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Abstract

Current graph kernels suffer from two limita-
tions: graph kernels based on counting par-
ticular types of subgraphs ignore the relative
position of these subgraphs to each other,
while graph kernels based on algebraic meth-
ods are limited to graphs without node la-
bels. In this paper we present the graphlet
spectrum, a system of graph invariants de-
rived by means of group representation the-
ory that capture information about the num-
ber as well as the position of labeled sub-
graphs in a given graph. In our experimen-
tal evaluation the graphlet spectrum outper-
forms state-of-the-art graph kernels.

1. Introduction

Over recent years, graph kernels have grown to become
an important branch of graph mining. Their funda-
mental purpose is to represent a graph by features in
a reproducing kernel Hilbert space. While most graph
kernels arrive at these features by counting particu-
lar types of subgraphs, such as walks, shortest paths,
subgraphs of a fixed size k, or subtrees (Kashima
et al., 2003; Gärtner et al., 2003; Borgwardt & Kriegel,
2005; Shervashidze et al., 2009; Bach, 2008), we have
recently proposed a group theoretical approach and
found it to have state-of-the-art performance (Kon-
dor & Borgwardt, 2008). However, both approaches
have limitations: in counting subgraphs, the graph-
theoretic approach ignores the relative position of sub-
graphs within the graph, while the algebraic approach
suffers from the fact that it is restricted to unlabeled
graphs, which are uncommon in applications.
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In this paper, we overcome these two limitations by
defining a new group-theoretic approach that allows
both for labeled subgraphs and considers the relative
position of subgraphs.

2. Graph invariants

In this paper G will be a directed weighted graph of n
vertices. We represent G by its adjacency matrix A ∈
R

n×n, where [A]i,j ∈ R is the weight of the edge from
vertex i to vertex j. Unweighted graphs are special
cases where [A]i,j ∈ {0, 1}, while in undirected graphs
A⊤ = A.

One of the key issues in learning on graphs is
that whatever way we choose to represent G, it
must be invariant to vertex relabeling. Specifi-
cally, if we represent G by some sequence of fea-
tures c1(A), c2(A), . . . , cK(A), then for any permuta-
tion π : {1, 2, . . . , n} → {1, 2, . . . , n} these features
computed from the permuted adjacency matrix

[Aπ]π(i),π(j) = Ai,j

must be the same, since Aπ is just a different represen-
tation of the same graph. Such functions c : R

n×n → R

satisfying

c(A) = c(Aπ), ∀π

are called graph invariants and they have a large
literature both in pure mathematics and in applied
domains (Wale & Karypis, 2006; Mikkonen, 2007).

2.1. The algebraic approach

Proponents of the algebraic approach to graph invari-
ants focus not so much on the graph itself, but on the
inherent structure of the permutations acting on the
adjacency matrix. Recall that the natural way to de-
fine the product of two permutations σ1 and σ2 is by
composition, i.e., (σ2σ1)(i) = σ2(σ1(i)), and that with
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respect to this notion of multiplication the n! differ-
ent permutations of n objects form the symmetric

group of degree n, denoted Sn. Saying that Sn is a
group means that it satisfies the following axioms:

G1 for any σ1, σ2 ∈ Sn, σ2σ1 ∈ Sn;

G2 for any σ1, σ2, σ3 ∈ Sn, σ3(σ2σ1) = (σ3σ2)σ1;

G3 there is a unique e∈ Sn satisfying eσ= σe= σ for
any σ ∈ Sn; and finally,

G4 for any σ ∈ Sn there is a unique σ−1 ∈ Sn such
that σσ−1 = σ−1σ = e.

Given a function f : Sn → R, the group structure sug-
gests defining the left–translate of f by π ∈ Sn as

fπ : Sn → R, fπ(σ) = f(π−1σ).

In (Kondor & Borgwardt, 2008) we have shown that
if we encode the adjacency matrix in the function

fA(σ) = Aσ(n),σ(n−1), (1)

then permuting the vertices of G by π transforms
fA exactly into (fA)π. This reduces the problem
of constructing graph invariants to constructing left–
translation invariant functionals of functions on Sn.
The specific invariants they use are grounded in the
theory of non-commutative harmonic analysis.

