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Abstract

In a dynamic social or biological environ-
ment, interactions between the underlying
actors can undergo large and systematic
changes. Each actor can assume multiple
roles and their degrees of affiliation to these
roles can also exhibit rich temporal phenom-
ena. We propose a state space mized mem-
bership stochastic blockmodel which can track
across time the evolving roles of the actors.
We also derive an efficient variational infer-
ence procedure for our model, and apply it to
the Enron email networks, and rewiring gene
regulatory networks of yeast. In both cases,
our model reveals interesting dynamical roles
of the actors.

1. Introduction

Over the course of a temporal process, such as the de-
velopment of a company, there may exist multiple un-
derlying themes that determine the functions of the ac-
tors and their relations to each other, and such themes
are dynamic and stochastic. As a result, the net-
works of interactions between the actors at each time
point are context-dependent and can undergo system-
atic rewiring, rather than being invariant over time.
Furthermore, the actors involved in such dynamic in-
teractions can also exhibit multiple functionalities in
order to meet the requirement of the evolving themes.

It is our goal to dissect the evolving functional com-
position of the actors based on their dynamic interac-
tions, which we call the dynamic network tomography.
Dynamic network tomography can lead to important
insights to the robustness of network structures, the
cause and consequence of information diffusion, and
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the mechanism of hierarchy and organization forma-
tion. By appropriately modeling network tomography,
a network analyst can also simulate and reason about
the generative mechanisms of networks, and discover
changing themes in networks, which will be relevant
for activity and anomaly detection. Therefore, meth-
ods for finding the evolving functional and semantic
underpinnings of dynamic networks are essential for
understanding the organization and re-organization of
complex relational networks.

Recently there is a surge of interest in applying latent
space model for network modeling and analysis (Hoff
et al., 2002; Li & McCallum, 2006; Handcock et al.,
2007; Erosheva et al., 2004; Airoldi et al., 2008). How-
ever, an important aspect has not been addressed so
far: none of these models considered the dynamic na-
ture of the networks. Rather than having a single and
invariant role, an actor in dynamic networks can un-
dergo multiple sources of influence, and it can actively
undertake a specific role depending on who it is inter-
acting with and when this interaction occurs.

Here we propose a dynamic mized membership stochas-
tic block model (AMMSB) based on a latent space
model proposed recently by Airoldi et al. (2008). To
deal with the dynamic nature of the networks, we ap-
ply ideas similar to the correlated topic model (Blei &
Lafferty, 2006a) and dynamic topic model (Blei & Laf-
ferty, 2006b) for text document analysis. The major
contributions of our paper are:

e Our model incorporates a state space model for
tracking the mixed memberships of network ac-
tors in the latent space. This allows us to study
the dynamic evolution of the functional roles of
network actors. First and foremost, it is a useful
tool for analyzing network topology and visualiz-
ing the property of entities in dynamic networks.

e Our application of logistic normal prior to the
mixed membership vectors is novel in the context
of network modeling. This prior provides us the
extra ability to capture the relational structure
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between latent functional roles.

e We also develop a Laplace variational EM algo-
rithm for performing efficient learning and infer-
ence. This algorithm enables us to study real
world dynamic networks such as the Enron email
networks and yeast gene regulatory networks.

The remainder of the paper is organized as follow. In
Section 2, we present the dMMSB model in detail. The
Laplace variational EM algorithm will be described
briefly in Section 3. In Section 4, we experiment on
synthetic data, and two real world networks. We con-
clude our paper in Section 5.

2. Modeling Time Evolving Networks

Consider a temporal sequence of networks {g<t>}tT:1

where each G = {V, £} is the network observed at
time ¢; and we assume that the set of network actors V

- . . N
is invariant over time (N = |V|), but £®) = {623) it
the set of links between actors, is possibly transient

and can evolve over time.

Our model for time evolving networks builds upon a
mixed membership stochastic blockmodel (MMSB) for
static networks (Airoldi et al., 2008). The key idea is to
superimpose a state space model on top of the MMSB,
and connect the two via a logistic normal prior, such
that temporal dynamics of the networks are captured.
We next introduce the MMSB for static networks.

