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Abstract

In recent years the l1,∞ norm has been pro-
posed for joint regularization. In essence, this
type of regularization aims at extending the
l1 framework for learning sparse models to
a setting where the goal is to learn a set of
jointly sparse models. In this paper we de-
rive a simple and effective projected gradient
method for optimization of l1,∞ regularized
problems. The main challenge in developing
such a method resides on being able to com-
pute efficient projections to the l1,∞ ball. We
present an algorithm that works in O(n log n)
time and O(n) memory where n is the num-
ber of parameters. We test our algorithm in
a multi-task image annotation problem. Our
results show that l1,∞ leads to better per-
formance than both l2 and l1 regularization
and that it is is effective in discovering jointly
sparse solutions.

1. Introduction

Learning algorithms based on l1 regularized loss func-
tions have had a relatively long history in machine
learning, covering a wide range of applications such
as sparse sensing (Donoho, 2004), l1-logistic regression
(Ng, 2004), and structure learning of Markov networks
(Lee et al., 2007). A well known property of l1 regular-
ized models is their ability to recover sparse solutions.
Because of this they are suitable for applications where

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

discovering significant features is of value and where
computing features is expensive. In addition, it has
been shown that in some cases l1 regularization can
lead to sample complexity bounds that are logarithmic
in the number of input dimensions, making it suitable
for learning in high dimensional spaces (Ng, 2004).

In recent years the l1,∞ norm has been proposed for
joint regularization (Turlach et al., 2005; Tropp, 2006;
Quattoni et al., 2008; Schmidt et al., 2008). The l1,∞
norm is a matrix norm that penalizes the sum of max-
imum absolute values of each row. This regularizer
encourages row sparsity: i.e., it encourages entire rows
of the matrix to have zero elements.

As one example application, consider a multi-task set-
ting with m problems where the l1,∞ regularizer is ap-
plied to a parameter matrix W = [w1, . . . ,wm], where
wi is a parameter vector for the i-th task. In this case
the l1,∞ regularizer is used to promote feature sharing
across tasks and discover solutions where only a few
features are non-zero in any of the m tasks (i.e. jointly
sparse solutions) (Quattoni et al., 2008). Other appli-
cations of l1,∞ regularization are simultaneous sparse
signal approximation (Tropp, 2006; Turlach et al.,
2005) and structure learning (Schmidt et al., 2008).

In this paper we present an efficient projected sub-
gradient method for optimization of l1,∞ regularized
convex objectives, which we formulate as a constrained
convex optimization problem. Projected gradient
methods iterate between performing unconstrained
gradient-based updates followed by projections to the
feasible set, which in our case is an l1,∞ ball. These
methods have been shown to scale well and have
been proposed for solving constrained optimization
problems involving large numbers of variables. For
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example, (Shalev-Shwartz et al., 2007) developed a
projected gradient method for l2 regularization and
(Duchi et al., 2008) proposed an analogous algorithm
for l1. However, the problem of finding an efficient
projected method for l1,∞ constraints remains open.
The main challenge in developing a projected gradient
algorithm for l1,∞ constraints resides on being able to
efficiently compute Euclidean projections onto the l1,∞
ball. We show that this can be done in O(n log n) time
and O(n) memory, where n is the number of parame-
ters of our model.

We apply our algorithm to a multi-task image anno-
tation problem where the goal is to predict keywords
for a given image. We show that l1,∞ regularization
performs significantly better than both independent l2
and independent l1 regularization. Furthermore, we
show that l1,∞ is able to find jointly sparse solutions
(i.e. parameter matrices with few non-zero rows).

2. Previous Work

Turlach et al. (2005) developed an interior point al-
gorithm for optimizing a twice differentiable objective
regularized with an l1,∞ norm. One of the limitations
of this approach is that it requires the exact compu-
tation of the Hessian of the objective function. This
might be computationally expensive for some applica-
tions both in terms of memory and time. An alterna-
tive approach was proposed by Schmidt et al. (2008),
who combined a gradient-descent method with inde-
pendent l∞ projections.

For the special case of a linear objective the regular-
ization problem can be expressed as a linear program
(Quattoni et al., 2008). While this is feasible for small
problems it does not scale to problems with large num-
ber of variables.