2.2. Fourier space invariants

Recall that a (finite dimensional, complex valued) rep-

resentation of a group G is a matrix valued func-
tion ρ : G → C

d×d satisfying ρ(xy) = ρ(x)ρ(y) for
all x, y ∈ G. If G is finite, then one can find finite
collections R of such representations that are funda-
mental in the sense that (a) no two representations in
R are equivalent up to similarity transformation; (b)
any representation of G reduces into a direct sum of
representations in R; (c) each ρ ∈ R is unitary, i.e.,
ρ(x)−1 = ρ(x)†. For more background in representa-
tion theory the reader is referred to (Serre, 1977). In
the case of the symmetric group, a popular choice for
R is Young’s Orthogonal Representation (YOR),
and the individual ρ ∈ R representations are usually
labeled by the integer partitions {λ ⊢ n}. An in-
teger partition λ ⊢ n is a sequence of natural num-
bers λ = (λ1, λ2, . . . , λk) satisfying

∑k
i=1 λi = n and

λi ≥ λi+1 for i = 1, 2, . . . k − 1. It is convenient to
represent integer partitions by Young diagrams, such
as

for λ = (5, 3, 1). A special property of YOR is that
each of the ρλ(σ) matrices are real valued.

In terms of YOR (or indeed any other complete sys-
tem of inequivalent irreducible representations of Sn)
the Fourier transform of a function f : Sn → R is
defined as the sequence of matrices

f̂(λ) =
∑

σ∈Sn

f(σ) ρλ(σ) λ ⊢ n. (2)

Of the several properties of ordinary Fourier trans-
formation inherited by such generalized Fourier trans-
forms, we are particularly interested in the transla-

tion theorem, which states that

f̂π(λ) = ρλ(π) f̂(λ) λ ⊢ n. (3)

Coupled with the unitarity of ρλ(π), this immediately
tells us that the matrices

â(λ) = f̂(λ)† · f̂(λ) λ ⊢ n (4)

are translation invariant. This is called the power

spectrum of f . In (Kondor & Borgwardt, 2008) we
employed further, more powerful, invariants, in partic-
ular, the skew spectrum

q̂ν(λ) = r̂ν(λ)† · f̂(λ), λ ⊢ n, ν ∈ Sn, (5)

where rν(σ) = f(σν)f(σ).

In summary, the Fourier approach to computing graph
invariants consists of the following steps:

1. compute fA from A as in (1),

2. compute the Fourier transform f̂A by (2),

3. compute the skew spectrum (5) or any other sys-
tem of left–translation invariant matrices and use
these as graph invariants.

A fundamental issue in (Kondor & Borgwardt, 2008)
was that the q̂ν(λ) matrices turned out to be ex-
tremely sparse. Indeed, irrespective of the size of G,
the entire skew spectrum has only 87 independent non-
zero elements, and its reduced, O(n3) computable ver-
sion which we used in the experiments had just 49.
While the skew spectrum is reported to have excel-
lent performance on small and medium-sized graphs,
this nonetheless casts a shadow on its representational
power as n increases. Another limitation of the skew
spectrum is that it is fairly rigid: most crucially for
applications, there is no simple way of incorporating
labels on the vertices or edges. The present work ad-
dresses both of these issues.

3. The graphlet spectrum

A common alternative to the algebraic approach de-
scribed above is to characterize graphs in terms of the
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frequency or position of certain elementary subgraphs
embedded within them. Depending on the context
these small subgraphs are usually called graphlets

(which is the terminology that we will use in this pa-
per) or motifs. Given a graphlet g of k < n vertices
whose adjacency matrix we denote with the same let-
ter g, the indicator

µg(v1, v2, . . . , vk) =

{
1 if gi,j ≤ Avi,vj

∀ i, j,

0 otherwise,
(6)

captures whether g is a subgraph of G at position
(v1, v2, . . . , vk), whereas

µind
g (v1, v2, . . . , vk) =

{
1 if gi,j = Avi,vj

∀ i, j,

0 otherwise

(7)
captures whether g is an induced subgraph at
(v1, v2, . . . , vk).