2.1. Mixed membership stochastic blockmodel

In the mixed membership stochastic blockmodel, we
assume that each actor v; € V can undertake up to K
different roles from a latent tomographic space; and its
degrees of affiliation to these roles can be represented
as a normalized vector 7; (of dimension K) drawn from
a prior distribution p(w). We also refer to = as the
mized membership vector.

We further assume that a directed interaction from ac-
tors v; to v; are instantiated stochastically according
to a compatibility function C(z,;_;, z;_;) over the roles,
z;_; and z,_;, undertaken by the actor-pair in ques-
tion. z,_,; ~ p(z|m;) denotes the latent role of actor
v; when it is to interact with v;, and z,_; ~ p(z|m;)
denotes the role of actor v; when it is approached by
v;. Here z;,_; and z;_; are unit indicator vectors (of
dimension K); z,_,, =1 (or z,_,, = 1) means v; (or
v;) understakes role k in this particular interaction.

We will focus on compatibility functions of a bilin-
ear form: C(z,2') = z' Bz, where B = {ﬁkl}kKJ:l
is called a role compatibility matrix. Then a link,

e,;; € {0,1}, from v; to v; is drawn from a Bernoulli
distribution with parameter C(z,_;,2,_;). In sum-
mary, the mixed membership stochastic blockmodel
(MMSB) posits the following generative process for
links in a static network:

1. {m}¥, ~ p(r), sample a mixed membership vec-
tor for each actor v;.
2. For each actor v; that actor v; possibly interacts
with:
e z,_.; ~ Multinomial(z|m;), sample a role indi-
cator vector for donor wv;;
e z,_, ~ Multinomial(z|r;), sample a role in-
dicator vector for receiver vj;
e ¢,; ~ Bernoulli(e|z Bz, ;), sample a link
indicator between actor v; and v;.

The generative model above defines a conditional prob-
ability distribution of the relations € = {e;;}7;_; be-
tween N actors in a way that reflects naturally in-
terpretable latent roles of the actors. Note that each
vertex v; is associated with not just one but a set of
latent membership indicators {z;_,., z.;} (if the links
are undirected, then we can ignore the asymmetry of
” and “«"”). Thus the semantic underpinning of
each interaction between actors is captured by a pair
of instantiated memberships unique to this interaction;
the nature and strength of this interaction is controlled
by the compatibility function determined by this pair
of membership instantiations.

“_

The role compatibility matrix B encodes the affinity
between functional roles. If we want to model assorta-
tive relations where actors of the same role are more
likely to connect to each other, we can use a B with di-
agonally dominant entries; If we want to model differ-
ential preference between different roles, we can encode
stronger off-diagonal entries and rich block patterns in
B. The flexibility of choosing this B matrix provides
the MMSB with strong expressive power for dealing
with complex relational patterns. If necessary, a prior
distribution, Bg; ~ p(3), over the elements of B can
be introduced, which can offer desirable smoothing or
regularization effects.

Crucial to the MMSB, is the mized membership vec-
tor m of in the above generative model, which repre-
sents the overall function spectrum of an actor and suc-
cinctly captures the probabilities of an actor involving
in different roles when it interacts with others. The ex-
pressive power of the MMSB also arises from the choice
of the prior distribution p(r) for the mixed member-
ship vector 7. For instance, Airoldi et al. (2008) em-
ployed a simple Dirichlet prior because it is conjugate
to the multinomial distribution generating the actual
role indicator z. To capture non-trivial correlations
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between different roles (i.e. different dimensions of ),
and to model temporal dynamics of the actor roles, we
can also employ a logistic normal distribution over a
simplex as in Ahmed and Xing (2007):

T, = exp(y — C(7)), 7~ Normal(p, %) (1)
where C(vy) = log(z:f:1 exp(yx)) is a normalization
constant that insures entries of 7 sum to 1.

2.2. Dynamic logistic normal mixed
membership stochastic blockmodel

In time evolving networks the mixed membership vec-
tors 7 can change over time; so are the priors,
p®(7) and p*(3), and the role compatibility matrix
B Conditioning on the observed network sequence
{GWVT_ | our goal is to infer the trajectories of the
mixed membership vectors 7 in the latent function
(or role) space. In the following, we present a gen-
erative model that augments the MMSB with a state
space model for linear dynamic systems for modeling
time evolving networks.