Our l1,∞ projection algorithm is related to the l1 pro-
jection of Duchi et al. (2008) in that theirs is a special
case of our algorithm for m = 1. The derivation of
the general case for l1,∞ regularization is significantly
more involved as it requires reducing a set of l∞ reg-
ularization problems tied together through a common
l1 norm to a problem that can be solved efficiently.

Similarly to the l1,∞ norm, the l1,2 has also been pro-
posed for joint sparse approximation. This norm pe-
nalizes the sum of the l2 norms of each row of W (Yuan
& Lin, 2006; Meier et al., 2006; Similä & Tikka, 2007;
Park & Hastie, 2006; Obozinski et al., 2006; Argyriou
et al., 2007; Schmidt et al., 2009).

3. A projected gradient method for l1,∞

regularization

In this section we start by describing a convex con-
strained optimization formulation of l1,∞ regulariza-
tion, followed by a concrete application to multi-task
learning. We finish by introducing the projected gra-
dient approach that we will use to solve the problem.

3.1. Constrained Convex Optimization

Formulation

Assume we have a dataset D = (z1, z2, . . . , zn) with
points z belonging to some set Z, and a d × m pa-
rameter matrix W = [w1, . . . ,wm] where wk ∈ Rd for
k = {1, . . . ,m} is the k-th column of W . For example
in a multi-task setting wk would be the parameters
for the k-th task. We also have a convex loss function
L(z,W ) that measures the loss incurred by W on a
training sample z. Let us now define the l1,∞ norm:

||W ||1,∞ =
d

∑

j=1

max
k

|Wj,k| (1)

When used as a regularization norm l1,∞ induces solu-
tions where only a few rows will contain non-zero val-
ues. In fact Tropp (2006) showed that under certain
conditions the l1,∞ regularization norm is a convex re-
laxation of a pseudo-norm that counts the number of
non-zero rows of W .

One possibility for defining the l1,∞ regularization
problem is to set it as a soft constraint:

min
W

n
∑

i=1

L(zi,W ) + λ||W ||1,∞ (2)

Here λ is a parameter that captures the trade-off be-
tween error and sparsity. Another natural way of for-
mulating the regularization problem is to set it as a
constrained convex optimization:

min
W

n
∑

i=1

L(zi,W ) s.t. ||W ||1,∞ ≤ C (3)

In this case C is a bound on ||W ||1,∞ and serves a role
analogous to that of λ in the previous formulation. In
this paper we concentrate on this latter formulation.

3.2. An Application: Multi-task Learning

To give a concrete application let us describe the multi-
task joint regularization setting. The goal here is to
train m jointly-sparse linear classifiers, one for each
task. By jointly sparse we mean that we wish only a
few features to be non-zero in any of the m problems.



An Efficient Projection for l1,∞ Regularization

We can formulate this problem as an l1,∞ regularized
objective.

Following the notation from the previous section, Z
is the set of tuples: (xi, yi, li) for i = 1 . . . n where
each xi ∈ Rd is a feature vector, li ∈ {1, . . . ,m} is
a label specifying to which of the m tasks the exam-
ple corresponds to, and yi ∈ {+1,−1} is the label
for the example. Assume that we wish to learn m
linear classifiers of the form fk(x) = wk · x, and let
W = [w1,w2, . . . ,wm] be a d × m matrix where Wj,k

corresponds to the j-th parameter of the k-th problem.
So in the ideal case we would like a solution matrix W
with a few non-zero rows (i.e. a few active features).
In order to assess the classification performance mul-
tiple classification losses could be used, in this paper
we used the hinge loss:

LH(z,W ) = max(0, 1 − fk(x)y) (4)

In this formulation, the hinge loss encourages correct
classification of the points and the l1,∞ norm is similar
to l1 regularization, but it encourages joint sparsity
across the different tasks.

3.3. A Projected Gradient Method

Our algorithm for optimizing equation (3) is based
on the projected subgradient method for minimizing
a convex function F(W ) subject to convex constraints
of the form W ∈ Ω, where Ω is a convex set (Bert-
sekas, 1999). In our case F(W ) is some convex loss
function, W is a parameter matrix and Ω is the set of
all matrices with ||W ||1,∞ ≤ C.