The fundamental observation motivating the present
paper is that (at least for unweighted graphs), fA, as
defined in (1), can be re-written as

fA(σ) = µe(σ(n), σ(n−1)),

where e stands for the elementary graphlet of two ver-
tices and a single directed edge. In other words, fA

encodes where the edge e occurs in G as a subgraph.
It is easy to extend this idea to larger graphlets by
letting

fA,g(σ) = µg(σ(n), σ(n−1), . . . , σ(n−k + 1)), (8)

or the analogous expression with µind in the induced
subgraph case. Crucially, fA,g defined in this way will
obey the same transformation property as before, since
if µπ

g is the indicator of the permuted adjacency matrix
Aπ, then

µπ
g (π(v1), π(v2), . . . , π(vk)) = µg(v1, v2, . . . , vk), (9)

hence

µπ
g (v1, . . . , vk) = µg(π

−1(v1), . . . , π
−1(vk)),

and therefore

fAπ,g(σ) = µg(π
−1σ(n), . . . , π−1σ(n−k+1)) =

fA,g(π
−1σ) = (fA,g)

π(σ). (10)

This means that just as in Section 2, we can invoke
the machinery of power spectra, skew spectra, etc. to
derive graph invariants, but now these new invariants
will be sensitive to the presence of entire subgraphs in
G and not just individual edges.

An attractive feature of our approach is that given a
small library g1, g2, . . . , gm of graphlets we can com-
pute a separate fA,gi

function for each graphlet, and
then form invariants from all possible combinations of
these functions, capturing information about the rela-
tive position of different types of subgraphs as well as
different subgraphs of the same type. Since in this case
second order invariants such as (4) already yield a rich
set of features, we forgo computing higher order, more
expensive invariants, such as the skew spectrum. Our
exact definition of the graphlet spectrum is as follows.

Definition 1 Given a graph G of n vertices and adja-
cency matrix A, relative to a collection g1, g2, . . . , gm

of graphlets and an indicator function such as (6) or
(7), the graphlet spectrum of G is defined to be the
sequence of matrices

q̂i,j(λ) =
(
f̂A,gi

(λ)
)†

· f̂A,gj
(λ), j ≤ i, λ ⊢ n,

(11)
where fA,gi

is defined as in (8).

Proposition 1 Each scalar component [q̂i,j(λ)]a,b of
the graphlet spectrum is a graph invariant.

Proof. If we permute the vertices of G by π ∈ Sn, then
by (10) the graphlet spectrum becomes

q̂ π
i,j(λ) =

(
f̂Aπ,gi

(λ)
)†

· f̂Aπ,gj
(λ) =

(
f̂π
A,gi

(λ)
)†

· f̂π
A,gj

(λ),

which by the translation theorem (3) is further equal
to (

ρλ(π) f̂A,gi
(λ)

)†
·
(
ρλ(π) f̂A,gj

(λ)
)
,

but by unitarity ρλ(π)†ρλ(π) = I, so these factors can-
cel, and q̂ π

i,j(λ) = q̂i,j(λ). �

3.1. Generalizations

It should be clear from the above that (11) being in-
variant does not explicitly require µ to be an indica-
tor for subgraphs. Indeed, any function of the vertices
that depends purely on the graph structure and not the
numbering of the vertices will transform according to
(9), and hence the Fourier transform of the correspond-
ing fµ(σ) = (σ(n), . . . σ(n−k)) will be a candidate for
inclusion in (11). This also includes real-valued µ.

At the most general level the graphlet spectrum is a
system of invariants for k’th order weighted, directed
hypergraphs, since (9) describes exactly the way that
the “adjacency matrix” of such hypergraphs trans-
forms under permutation. Equations (6) and (7) just
define the “embedding hypergraphs” of g in A.