We can superimpose temporal dynamics on both the
prior, p®)(7), for the mixed membership vectors, and
the prior, p(¥)(3), for entries of the role compatibility
matrix. Specifically, we use a logistic normal distri-
bution LN (1™, 2®) for p® (r), and another logistic
normal distribution LA (n®, S®) for p(*)(3)*. We as-
sume that the two means, p(Y and 5, are evolving
over time according to a linear Gaussian model, but
the covariances, ©®) and S®) which captures time
specific topic correlations are independent across time.

The way we model temporal dynamics is based on the
well-known state space model (SSM) popular in ob-
ject tracking and trajectory modeling. It defines a lin-
ear transition between states of adjacent time points:
for ;) we have u® = Aplt=1 4 w® where A is
a transition matrix, w® ~ A(0,®) a normal tran-
sition noise, and p(® := v; and similarly for n®),
n® = byt 4 €O where b is a scalar, € ~ N(0,1)),
and 1) := ;. Now the MMSB model functions as an
emission model within SSM, and it is connected to the
SSM via the logistic normal priors LN (u®, %) and
LN (n®, S®). With such a construction, our model is
able to track the functional changes of network actors,
and sense the emergence and termination of “func-
tional themes” in time evolving networks.

Overall, our dynamic mixed membership stochastic
blockmodel (dAMMSB) consists of three components:
an SSM for mixed membership vector, an SSM for

Note that £ is a scalar, the logistic normal distribution
is as follows: o ~ Normal(n, S), 8 = exp(«)/(exp(a) + 1).

role compatibility matrix and a logistic normal mixed
membership stochastic blockmodel (LNMMSB) for the
networks. The first two components model the tem-
poral dynamics while the third component model the
generative process of the network at each time point.
The following is an outline of the generative process of
our model. A graphical model representation of this
model is illustrated in Figure 1.

1. State Space Model for Mixed Membership Vectors:

e 1) ~ Normal(v, ®), sample the mean of the
mixed membership prior at ¢t = 1;

o 1Y) ~ Normal(Ap*—1 &), sample the mean
of the mixed membership prior for ¢t > 1;

2. State Space Model for Role Compatibility Matrix:

e (V) ~ Normal(t, 1)), sample the mean of the
role compatibility matrix prior at t = 1;

e 1) ~ Normal(bn“~?, ), sample the mean of
the role compatibility matrix prior for ¢ > 1;

o {ﬂz(f?}kK,zﬂ ~ LN (n®,S®) sample entries
of the role compatibility matrix.

3. Logistic Normal Mixed Membership Stochastic
Blockmodel (LNMMSB):

. {Wgt)}i]il ~ LN (p® x®) sample a mixed
membership vector for each actor v; at each
time point ¢.

e For each actor v; that actor v; possibly inter-
acts with, at each time point ¢:

— zfi)] ~ Multinomial(z|7r£t)), sample a role
indicator vector for donor v;;
- z(i)J ~ Multinomial(zhr](»t)), sample a role
indicator vector for receiver v;;
— eg) ~ Bernoulli(e|2" T B® 2" ), sample
a link indicator between actor v; and v;.

Note that one can also introduce dynamics directly
on the (pre-transformed) mixed membership vectors v
rather than their prior. However, this leads to an SSM
for each network actor and dramatically increase the
model size. Alternatively, one can also design an in-
termediate model by introducing SSMs on clusters of
actors; there is a tradeoff between model expressive-
ness and computational complexity. For clarity, we
focus on the model with dynamics only on the priors.

Another thing to note is the state space model for the
mixed membership vectors generates not a single, but

N emissions each time, each corresponding to a (pre-

transformed) mixed membership vector ’yi(t). In order

to apply directly the Kalman filter and Rauch-Tung-
Striebel smoother for posterior inference and parame-
ter estimation, we introduce an intermediate random
variable Y = L 3. 'yi(t); it is easy to see that Y(*)
follows a standard SSM reparameterized from the orig-
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Figure 1. A graphical model representation of the dynamic
mixed membership stochastic blockmodel. Enclosed by the
dotted lines is a logistic normal MMSB.

inal dAMMSB, i.e. Y®) ~ Normal(u®, 7).