A projected subgradient algorithm works by generat-
ing a sequence of solutions W t via W t+1 = PΩ(W t −
η∇t). Here ∇t is a subgradient of F at W t and PΩ(W )
is is the Euclidean projection of W onto Ω, given by:

min
W ′∈Ω

||W ′ − W ||2 = min
W ′∈Ω

∑

j,k

(W ′
j,k − Wj,k)

2
(5)

Finally, η is the learning rate that controls the amount
by which the solution changes at each iteration.

Standard results in optimization literature (Bertsekas,
1999) show that when η = η0√

t
and F(W ) is a convex

Lipschitz function the projected algorithm will con-
verge to an ǫ-accurate solution in O(1/ǫ2) iterations.

For the hinge loss case described in the previous sec-
tion, computing the subgradient of the objective of
equation (3) is straightforward. The subgradient for
the parameters of each task can be computed inde-
pendently of the other tasks, and for the k-th task it
is given by summing examples of the task whose mar-

gin is less than one:

∇t
k =

∑

i : li=k, fk(xi)yi<1

yixi (6)

In the next section we show how to compute the pro-
jection onto the l1,∞ ball efficiently.

4. Efficient Projection onto the l1,∞ Ball

We start this section by using the Lagrangian of the
projection to characterize the optimal solution. This
will allow us to map the projection to a simpler prob-
lem for which we can develop an efficient algorithm,
that we present in the second part of the section.

4.1. Characterization of the solution

We now describe the projection of a matrix A to the
l1,∞ ball. For now, we assume that all entries in A are
non-negative; later we will show that this assumption
imposes no limitation. The projection can be formu-
lated as finding a matrix B that solves the following
convex optimization problem:

P1,∞ : min
B,µ

1

2

∑

i,j

(Bi,j − Ai,j)
2 (7)

s.t. ∀i, j Bi,j ≤ µi (8)
∑

i

µi = C (9)

∀i, j Bi,j ≥ 0 (10)

∀i µi ≥ 0 (11)

In the above problem, the objective (7) corresponds to
the Euclidean distance between A and B, whereas the
constraints specify that B is in the boundary of the
l1,∞ ball of radius C.1 To do so, there are variables
µ that stand for the the maximum coefficients of B
for each row i, as imposed by constraints (8), and that
sum to the radius of the ball, as imposed by constraint
(9). Constraints (10) and (11) stand for non-negativity
of the new coefficients and maximum values.

We now present the Lagrangian of problem P1,∞ and
three lemmas that will be used to derive an efficient
algorithm. The Lagrangian is:

L(B,µ,α, θ,β,γ) =
1

2

∑

i,j

(Bi,j − Ai,j)
2

+
∑

i,j

αi,j(Bi,j − µi) + θ
(

∑

i

µi − C
)

−
∑

i,j

βi,jBi,j −
∑

i

γiµi

1It is simple to show that the optimal B is on the bound-
ary of the ball, providing that ||A||1,∞ >= C.
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Lemma 1 At the optimal solution of P1,∞ there exists
a constant θ ≥ 0 such that for every i: either (a)
µi > 0 and

∑

j(Ai,j − Bi,j) = θ; or (b) µi = 0 and
∑

j Ai,j ≤ θ.

Proof: Differentiating L with respect to Bi,j gives the
optimality condition ∂L

∂Bi,j
= Bi,j − Ai,j + αi,j − βi,j = 0.

Differentiating L with respect to µi gives the optimality
condition ∂L

∂µi
= θ −

P

j αi,j − γi = 0.

We now assume µi > 0 to prove (a). The complemen-
tary slackness conditions imply that whenever µi > 0 then
γi = 0 and therefore θ =

P

j αi,j . If we assume that
Bi,j > 0, by complementary slackness then βi,j = 0, and
therefore αi,j = Ai,j − Bi,j . If Bi,j = 0 then Bi,j − µi 6= 0
and so αi,j = 0 due to complementary slackness; we
then observe that Ai,j = −βi,j , but since Ai,j ≥ 0 and
βi,j ≥ 0 it must be that Ai,j = 0; so we can express also
αi,j = Ai,j −Bi,j . Thus, θ =

P

j(Ai,j −Bi,j) which proves

(a).