This generalization is particularly useful for taking
into account label information, the absence of which



The graphlet spectrum

is probably the most severe limitation of (Kondor &
Borgwardt, 2008). For example, if G is the structure
of a molecule and g is a small chemical feature such as
a functional group in organic chemistry, then we can
redefine (6) to indicate a match only when both the
topology and the labeling (i.e., what kind of atom oc-
cupies each vertex) match up between g and A. Edge
labels may be incorporated in a similar way.

4. Computational considerations

More often than not, the biggest challenge in applying
representation theoretical ideas to real world problems
is making the necessary computations scalable. In the
case of the graphlet spectrum at first sight it appears
that computing the Fourier transform (2) already de-
mands O((n!)2) time, which is clearly forbiddingly ex-
pensive. There are two key ingredients to reducing
this computational burden to a level that is feasible in
a practical algorithm: sparsity and the theory of fast
Fourier transforms. We aim for applications involv-
ing medium sized graphs (few hundred nodes), and a
handful of graphlets with k in the range 2 to 6.

4.1. Sparsity

Since the Fourier transform f 7→ f̂ is a unitary trans-
formation, the combined size of the f̂(λ) matrices ap-
pearing in (2) is n!. However, any f defined by (8)
is a so-called right Sn−k–invariant function. For such

functions most f̂(λ) Fourier components turn out to
be identically zero, and (at least in YOR) even the re-
maining components will have a characteristic column-
sparse structure. To describe this structure we need
the following facts from representation theory:

1. The individual rows/columns of the ρλ(σ) repre-
sentation matrices are indexed by so-called stan-

dard Young tableaux, which we get by bijec-
tively filling the boxes of the Young diagram of
λ with the numbers 1, 2, . . . , n according to the
rule that the numbers must increase left to right
in each row and top to bottom in each column.
For example,

1 3 4 5 8

2 6

7

is a standard tableau of shape (5, 2, 1). The set
of standard tableaux of shape λ we denote by Tλ

and the set of standard tableaux of n boxes by Tn.
There is only one standard tableau of shape (n),
and we will depict it as 1 2 n .

2. The ρ(n) representation is the one-dimensional
trivial representation ρ(n)(σ) = (1) ∀σ ∈ Sn.

3. There is a natural partial order on partitions in
which λ′ ≥ λ if and only if λ′ = (λ1, λ2, . . . , λk′)
can be derived from λ = (λ1, λ2, . . . , λk) by adding
boxes, i.e, λ′

j ≥ λi for i = 1, 2, . . . , k.

4. There is a corresponding partial order on standard
tableaux in which t′ ≥ t (with t′ ∈ Tn and t∈ Tm)
if and only if t′ can be derived from t by adding
boxes containing the numbers m+1,m+2, . . . , n.

5. For m < n, the permutations that fix m+1, m+
2, . . . , n form a subgroup in Sn, which we identify
with Sm.

6. YOR has the special property that if we restrict
σ to Sn−1, then ρλ decomposes into a direct sum
of YOR representations of Sn−1 in the form

ρλ(σ) =
⊕

λ−≤λ
λ−⊢n−1

ρλ−(σ), σ ∈ Sn−1, (12)

where the ρλ− block is at the intersection
of rows/columns that are indexed by standard
tableux that yield a tableau of shape λ− on re-
moval of the box containing n.

Together these facts lead to the following result, which
is fairly well-known in the world of computational non-
commutative harmonic analysis.

Proposition 2 If f : Sn → R is defined as in
(8), then in YOR its Fourier transform (2) will be
identically zero except for those columns indexed by
{ t ∈ Tn | t ≥ 1 2 ∗ }, where ∗ stands for n − k.
Furthermore, the total number of scalar entries in
these columns is exactly n!/(n−k)!.