In principle, we can use the dMMSB to capture not
only membership correlation within and between ac-
tors at a specific time (as did in Blei and Lafferty
(2006a)), but also dynamic coupling (or co-evolution)
of the overall functional roles in the whole network
via the covariance matrix ®. In the simplest scenario,
when A = I and ® = oI, this model reduces to ran-
dom walk in the latent role space. In most realistic
time evolving networks, both the role coupling and
role compatibility matrix are unlikely to be invariant
over time, we expect that even a random walk mixed
membership stochastic blockmodel can provide a bet-
ter fit to the data than a static model that ignores the
time stamps of the networks.

3. Learning and Inference for DMMSB

Under dMMSB, exact posterior inference of the latent
variables of interest (z, m and ), and direct EM es-
timation of the model parameters (i, X and B) are
computationally intractable. This is due to difficulties
in both the marginalization over the latent variables
2%, and in the integration of the mixed membership
vector m3. In this section, we present a variational
EM algorithm for inferring the latent variables and
estimating the model parameters. Our algorithm is
based on a generalized means field (GMF) approxima-
tion proposed by Xing et al. (2003).

2The state space of all z is super-exponential.
3No closed-form integration exists under a logistic nor-
mal prior.

Generalized mean field approximates the joint pos-
terior p({z®,~®, u® BT 10, {GMT_H* by a
product of three marginals, ¢ = ¢ ({z®,7}L,)
e ({p9Y) es({BW}IL,). @i corresponds to the
marginal distribution of {2 4®}T_ under a repa-
rameterized LNMMSB; ¢2 and g3 corresponds to SSMs
over {uMT_and {BW}T_| respectively, with emis-
sion models related to the expectation of {z(®), v T
under ¢;°.

The computation of the variational parameters for the
approximate marginal ¢q;, g2 and g3 leads to the cou-
pling between them (more details in the following sec-
tions). Once the variational parameters are obtained,
inference on any latent variable under the joint distri-
bution p which is intractable, can be approximated by
a much simpler inference in one of the ¢;s that contains
the variable of interest.

For simplicity, we drop the SSM superimposed in the
role compatibility matrix B, and assume that it is in-
variant over time. Thus we do not need to consider
the parameters n and S in our exposition. Further-
more, we focus on random walk dynamics and hence
set the state transition matrix A to I. In the following
sections, we will discuss two key components of our
learning and inference algorithm in more details.

3.1. Variational inference for LNMMSB

Under a LNMMSB, the posterior of the latent vari-
ables v and z can be written as:

P(%ZW’E,B’g) X Hip(7i|ﬂﬂ E) (2)

Hi’j P(zigs Ziej[vis V5P €i5] 20, 2oy B).
Directly marginalizing over all but one hidden vari-
ables, say +;, is intractable in the above posterior.
Again, we resort to generalized mean field (GMF) for
apprxoimating p with ¢,¢.. Xing et al. (2003) showed
that under GMF approximation, the optimal solution
to the marginal over a cluster of variables is isomorphic
to the conditional distribution of this cluster given its
expected Markov Blanket. That is,

av(vi) = p(vil1, B, (zim.)q. » (2.—i)q. ), and

qz(Zi—pr—j) = p(zi—q’azﬁ—j | eijaBa <%‘>qu <’Yj>qw)7

where (-)q := E4[-]. These equations define a fixed
point for ¢, and ¢.. To obtain this fixed point, the
marginal for variables in one cluster is updated when

4@ denotes other model parameters.

5This can be shown by minimizing the KL-divergence
between p and ¢ over arbitrary choices of ¢qi, g2 and
gs (Xing et al., 2003).
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we fix the marginals of all the other variables. Such

iterative updates continue until convergence.

More specifically, the update formulae for ¢,(y;) and
¢-(%i—j, zi—;) are as follows:

¢~ (i) o< Normal(7;, il), (3)
QZ(ZiH]ﬁ Ziej) & P(Ziﬁj‘<’)’z‘>qv) P(ziHj‘<’Yj>q7)
p(2ij, ziej, B) ~ Multinomial(d(;;y),  (4)

where 7; and ¥, are obtained via a Laplace approxima-

tion; Oijym = 7 eXP((Yik)a, +(Vit)a, ) Bi” (1= )=,
and Z is a normalization constant.

