuning. We tune the parameters for
TAG on a specific problem, DFT219 . The sensitivity
of the algorithm with variations in the s parameter of
the bandit is shown on Figure 7(a). Since s is the size
of the best rewards vector, a low s tweaks the bandit
towards exploitation of previous good branches, while
a bigger s leads to the exploration of new promising
branches. We find that δ = 0.1 and s = 30 work best
and we use them for all following experiments.

Comparison with Monte-Carlo. We compare
the performance of TAG and MC on DFT218 . Fig-
ures 7(b) and 7(c) show that TAG performs better
(higher mean) and more reliably (lower standard devi-
ation) than Monte-Carlo. Note that the plots are done
with respect to a fixed ”wall clock” time and not to a
fixed number of simulations. This is realistic in that
the simpler MC algorithm performs more simulations
than our more complex algorithm in the same time
frame. Also it is worth remembering that, asymptoti-
cally, TAG and MC match since they both explore the
full finite search space.

Comparison with dynamic programming. We
compare TAG with DP on a single problem on 8(a).
We observe that TAG quickly reaches the same per-
formance as DP and then caps 10% above it. On Fig-
ure 8(b) we plot the time it takes for TAG to get results
of the same quality as DP. We observe that TAG finds
solutions of equal performance significantly faster on
various DFT sizes.

Comparison with other FFTs. Figure 8(c) shows
the best performance attained by the generated library
(with TAG and DP) and its competitors. We com-
pare against FFTW 3.2 alpha 2 and Intel IPP 5.3.
FFTW does platform adaptation using dynamic pro-
gramming. As far as we know, IPP does not use search
and branches out to a specialized implementation for
each platform.

6. Conclusion

In this paper we tackled the problem of optimizing an
objective function over the sinks of a directed acyclic
graph. We solved it using a new anytime algorithm,
TAG, that grows a subgraph towards the expected
best sinks. Similarly to UCT, TAG traces the most
promising path by considering local bandits and val-
uates nodes using Monte-Carlo simulations. In our
context however, the optimization problem requires to
consider the maximum variant of the k-armed bandit
problem.

Implementation inside a high-performance adaptive li-
brary for linear transforms considerably decreased the
search time while providing a 10% increase in the qual-
ity of the solutions. One interesting feature of our
problem setup is that evaluating “bad” nodes is much
more costly than evaluating “good” ones since the ob-
jective function is the timer from the processor. In
future work, we will try to modify the algorithm to
take advantage of that fact.

Bandit-Based Optimization on Graphs with Application to Library Performance Tuning

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20 40 60 80 100 120 140

Time (seconds)

Performance over time of DP and TAG (DFT 64k)
Performance (MFlop/s)

TAG DP

(a)

 1

 10

 100

 1000

 10000

64k 128k 256k 512k 1M

DFT size

Comparison of search time between DP and TAG
Time (seconds)

TAG

DP

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16k 32k 64k 128k 256k 512k 1M

DFT size

DFT, double precision, up to 4 threads
Performance (MFlop/s)

Spiral-TAG
Spiral-DP
FFTW 3.2a
Intel IPP 5.3

(c)
Figure 8. (a)Average performance of TAG compared with DP on a single problem size. (b)Search time of TAG and DP
to achieve the same performance on different libraries. (c)Comparison with different FFT libraries.

Acknowledgments

The authors are grateful to O. Teytaud for his many
valuable suggestions. The authors would also like to
thank M. Streeter, S. Smith and A. de Mesmay for
their help with the max k-armed bandit algorithms.

This work was supported by NSF through awards
0325687, 0702386, by DARPA (DOI grant NBCH10-
50009), the ARO grant W911NF0710416, and by Intel.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning, 47, 235–256.

Chaslot, G., De Jong, S., Saito, J.-T., & Uiterwijk, J.
W. H. M. (2006). Monte-Carlo tree search in pro-
duction management problems. Proc. 18th BeNeLux
Conf. on Artificial Intel. (BNAIC) (pp. 91–98).

Cicirello, V., & Smith, S. (2005). The max k-armed
bandit: A new model for exploration applied to
search heuristic selection. Proc. 20th National Conf.
on Artificial Intelligence (AAAI) (pp. 1355–1361).

Coulom, R. (2006). Efficient selectivity and backup
operators in Monte-Carlo tree search. Proc. 5th Int.
Conf. on Computers and Games (CG), 72–83.

Frigo, M., & Johnson, S. (2005). The design and im-
plementation of FFTW3. Proc. IEEE, 93, 216–231.

Gelly, S., & Silver, D. (2007). Combining online and
offline knowledge in UCT. Proc. 24th Int. Conf. on
Machine Learning (ICML) (pp. 273–280). ACM.

Intel (2008). Integrated performance primitives.

Johnson, J., & Püschel, M. (2000). In search of
the optimal Walsh-Hadamard transform. Proc. Int.
Conf. on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 3347–3350).

Kocsis, L., & Szepesvi, C. (2006). Bandit based
Monte-Carlo planning. Euro. Conf. on Mach. Learn.
(ECML), LNCS 4212 (pp. 282–293). Springer.

Lai, T., & Robbins, H. (1985). Asymptotically effi-
cient adaptive allocation rules. Advances in Applied
Mathematics, 6, 4–22.

Püschel, M., Moura, J. M. F., Johnson, J., Padua, D.,
Veloso, M., et al. (2005). SPIRAL: Code generation
for DSP transforms. Proc. of the IEEE, 93, 232–
275.

Singer, B., & Veloso, M. (2002). Learning to construct
fast signal processing implementations. Journal of
Machine Learning Research, 3, 887–919.

Streeter, M. J., & Smith, S. F. (2006). A simple
distribution-free approach to the max k-armed ban-
dit problem. Principles and Practice of Constraint
Programming (CP) (pp. 560–574).

Voronenko, Y. (2008). Library generation for linear
transforms. Doctoral dissertation, Electrical and
Computer Engineering, Carnegie Mellon University.

Voronenko, Y., de Mesmay, F., & Püschel, M. (2009).
Computer generation of general size linear transform
libraries. Int. Symp. on Code Generation and Opti-
mization (CGO).

Vuduc, R., Demmel, J. W., & Yelick, K. A. (2005).
Oski: A library of automatically tuned sparse ma-
trix kernels. Journal of Physics: Conf. Series, 16,
521–530.

Wang, Y., & Gelly, S. (2007). Modifications of
UCT and sequence-like simulations for Monte-Carlo
Go. IEEE Symp. on Computational Intelligence and
Games (CIG) (pp. 175–182).

Whaley, R. C., & Petitet, A. (2005). Minimizing de-
velopment and maintenance costs in supporting per-
sistently optimized BLAS. Software: Practice and
Experience, 35, 101–121.