Proof. The sets σSm = { στ | τ ∈ Sm } ⊂ Sn are
called left Sm–cosets and by Sn/Sm we mean a set of
permutations with exactly one permutation from each
such coset. If f (dropping the A, g indices) is defined
as in (8), then it is constant on each left Sn−k–coset,
therefore its Fourier transform can be written as

f̂(λ) =
∑

σ∈Sn/Sn−k

∑

τ∈Sn−k

f(σ) ρλ(στ) =

∑

σ∈Sn/Sn−k

f(σ) ρλ(σ)
∑

τ∈Sn−k

ρλ(τ). (13)

Recursively applying (12) gives

ρλ(τ) =
⊕

λ−∈Λ−

ρλ−(τ), (14)

where Λ− is a multiset of partitions of n− k, the mul-
tiplicity of each λ− ∈ Λ− being determined by how
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many distinct ways there are of arriving at λ− by
successive “legal” removals of boxes from λ. In par-
ticular, the trivial representation ρ(n−k)(τ) = (1) oc-
curs in (14) exactly at those locations on the diagonal
where the row/column index satisfies t ≥ 1 2 ∗ .
At these diagonal locations we will have an entry of∑

τ∈Sn−k ρλ(τ) = (n − k)!. By the unitarity of the
Fourier transform (on Sn−k), all other representations
must be orthogonal to ρ(n−k) in the sense that for these
representations

∑
τ∈Sn−k

ρλ−(τ) = 0, and hence every

other entry in (14) is zero.

Since the set of right Sn−k–invariant functions spans a
space of dimension n!/(n−k)!, and the Fourier trans-
form is unitary (hence, linear and invertible), the to-

tal size of the non-zero columns of f̂ must be at least
n!/(n−k)!. Examining (13) reveals that any function
that is orthogonal to this space will not contribute to
the columns in question, so again by unitarity, the size
of the columns must, in fact, be exactly n!/(n−k)!. �

Example 1 (c.f., (Kondor & Borgwardt, 2008)) In
the simplest case of graphlets which are just single
edges (k = 2) Proposition 2 tells us that the only non-

zero components of f̂ are

1. the single scalar component f̂(n);

2. the � column of f̂(n−1,1);

3. the • column of f̂(n−1,1);

4. the •� column of f̂(n−2,2);

5. the
•

� column of f̂(n−2,1,1),

where � denotes n and • denotes n−1.

Proposition 3 If the number of vertices of each of
the graphlets g1, g2, . . . , gm is k, and n ≥ 2k, then the
graphlet spectrum (11) has

(
m

2

) k∑

s=0

(
k

s

)2

s!

non-zero scalar components.

Proof. Clearly, there are
(
m
2

)
ways of choosing i and

j in (11). Now for fixed i and j, by Proposition 2,
non-zeros can only occur in q̂i,j(λ) matrices indexed
by λ that have 0 ≤ s ≤ k boxes in the second and
higher rows. Within such a matrix the non-zeros are
at the intersection of rows/columns indexed by stan-
dard tableaux from T k

λ = { t∈Tλ | t≥ 1 2 ∗ }, so
in total there are |T k

λ |2 non-zero matrix elements. In

enumerating the t ∈ T k
λ there are

(
k
s

)
ways of choosing

which k − s of the numbers n − k + 1, . . . , n should

Table 1. The size of the graphlet spectrum (in terms of
scalar components) induced by a single graphlet of k ver-
tices. The cases k = 3, 4, 5 are probably the most inter-
esting since they extract “higher order structure” from the
graph; k = 2 is useful in the context of multiple graphlets
encoding different labeled features, otherwise it just repro-
duces a subset of the skew spectrum; k = 6 and higher are
typically too expensive to compute.

k 2 3 4 5 6
size 7 34 209 1,546 13,327

go in the first row, and let us say, gλ ways of ar-
ranging the remaining s numbers in rows two and
higher. This means that for fixed i, j and s there are(
k
s

)2 ∑
λ⊢n, λ1=n−s g2

λ non-zeros to account for. How-
ever, if we let λ∗ be the partition that we get by strip-
ping away the entire first row of λ, then gλ is exactly
the number of “legal” ways of arranging 1, 2, . . . , s in
a partition of shape λ∗, i.e., gλ = | Tλ∗ |. Since by uni-
tarity the number of scalar components of a function
(on Ss) and its Fourier transform must be the same,∑

λ⊢n, λ1=n−s g2
λ =

∑
λ∗⊢s | Tλ∗ |2 = s!. �

4.2. Fast Fourier Transforms

The reason that f̂ can be efficiently computed is not
just that it is sparse, but that its sparsity struc-
ture is closely matched to the structure of the non-
commutative fast Fourier transforms that are gaining
popularity in the non-commutative harmonic analysis
community (Rockmore, 1997; Clausen, 1989). In gen-

eral, such FFTs reduce computing f̂ to computing n
separate transforms on Sn−1, which are in turn each
reduced to n− 1 transforms on Sn−2, and so on. To
describe the specialized version of Clausen’s FFT that
we developed to compute the graphlet spectrum, we
need the following concepts.