When µi = 0, Bi,j = 0 because of (8) and (10). Then, using

the optimality conditions ∂L
∂Bi,j

we get that αi,j = Ai,j +

βi,j . Plugging this into ∂L
∂µi

we get θ =
P

j(Ai,j +βi,j)+γi.

By definition βi,j ≥ 0 and γi ≥ 0, which proves (b).

Lemma 1 means that when projecting A, for every row
whose sum is greater than θ, the sum of the new values
in the row will be reduced by a constant θ. The rows
whose sum is less than θ will become zero.

The next lemma reveals how to obtain the coefficients
of B given the optimal maximums µ.

Lemma 2 Let µ be the optimal maximums of problem
P1,∞. The optimal matrix B of P1,∞ satisfies that:

Ai,j ≥ µi =⇒ Bi,j = µi (12)

Ai,j ≤ µi =⇒ Bi,j = Ai,j (13)

µi = 0 =⇒ Bi,j = 0 (14)

Proof: If µi = 0 the lemma follows directly from (8) and
(10). The rest of the proof assumes that µi > 0.

To prove (12), assume that Ai,j ≥ µi but Bi,j 6= µi. We
consider two cases. When Bi,j > 0, by (8), if Bi,j 6= µi

then Bi,j < µi, which means αi,j = 0 due to complemen-
tary slackness. This together with βi,j = 0 imply that
Bi,j = Ai,j , and therefore Ai,j < µi, which contradicts the
assumption. When Bi,j = 0 then αi,j = 0 and Ai,j = 0
(see proof of Lemma 1), which contradicts the assumption.

To prove (13), assume that Ai,j ≤ µi but Bi,j 6= Ai,j . We

again consider two cases. If Bi,j > 0, βi,j = 0; given that

Bi,j 6= Ai,j , then αi,j > 0, and so Bi,j = µi due to comple-

mentary slackness. But since αi,j > 0, Ai,j > Bi,j = µi,

which contradicts the assumption. If Bi,j = 0 then

Ai,j = 0 (see proof of Lemma 1), which contradicts the

assumption.

With these results, the problem of projecting into the

l1,∞ ball can be reduced to the following problem,
which finds the optimal maximums µ:

M1,∞ : find µ , θ (15)

s.t.
∑

i

µi = C (16)

∑

j:Ai,j≥µi

(Ai,j − µi) = θ , ∀i s.t. µi >0 (17)

∑

j

Ai,j ≤ θ , ∀i s.t. µi = 0 (18)

∀i µi ≥ 0 ; θ ≥ 0 (19)

With µ we can create a matrix B using Lemma 2.
Intuitively, the new formulation reduces finding the
projection to the l1,∞ ball to finding a new vector of
maximum absolute values that will be used to truncate
the original matrix. The constraints express that the
cumulative mass removed from a row is kept constant
across all rows, except for those rows whose coefficients
become zero. A final lemma establishes that there is a
unique solution to M1,∞. Therefore, the original pro-
jection P1,∞ reduces to finding the solution of M1,∞.

Lemma 3 For any matrix A and a constant C such
that C < ||A||1,∞, there is a unique solution µ∗, θ∗ to
the problem M1,∞.

Proof: For any θ ≥ 0 there is a unique µ that satisfies
(17), (18) and (19). To see this, consider θ ≥

P

j Ai,j .

In this case we must have µi = 0, by equation (18). For
θ <

P

j Ai,j we have µi = fi(θ) where fi is the inverse of
the function

gi(µ) =
X

j:Ai,j≥µ

(Ai,j − µ)

gi(µ) is a strictly decreasing function in the interval
[0, maxj Ai,j ] with gi(0) =

P

j Ai,j and gi(maxj Ai,j) = 0.

Therefore it is clear that fi(θ) is also well defined on the
interval [0,

P

j Ai,j ].

Next, define

N(θ) =
X

i

hi(θ)

where hi(θ) = 0 if θ >
P

j Ai,j and hi(θ) = fi(θ) otherwise.