3.2. Parameter estimation for dMMSB

We use variational EM algorithm for updating the pa-
rameters (Ghahramani & Beal, 2001). The E-step
uses Kalman Filter and Rauch-Tung-Striebel (RTS)
Smoother for estimating the hidden states 7, and
the LNMMSB update in section 3.1 for computing suf-
ficient statistics 7yi( ) E(t) and 58))% In the M-step,
the model parameters are updated by maximizing the
log-likelihood obtained from the E-step. The update
formulae are as follows:

(f) (t)
Zt i,5 € (1])1€l (t)

Bt — S m R Ll (5)
t,i,g (ij)lcl
=Y =32+ 50 ()
The overall algorithm is summarized in Algo-

rithm 1. Note that the variational cluster marginals
4(zims 2iey)s a(v:) and q({uO}),) each dependent
on variational parameters defined by other cluster
marginals. Thus the overall algorithm is essentially
a fixed point iteration that will converge to a local op-
timum. We use multiple random restarts to obtain a
near global optimum.

4. Experiments

We will first use synthetic data to investigate the per-
formance of our learning algorithms and demonstrate
the advantage of the dMMSB model. Then we will
apply dMMSB to two real world datasets.

4.1. Experiments on synthetic data

We compare the logistic normal MMSB (LNMMSB) to
a Dirichlet MMSB proposed by Airoldi et al. (2008),
and then to AMMSB. We investigate their differences
in two major aspects: (1) for a static network, does LN-
MMSB provides a better fit to the data when different
roles are correlated? and (#7) for dynamic networks,
does dMMSB provides a better fit to the data?

Algorithm 1 Learning dMMSB

T
Input: a temporal sequence of networks {g<t>} —1

Output: latent variables 2® and 4@, and model
parameters ), 5, B = {8 }5,_,.

1: Initialize z(®, v(t) u(t), »® and B.

2: repeat
3 repeat
4 fort=1...T do
5 ¢=(=";. 2 ) ~ Multinomial(5{.),).
6: q'y('-)’i(t)) ~ Normal(¥; () il(,t)),
7 end for

S, e
8 Update By 22171“;%

t,1,] (zg)kl

9:  until convergence.

10:  Filtering plus smoothing i using {Y O},
update pu®) — iy 7.
11:  Update () iy = A

12: until convergence.

O 45,50

1
n
@
o n

bo_d - Shuian,

Figure 2. Left: the true mixed membership vectors (cir-
cle) and the estimates by LNMMSB (cross) visualized in
a 2-simplex; each truth-estimate pair is connected by a
grey line. Right: the true role compatibility matrix is the
identity matrix. The estimate by LNMMSB is exactly the
same as the ground truth and hence not displayed. Three
roles are represented by blue, green and red respectively
corresponding to the color of the vertices in the 2-simplex.

To investigate the first question, we generate a static
network containing 100 actors and 3 latent roles. We
use a covariance matrix of 41 between the latents roles.
Furthermore, to introduce dependency structure be-
tween roles, we set the off-diagonal entries correspond-
ing to role 2 and 3 to —3.9, which means that these
two roles are negatively correlated. For one instanti-
ation of the dataset, the true the mixed membership
vectors are plotted as circles in Figure 2(left). It can
be observed that very few actors have components for
both role 2 and 3 which reflects the negative correla-
tion we introduced in the covariance matrix. The role
compatibility matrix is a identity matrix.

To evaluate the fitness of a model to the data, we use
the log-likelihood of the model parameter as our mea-
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Table 1. Dirichlet vs. Logistic Normal Prior for MMSB

Prior Avg. ¢y distance | Log-likelihood
Dirichlet 0.091 -5755.8
Logistic Normal 0.092 -5691.7

0.8(0.79)

0.8(0.78) 0.8(0.81)

Avg. error in L-2 norm

6
Time point

Figure 3. Left: the true mixed membership vectors (cir-
cle) and the estimates by dMMSB (cross) at time point 6
visualized in a 2-simplex; each truth-estimate pair is linked
by a grey line. Middle: the learned role compatibility ma-
trix, whose non-zero entries are shown by arcs with values;
values outside the brackets are the truths and the values
inside the brackets are estimates. Right: Average {5 errors
of mixed membership vectors for MMSB and dMMSB.