1. Complexity is measured in scalar operations,
which is a single scalar multiplication followed by
a scalar addition. Copying information and rear-
ranging matrices is assumed to be free.

2. An adjacent transposition τi is a special per-
mutation that swaps i with i+1 and leaves every-
thing else fixed.

3. YOR has the special property that the representa-
tion matrices of adjacent transpositions are very
sparse: ρλ(τi) has at most 2 non-zero entries in
each row and in each column.

4. Defining Ji, nK as the permutation

Ji, nK(j) =






j for j = 1, . . . , i−1

j + 1 for j = i, . . . , n−1

i for j = n,
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the cosets {Ji, nK Sn−1}
n
i=1 form a partition of Sn,

therefore any σ ∈ Sn can be written as σ = Ji, nKτ
for some i ∈ {1, 2, . . . , n} and τ ∈ Sn−1. Further-
more, Ji, nK = τi τi+1 . . . τn−1.

Proposition 4 If f : Sn → R is defined as in (8),
then in YOR its Fourier transform can be computed
in

[
(n + 1)n (n − 1)

3
−

(m + 1)m (m − 1)

3

]
n!

m!
(15)

scalar operations, where m is a shorthand for n − k.
For fixed k this expression grows as O(n2+k).

Proof. (Sketch) Clausen’s fast Fourier transform
(Clausen, 1989) for general functions on f is based on
the observation that thanks to (12) and the coset de-
composition

⋃n
i=1Ji, nK Sn−1 = Sn, if we define the re-

stricted functions fi : Sn−1 → R as fi(τ) = f(Ji, nKτ),
then

f̂(λ) =

n∑

i=1

∑

τ∈Sn−1

ρλ(Ji, nKτ) f(Ji, nKτ) =

n∑

i=1

ρλ(Ji, nK)
∑

τ∈Sn−1

ρλ(τ) fi(τ) =

n∑

i=1

ρλ(Ji, nK)
⊕

λ−⊢n−1
λ−≤λ

f̂i(λ
−), (16)

where f̂i are now Fourier transforms on the smaller
group Sn−1. If t is a standard tableau of shape λ,
letting [ρλ(σ)]t denote the column of ρλ(σ) indexed by

t, and similarly for [f̂(λ)]t, specializing (16) to column
t gives

[f̂(λ)]t =

n∑

i=1

ρλ(Ji, nK) ĥ
(i)
t ,

where h
(i)
t is a column vector of all zeros, except

for the block encoding [f̂i(λ
−)]t− , where t− is the

tableau that we get from t by removing n. If h
(t)
i is

dt dimensional, then multiplying it by ρλ(Ji, nK) can
be done in 2dt(n − i) operations, since ρλ(Ji, nK) =
ρλ(τi) . . . ρλ(τn−1), and in YOR each of the matrices
in this product has at most two non-zero entries in
each row. Summing over i gives dtn(n−1), and then
summing over over all { t∈Tn | t ≥ 1 2 ∗ } and us-
ing Proposition 2 gives a total of n(n− 1)n!/(n− k)!

operations for computing f̂ from the lower level trans-
forms {f̂i}.

Now we can recurse on the Sn−1–transforms {f̂i} and
show that computing each of them from the appropri-
ate Sn−2–transforms takes (n−1)(n−2) (n−1)!/(n−k)!

operations, and so on, down to level n − k. Starting
the flow of information at the bottom, in total this
recursive algorithm requires

∑n
j=n−k+1 j (j−1) n!