N(θ) is strictly increasing in the interval [0, maxi

P

j Ai,j ].

Hence there is a unique θ∗ that satisfies N(θ∗) = C; and

there is a unique µ∗ such that µ∗
i = hi(θ

∗) for each i.

So far we have assumed that the input matrix A is
non-negative. For the general case, it is easy to prove
that the optimal projection never changes the sign of
a coefficient (Duchi et al., 2008). Thus, given the co-
efficient matrix W used by our learning algorithm, we
can run the l1,∞ projection on A, where A is a matrix
made of the absolute values of W , and then recover
the original signs after truncating each coefficient.
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4.2. An efficient projection algorithm

In this section we describe an efficient algorithm to
solve problem M1,∞. Given a d × m matrix A and a
ball of radius C, the goal is to find a constant θ and a
vector µ of maximums for the new projected matrix,
such that C =

∑

i µi.

As we have shown in the proof of Lemma 3, µ and θ
can be recovered using functions N(θ) and hi(θ). Each
function hi(θ) is piecewise linear with m + 1 intervals.
Furthermore N(θ), the sum of functions hi(θ), is also
piecewise linear with dm + 1 intervals. Appendix A
describes the intervals and slopes of hi.

Our algorithm builds these functions piece by piece,
until it finds a constant θ that satisfies the conditions
of problem M1,∞; it then recovers µ. The cost of the
algorithm is dominated by sorting and merging the x-
coordinates of the hi functions, which form the inter-
vals of N. Therefore the complexity is O(dm log dm)
time and O(dm) in memory, where dm is the number of
parameters in A. As a final note, the algorithm only
needs to consider non-zero parameters of A. Thus,
in this complexity cost, dm can be interpreted as the
number of non-zero parameters. This property is par-
ticularly attractive for learning methods that maintain
sparse coefficients.

5. Synthetic Experiments

For the synthetic experiments we considered a multi-
task setting where we compared the l1,∞ projection
with both independent l2 projections for each task and
independent l1 projections. In all cases we used a pro-
jected subgradient method, thus the only difference is
in the projection step. For all the experiments we used
the sum of average hinge losses per task as our objec-
tive function. For these experiments as well as the
experiments in the following section the learning rate
was set to η0/

√
t, where η0 was chosen to minimize the

objective on the training data (we tried values 0.1, 1,
10 and 100). All models were run for 200 iterations.

To create data for these experiments we first generated
parameters W = [w1,w2, . . . ,wm] for all tasks, where
each entry was sampled from a normal distribution
with 0 mean and unit variance. To generate jointly
sparse vectors we randomly selected 10% of the fea-
tures to be the global set of relevant features V . Then
for each task we randomly selected a subset v ⊆ V of
relevant features for the task. The size of v was sam-
pled uniformly at random from {|V |/2, . . . , |V |}. All
parameters outside v were zeroed.

Each of the dimensions of the training points xk
i for
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Figure 1. Synthetic experiments, for 60 problems and 200
features (10% relevant). Top: test error. Bottom: feature
selection performance.

each task was also generated from a normal distribu-
tion with 0 mean and unit variance. All vectors were
then normalized to have unit norm. The correspond-
ing labels yk

i were set to sign(wk · xi
k). The test data

was generated in the same fashion. The number of di-
mensions for these experiments was set to 200 and the
number of problems to 60.

We evaluated three types of projections: l1,∞, inde-
pendent l2 and independent l1. For each projection
the ball constraints C were set to be the true norm
of the corresponding parameters.2 That is for the l1,∞
norm we set C = ||W ||1,∞. For the independent l1 and
l2 norms we set Ck = ||wk||1 and Ck = ||wk||2, resp.,
where Ck is the regularization parameter for task k.

We trained models with different number of training
examples ranging from 10 to 640 examples per task
and evaluated the classification error of the resulting
classifier on the test data.

Figure 1 shows the results of these experiments. As
we would expect, given the amount of feature shar-
ing between tasks, the l1,∞ projection results in better
generalization than both independent l1 and indepen-
dent l2 projections. Since we know the relevant feature
set V , we can evaluate how well the l1 and l1,∞ pro-
jections recovered these features. For each model we
take the coefficient matrix W learned and select all
the features corresponding to non-zero coefficients for

2We also conducted experiments where C was chosen
using a validation set and obtained very similar results.