sure. The results for LNMMSB and Dirichlet MMSB
are listed in Table 1. We can see that the log-likelihood
for LNMMSB is 64 smaller than that of the Dirichlet
MMSB. Since no simple form of the log-likelihood can
be derived for both methods, the log-likelihoods were
obtained via importance sampling. As a second mea-
sure, we also used the 5 norm to measure the distance
between the inferred mixed membership vectors and
the ground truth. Both methods recovers the ground
truth quite well (Table 1) and we illustrated the recov-
ered mixed membership vectors in Figure 2.

To answer our second question, we generate dynamic
networks consisting of 10 time points. The number of
actors remains 100 and the number of roles remains
3. Furthermore, we generate the networks in such a
way that networks between adjacent time points show
certain degree of similarity. As an illustration, the true
role compatibility matrix and the mixed membership
vectors at time point 6 are displayed in Figure 3.

In Figure 3(right), we compare dMMSB to an LN-
MMSB learning a static network for each time point
separately. We measure the performance in terms of
the average {5 distance between the estimates of the
mixed membership vectors and their true values. It
can be seen that the error of dMMSB is lower than
the error of MMSB in most cases and about 10 per-
cent lower on average. This suggests that dMMSB
can indeed integrate information across temporal do-
main and better models the networks. More settings of
model parameters have been tested on both LNMMSB
and dMMSB; they confirm that dMMSB is more effec-

tive in modeling dynamic networks.

4.2. Gene regulatory networks of yeast

In this section, we use our dAMMSB as a visualization
and exploration tool to study the dynamic gene regu-
latory networks of yeast collected by Luscombe et al.
(2004). This dynamic network is built upon a static
network assembled from known regulatory interactions
from genetic, biochemical and ChIP-chip experiments.
The dynamic aspect of the network is augmented us-
ing gene expression data. In our study, we focused on
a subset of 116 genes and their dynamic networks over
5 stages of the cell cycle—early G1, late G1, S, G2, and
M. We learned a dMMSB of 6 latent functional roles
selected by BIC. The composition of functional roles
from each gene is plotted in Figure 4, and the role
compatibility matrix is visualized in Figure 5.

The functional roles we discovered for each gene cor-
respond nicely to the structural importance of these
genes. In particular, Role 1 (blue) corresponds to those
genes that are inactive or disconnected from the rest
of the regulatory network. For example, gene #8 is
inactive in the 4 later cell stages.

Role 2 (light blue) and Role 3 (cyan) correspond to a
pair of regulator-regulatee relation. These regulatees
are active only for a few time points (e.g. gene #77-
84 and #110-115). Moreover, the top 4 regulators in
role 3 (gene #35, #41, #48 and #34) regulate a large
number of genes in role 2, and the out-degree of these
4 regulators are much larger than other regulators in
role 3. Therefore, we see these 4 genes are dominated
by role 3 across time. They corresponds to essential
genes needed across all stages of the cell cycle.

Interestingly, there is a second pair of regulator-
regulatee relation between Role 4 (yellow) and Role 5
(orange). Note that this is different from the regulator-
regulatee relation between Role 2 and Role 3. An ex-
ample within this relation is gene #44 a persistent
regulator assuming role 4, and gene #32 a target gene
being regulated and assuming role 5.

Role 6 (dark red) corresponds to a cluster of genes with
tight within-cluster interactions. They form cliques
indicating that these genes are tightly interact with
each to accomplish the underlying biological process.
Gene #16 is one of this kind.

Another important feature is that genes may assume
multiple functional roles and their functional roles may
evolve as the cell proceeds to different stages of the
cycle. For instance, #32 assumes role 3 and 5, which
makes it sometimes a donor and sometimes a receiver.
Another example is #9, which is of role 1 in time 2
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Figure 4. Temporal changes in mixed membership vectors
grouped by individual. The horizontal axes of each subplot
is time, and the vertical axes visualize the components of
each mixed membership vector. Six roles are represented
by six different colors.

1

®®

Figure 5. Role compatibility matrix learned by dMMSB.
Each role is represented by a circle with the same color as
in Figure 4. Each non-zero entry of the matrix corresponds
to the weight on an edge.

and 4, but switches to role 2 in other times.