(n−k)!

scalar operations, which evaluates to (15). �

We remark that using the FFT described in (Maslen,
1997) could further reduce the asymptotic complexity

of computing f̂ by a factor of n.

4.3. Further sparsification and implementation

For small k Propositions 2–4 reduce computing the
graphlet spectrum into the realm of possibility. How-
ever, in realistic scenarios some further computational
savings are possible.

In the “f domain” we can exploit the fact that real
world graphs are generally sparse, the locations where
graphlets match them are even sparser, hence we never
have to store a dense indicator function (6) in memory,
and crucially, in performing the FFT we can ignore
entire branches in the implied tree of cosets.

As a counterpart in Fourier space, for k ≥ 4 it is help-
ful to ignore some of the “higher order” Fourier matri-
ces, which quickly become infeasibly large. In general,
the Fourier matrices that we are concerned with are of
shape λ = (n − s, λ2, λ3, . . . λj) with s << n, and the
dimensionality of such matrices grows with ns. Im-
posing a cutoff at s = 3 or s = 4 not only reduces
the storage requirements of f̂ , and consequently of the
graphlet spectrum q̂, but also allows us to eliminate
all branches leading to these components in the com-
putation of the FFT.

In practice, exploiting these dual sources of sparsity
in tandem affords much better scaling behavior (al-
beit with no theoretical guarantees) than suggested
by Propositions 2 and 4, and opens the door to explor-
ing larger graphlets. From an implementation point of
view this was made possible by significantly extend-
ing the SnOB FFT library (Kondor, 2006). We plan to
make all the code necessary for computing the graphlet
spectrum available on the SnOB web site.

5. Experiments

We assess the performance of the graphlet spectrum
features on four benchmark datasets of chemical struc-
tures of molecules: MUTAG, ENZYMES, NCI1, and
NCI109. Of these, MUTAG (Debnath et al., 1991) is a
dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds labeled according to whether or not
they have a mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium. ENZYMES is a
dataset of protein tertiary structures which we ob-
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Table 2. Prediction accuracy in percent for the graphlet spectrum features and state-of-the-art graph kernels on four
classification benchmarks in 10 repetitions of 10-fold cross-validation. Standard errors are indicated in parentheses. Best
results for each datasets are in bold.

MUTAG ENZYMES NCI1 NCI109
Number of instances/classes 188/2 600/6 4110/2 4127/2
Max. number of nodes 28 126 111 111
Graphlet spectrum 88.11 (0.46) 35.42 (0.58) 65.0 (0.09) 65.31 (0.08)
Reduced skew spectrum 88.61 (0.21) 25.83 (0.34) 62.72 (0.05) 62.62(0.03)
Graphlet count kernel 81.7 (0.67) 23.94 (0.4) 54.34 (0.04) 52.39 (0.09)

tained from (Borgwardt et al., 2005) consisting of 600
enzymes from the BRENDA enzyme database (Schom-
burg et al., 2004). In this case the task is to cor-
rectly assign each enzyme to one of the 6 EC top level
classes. The average number of nodes of the graphs in
this dataset is 32.6 and the average number of edges is
124.3. Finally, we also conducted experiments on two
balanced subsets of NCI1 and NCI109, which classify
compounds based on whether or not they are active
in an anti-cancer screen ((Wale & Karypis, 2006) and
http://pubchem.ncbi.nlm.nih.gov). Since in these
datasets the number of vertices varies from graph to
graph, while the graphlet spectrum requires a fixed n,
we set n to be the maximum over the entire dataset
and augment the smaller graphs with the appropriate
number of unconnected “phantom” nodes.

The experiments consisted of running SVMs on the
above data using a linear kernel on top of the the
graphlet spectrum features. For comparison, we ap-
plied a linear kernel on the reduced skew spectrum
features from (Kondor & Borgwardt, 2008) and a
graphlet count kernel that counts the number of com-
mon graphlets in two graphs (Shervashidze et al.,
2009). Both these kernels had been shown to outper-
form the classic random walk kernel (Gärtner et al.,
2003) in earlier studies.