An Efficient Projection for l1,∞ Regularization

at least one task. The bottom plot shows precision
and recall of feature selection for each model, as we
increase the number of training examples per task. As
we can see both the l1 model and the l1,∞ can easily
recognize that a feature is in the relevant set: the re-
call for both models is high even with very few training
examples. The main difference between the two mod-
els is in the precision at recovering relevant features:
the l1,∞ model returns significantly sparser solutions,
and thus has higher precision.

6. Image Annotation Experiments

In these experiments we use our algorithm in a multi-
task learning application. We compare the perfor-
mance of independent l2, independent l1, and joint
l1,∞ regularization. In all cases we used the sum of
hinge losses as our objective function. To train the
l1 regularized models we used the projected method
of (Duchi et al., 2008) (which is a special case of our
projection when m = 1). To train the l2 regularized
models we used the standard SVM-Light software 3.

For these experiments we collected a dataset from the
Reuters news-website. Images on the Reuters website
have associated captions. We selected the 40 most fre-
quent content words as our target prediction tasks (a
content word is defined as not being in a list of stop
words). That is, each task involved the binary pre-
diction of whether a content word was an appropriate
annotation for an image. Examples of words include:
awards, president, actress, actor, match, team, people.

We partitioned the data into three sets: 10,589 images
for training, 5,000 images as validation data, and 5,000
images for testing. For each of the 40 most frequent
content words we created multiple training sets of dif-
ferent sizes, n = {40, 80, 160, 320, 640}: each training
set contained n positive examples and 2n negative ex-
amples. All examples for each task were randomly
sampled from the pool of supervised training data.

Our image representation is a multi-resolution vocab-
ulary histogram (Nister & Stewenius, 2006; Grauman
& Darrell, 2008); each pyramid level is concatenated
to form our feature space. As a preprocessing step we
performed SVD to obtain a new basis of the image
space where features are uncorrelated.

6.1. Evaluation and Significance Testing

To compare the performance of different classifiers we
use the AUC criterion, which is commonly used in eval-
uation on retrieval tasks. For a single task, assuming

3http://svmlight.joachims.org/

a labeled test set (xi, yi) for i = 1 . . . n, the AUC mea-
sure for a function f can be expressed (e.g., see Agar-
wal et al. (2005)) as

1

n+

∑

i:yi=+1

∑

j:yj=−1

I[f(xi) > f(xj)]

n− (20)

where n+ is the number of positive examples in the
test set, n− is the number of negative examples, and
I[π] is the indicator function which is 1 if π is true,
0 otherwise. The AUC measure can be interpreted
(Agarwal et al., 2005) as an estimate of the following
expectation, which is the probability that the function
f correctly ranks a randomly drawn positive example
over a randomly drawn negative item:

AUC(f) = EX+∼D+,X−∼D−

[

I[f(X+) > f(X−)]
]

Here D+ is the distribution over positively labeled ex-
amples, and D− is the distribution over negative ex-
amples.

This interpretation allows to develop a simple signif-
icance test, based on the sign test, to compare the
performance of two classifiers f and g (more specifi-
cally, to develop a significance test for the hypothesis
that AUC(f) > AUC(g)). Assuming that n+ < n−

(which is the case in all of our experiments), and given
a test set, we create pairs of examples (x+

i , x−
i ) for

i = 1 . . . n+. Here each x+
i is a positive test example,

and x−
i is an arbitrary negative test example; each

positive and negative example is a distinct item from
the test set. Given the n+ pairs, we can calculate the
following counts:

s+ =
∑

i

I[(f(x+
i ) > f(x−

i )) ∧ (g(x+
i ) < g(x−

i ))]

s− =
∑

i

I[(f(x+
i ) < f(x−

i )) ∧ (g(x+
i ) > g(x−

i ))]

These counts are used to calculate significance under
the sign test.