It is worth noting that although the role compatibility
matrix is simple and separable (to components), a few
actors that assume multiple active roles make the re-
lationship network complicated and connected, which
make it difficult for traditional methods to uncovering
such structures.

4.3. Enron email networks

In this section, we study the Enron email communica-
tion networks. The email data was processed by Shetty
and Adibi (2004). We further extract email sender and
recipients in order to build email networks. We have
processed the data such that numerous email aliases
are properly corresponded to actual persons.

There are 151 persons in the dataset. We used emails
from 2001, and built an email network for each month,
so the dynamic network has 12 time points. We learn
a dAMMSB of 5 latent roles. The composition of roles
of each member and the role compatibility matrix are
depicted in Figure 6.

Similar to the discussion on gene networks, the first
role (blue) stands for inactivity. The other roles are ac-
tive. Actors with Role 2 (cyan) only send email to per-
sons of the same role, therefore they form a clique. So

is Role 4 (orange), which leads to another clique. Per-
sons #6, 9,48, 67, etc mainly assume this role, and they
communicate with many others in the same role. They
appear to be normal employees according to available
information and the underlying meaning of the clique
is yet discovered.

Role 5 (red) is within the functional composition of
many people. Persons in Role 5 sends emails to per-
sons with either Role 5 or Role 3 (green). They form
a large clique, where Role 3 corresponds to receivers
and Role 5 to both senders and receivers.
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Figure 6. Temporal changes of the mixed membership vec-
tors for each actor; and the visualization for role compati-
bility matrix.

Of special interest are individuals that are frequently
dominated by multiple active roles (especially those
falling into separate cliques), because they have strong
connection with different groups and may serve impor-
tant positions in the company. By scanning Figure 6,
person #65 and #107 fit best to this category. Ac-
cording to external sources, Mark Haedicke (#65) was
the Managing Director of the Legal Department, and
Louise Kitchen (#107) was the President of Enron On-
line, which supports the finding of our method.

We also zoom into Kenneth Lay (#127), the Chairman
and CEO of Enron at the time. His mixed membership
vector in August is abnormally dominated by Role 3,
which stands for a receiver. It is exactly the time when
Enron’s financial flaws were first publicly disclosed by
an analyst, which might lead to a massive increase in
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enquiry emails from the internal employees.

With respect to systematic changes in temporal space,
mixed membership vectors of most actors are smooth
over time. However, a few people experiences a large
increase in the weight of the inactivity role in Decem-
ber (i.e., persons #6,13,36,67,76). This is the time
when Enron filed for bankruptcy.

Finally, we can also visualize the mixed membership
vectors of the network entities and track the trajectory
of the mixed membership vector for an individual as
shown in Figure 7. They can help us understand the
network as a whole and how each individual evolve
in their roles. Based on these examples, we believe
dMMSB can provide a useful visual portal for explor-
ing the stories behind Enron.
Apr 2001 #65 Mark Haedicke

2 2

Figure 7. Left: visualization of mixed membership vectors
of network actors in 3-simplex at one time point. Each
vertex of the tetrahedron corresponds to a role marked by
its ID. A mixed membership vector is represented by a
cross whose location and color are the weighted average of
its active roles and whose size is proportional to the sum
of the weights from the active roles. Right: we track the
trajectory of the mixed membership vector for an actor
across time. Numbers in italics show time stamps.

5. Conclusion

DMMSB analysis for real datasets presented in the
paper is merely a preliminary study. One can examine
various properties of the mixed membership vectors
along with the role compatibility matrix. Each finding
should be verified through external sources; the model
only serves as a tool for exploring dynamic networks.

The main purpose of dAMMSB is to facilitate the pro-
cess of uncovering interesting patterns underlying dy-
namic social or biological networks. In many cases,
there can be hundreds and thousands of actors; ex-
amining them one by one can be extremely tedious.
DMMSB offers an effective way for unveiling the block
structure of the networks, which is very different from
traditional analysis (e.g. degree distribution).

In term of the model and the algorithm, there are
many dimensions where we can extend our current

work. For instance, the current model does not explic-
itly take hubs of networks into account. Incorporating
these elements will be interesting future research.
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