One of the strengths of the graphlet spectrum is that it
allows the practitioner to use graphlets specifically de-
signed to pick out salient features, such as functional
groups in molecules. In our experiments we started
with a minimal set of graphlets and saw performance
increase as we added further ones one by one. The
actual graphlets used in our experiments were the fol-
lowing:

• MUTAG: C C, C C C, C C C C, C N,
O N, ∗ ∗;

• NCI1 and NCI109: C C, C N, C O, O N,
O O, N N;

• ENZYMES: ∗ ∗, α

α

α� @ , β

β

β� @ , α α,
α β, β β;

where ∗ − ∗ denotes an edge with arbitrary node la-
bels. For fair comparison in the graphlet count ker-

nel we used the same graphlets. Further experimen-
tation and incorporating more knowledge from chem-
istry could lead to a siginificantly more powerful sys-
tem of graphlets for organic molecules. It is important
to stress that computational time, while a constraint,
was not the limiting factor here: computing the spec-
trum with the above graphlets on MUTAG took about
a second per graph on a desktop machine, and the sys-
tem could easily handle several more graphlets of up
to 4 or even 5 vertices. For enzymes α and β denote
α-helices and β-sheets, respectively.

To evaluate performance, we tested prediction accu-
racy on independent evaluation sets which we obtained
as follows. We split each dataset into 10 folds of
identical sizes. We then split 9 of these folds again
into 10 parts, trained a C-SVM (implemented by LIB-
SVM (Chang & Lin, 2001)) on 9 parts, and predicted
on the 10th part. We repeated this training and pre-
diction procedure for C ∈ {10−7, 10−6, . . . , 107}, and
determined the C reaching maximum prediction ac-
curacy on the 10th part. We then trained an SVM
with this best C on all 9 folds (= 10 parts), and pre-
dicted on the 10th fold, which acts as an independent
evaluation set. We repeated the whole procedure 10
times so that each fold acts as independent evaluation
set exactly once. For each dataset and each method,
we repeated the whole experiment 10 times and report
mean accuracy levels and standard errors in Table 2.

On the whole, the graphlet spectrum outperforms both
its comparison partners in our experiments. Its accu-
racy is more than 2% higher than that of the reduced
skew spectrum on both NCI datasets, and almost 10%
better on ENZYMES. Only on MUTAG is the skew
spectrum’s accuracy slightly better than that of the
graphlet spectrum (88.61% vs. 88.11%).

Most interestingly, the graphlet spectrum always out-
performs the graphlet count-based kernels. Its ability
to consider relative positions between graphlets seems
to lead to a much more sophisticated measure of struc-
tural graph similarity than pure subgraph frequencies.
Even when the graphlet count based approach’s per-
formance is barely better than random, as on NCI109,
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the graphlet spectrum still achieves state-of-the-art re-
sults based on the same graphlets.

6. Discussion

In this paper we have presented a new, efficiently com-
putable system of graph invariants for use in graph ker-
nels called the graphlet spectrum. The graphlet spec-
trum is based on k’th order subgraphs (“graphlets”),
and to the best of our knowledge it is the first prac-
tical system of graph invariants that not only counts
subgraphs, but also takes their relative position into
account. A further advantage of the new approach is
that it can encode vertex and edge labels in addition
to the graph topology.

Experiments show that on graphs of medium size (up
to a few hundred vertices) the graphlet spectrum is
comparable in performance with state-of-the-art graph
kernels, and in several cases outperforms all other
methods. Theoretical results from non-commutative
harmonic analysis and the representation theory of Sn,
together with a custom-built FFT library allow the
graphlet spectrum to scale up to real-world problems
with relative ease.

One of the sources of flexibility as well as one of the
burdens associated with the graphlet spectrum is hav-
ing to specify a library of graphlets. In our exper-
iments we solved this by using domain knowledge,
defining a system of graphlets specifically tailored to
organic molecules. However, automatic graphlet se-
lection approaches are also conceivable, leading to the
issue of efficient feature selection on graphs, such as
the work by Tsuda (2007) on feature selection on fre-
quent subgraphs.
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