In our experiments, the set-up is slightly more com-
plicated, in that we have a multi-task setting where
we are simultaneously measuring the performance on
several tasks rather than a single task. The test set in
our case consists of examples (xi, yi, li) for i = 1 . . . n
where li specifies the task for the i-th example. We
replace the AUC measure in Eq. 20 with the following
measure:

1

n+

∑

l

∑

i:li=l,yi=+1

∑

j:li=l,yj=−1

I[fl(xi) > fl(xj)]

n−
l

where n+ is the total number of positive examples in
the test set, n−

l is the number of negative examples for
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Table 1. Significance tests for the Image Annotation task,
comparing l1,∞ with l2 and l1.

# samples l2 p-value l1 p-value
4,800 0.0042 0.00001
9,600 0.0002 0.009
19,200 0.00001 0.00001
38,400 0.35 0.36
63,408 0.001 0.46
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Figure 2. Convergence of l1,∞ models for different values of
C and best η0 in the Image Annotation task using 63,408
samples.

the l-th task, and fl is the classifier for the l-th task. It
is straightforward to develop a variant of the sign test
for this setting; for brevity the details are omitted.

6.2. Results

We trained models for C = {0.1, 1, 10, 100}. Figure
2 shows the convergence of the l1,∞ models for the
largest training set. To validate the constant C for
each model we assume that we have 10 words for which
we have validation data. We chose the C that maxi-
mized the AUC.

Figure 3 shows results on the Reuters dataset for l2, l1
and l1,∞ regularization as a function of the total num-
ber training samples. Table 1 shows the corresponding
significance tests for the difference between l1,∞ and
the other two models. As we can see the l1,∞ regular-
ization performs significantly better than both l1 and
l2 for training sizes of less than 20, 000 samples, and
for larger sizes all models seem to perform similarly.

Figure 4 shows the accuracy of the learned model as
a function of the total number of non-zero features
(i.e. the number of features that were used by any
of the tasks), where we obtained solutions of different
sparsity by controlling the C parameter. Notice that
the l1,∞ model is able to find a solution of 66% aver-
age AUC using only 30% of the features while the l1
model needs to use 95% of the features to achieve a
performance of 65%.
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Figure 3. Model Comparison in the Image Annotation
task: l1,∞, l1 and l2.
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Figure 4. AUC measure with respect joint sparsity in the
Image Annotation task, for l1 and l1,∞.

7. Conclusion

In this paper we have presented a simple and effective
projected gradient method for training joint models
with l1,∞ constraints. We have shown that projections
onto the l1,∞ ball can be done efficiently by present-
ing an algorithm that can compute them in O(n log n)
time and O(n) memory. This matches the computa-
tional cost of the most efficient algorithm (Duchi et al.,
2008) for computing l1 projections.

We have applied our algorithm to a multi-task image
annotation problem. Our results show that l1,∞ leads
to better performance than both l2 and l1 regular-
ization. Furthermore l1,∞ is effective in discovering
jointly sparse solutions.

One advantage of our approach is that it can be easily
extended to work on an online convex optimization
setting (Zinkevich, 2003). Future work should explore
this possibility.
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A. Appendix: Computation of hi

In this section we describe the intervals and slope of
piecewise linear functions hi. Let si be a vector of
the coefficients of row i in A sorted in decreasing or-
der, with an added 0 at position m + 1, si,1 ≥ si,2 ≥
. . . ≥ si,m ≥ si,m+1 = 0. Then, let us define points

ri,k =
∑

j:Ai,j≥si,k
(Ai,j − si,k) =

∑k
j=1(si,j − si,k) =

∑k−1
j=1 si,j − (k− 1)si,k, for 1 ≤ k ≤ m + 1. Each point

ri,k corresponds to the reduction in magnitude for row
i that is obtained if we set the new maximum to si,k.
Clearly hi(ri,k) = si,k. Furthermore it is easy to see
that hi is piecewise linear with intervals [ri,k, ri,k+1]
for 1 ≤ k ≤ m and slope:

si,k+1 − si,k
∑k

j=1 si,j − ksi,k+1 −
∑k−1

j=1 si,j + (k − 1)si,k

= −1

k

After point ri,m+1 the function is constant and its
value is zero. Note that this comes from equation (18)
that establishes that µi =0 for θ>ri,m+1 =

∑m
j=1 Ai,j .


