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Abstract of them are additive, i.e., given a misclassified example
(z4,v:), the classification model, denoted by a weight vec-
tor w, is usually updated by shifting along the direction of
yixs, Le.,w + azy;x; — w whereo; weights the misclas-
sified example. (Grove et al., 2001) generalized the ad-
ditive approaches by an quasi-additive framework which
unifies a number of seemingly different online learning al-
gorithms (e.g., Perception and Winnow). Several strasegie
were proposed to extend online learning algorithms, which
were originally proposed for binary classification, to mult
label learning (Fink et al., 2006; Crammer & Singer, 2003;
Crammer et al., 2006). (Herbster et al., 2005) extended
graph-based approaches for online learning, and (Shalev-
Shwartz & Singer, 2006; Amit et al., 2007) exploited the
dual formation of optimization for online learning.

In this work, we extend the ellipsoid method,
which was originally designed for convex opti-
mization, for online learning. The key idea is
to approximate by an ellipsoid the classification
hypotheses that are consistent with all the train-
ing examples received so far. This is in con-
trast to most online learning algorithms where
only a single classifier is maintained at each iter-
ation. Efficient algorithms are presented for up-
dating both the centroid and the positive definite
matrix of ellipsoid given a misclassified exam-
ple. In addition to the classical ellipsoid method,
an improved version for online learning is also
presented. Mistake bounds for both ellipsoid
methods are derived. Evaluation with the USPS One common feature shared by most online learning algo-
dataset and three UCI data-sets shows encourag- rithms is that they only maintain a single solution for the
ing results when comparing the proposed online classification model at any trials. We discuss the short-
learning algorithm to two state-of-the-art online coming of this feature from two different respective: (1)
learners. Bayesian viewpoint By only maintaining a single solu-
tion, these online learning approaches are similar to the
point estimation in statistics. This is insufficient frormeth
1. Introduction Bayesian viewpoint, which requires computing not only the
most likely solution but also the distribution of all podsib
Online learning aims to learn statistical models from se-solutions. (I1)Information viewpoint These online learn-
quentially received training examples. Compared to batching approaches essentially summarize all the information

model learing, one of the key requirement for online learn-of training data into a single solution, and therefore ig-ine
ing is that the statistical model has to be updated effigientl ficient in exploiting the training data.

given a new training example. In the past decades, a large .
number of online learning algorithms have been proposegc-f0 address the above problems, we propose ellipsoid meth-
and studied (Li & Long, 2002; Gentile, 2002: Crammer ods for qnllne learning. Instead pf only 'mamtalnlng asin-
& Singer, 2003; Crammer et al., 2006; Rosenblatt, 195g49le solution, we follow the Bayesian spirit and approximate
Kivinen & M.K.Warmuth, 1997: Littlestone, 1989 Gen- by an ellipsoid all the classification models that are consis

tile & M.Warmuth, 1998; Kivinen et al., 2002). Most tent with the training examples received so far. Since each
’ ' ' ellipsoid is described by two quantities, i.e., the cemtroi

Appearing inProceedings of the€6'" International Conference Of ellipsoid and the positive definite matrix that decides th
on Machine LearningMontreal, Canada, 2009. Copyright 2009 shape of ellipsoid, the ellipsoid methods are able to main-
by the author(s)/owner(s). tain more information of training data than most existing
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online learning algorithms. According to the above definitiond, includes all the clas-
sifiersz that are able to classify with margiry the training
2. Online Learning by Ellipsoid Methods examples received in the firstterations. Herd) < a < 1

is predefined constant. The following lemma shows an im-
We first introduce the classical ellipsoid method for convexportant property of4;.
programming, followed by two variants of ellipsoid method

Lemmal. LetB = — < (1- denote a ball
for online learning. {zllz —ulz < (1-a)y}

centering atu with radiusr = (1 — a)vy, whereu € R4

) o is a-y-margin classifier for all labeled instances. We have
2.1. Introduction to Ellipsoid Method for Convex A, D B.

Programming

Ellipsoid method (Shor, 1977) is a first order method forproof. First, we haveu € A, becausey;z] u > v >

convex programming. Given an optimizgtion problem gy ; —1,... . Hence, to showd; D B, itis sufficient to
z* = argmin{f(z) : = € G} wheref(z) is a convex  show the distance betweerand hyper-plang;z; > = ay
objective function andy C R? is a convex solid, the el- g upper bounded byl — a)~, which can be verified eas-
lipsoid method starts with a large ellipsodd > G. Let . |

& = {o|(x — z)" P, Yz — x;) < 1} be the ellipsoid
available at thé iteration that includes the optimal solution . ) ) )
+*. Herex, € R? is the center of}, and P, € Sﬁd is Lg_mma 1 indicates that if there exists armargm clas-
a positive definite matrix that defines the shap&’af The ~ Sifier u, the volume ofA,, denoted byvol(A,), is lower
key question of the ellipsoid method is how to update the?@Unded byol(5), which becomes the key to the proof of
ellipsoid efficiently. To this end, it computes the gradient Mistake bound. To efficiently represed, we construct
of f(z) atz*, denoted by, and constructs a half-plane 2" €llipsoid

Pr = {x|h] (x — x1) < 0}. Using the convexity off (z),

it is easy to show* € P, N E;. Hence, the new ellipsoid
Ees1 = {@|(x—2p41) P (—2541) < 1} is constructed
to cover the interactiof®, N &, wherexy; and Py, are

computed as follows

E={2zeRY(z—wy) Pz —wy) <1} 3)

such thatt, © A;. Since&, O A; D B, our goal is to
efficiently reducevol(&;). Below we describe how to effi-
ciently update the ellipsoidl; given a misclassified exam-

Pohy, ple.
T4l = Tk — 5 d . . . .
(d+1) /hTthk Letxz; € R* be an example that is misclassifieddby, i.e.,
k yow] z; < 0wherey, € {—1,+1} is the binary class label

assigned tar;. LetC; = {z € R|yz/ 2z > ay} denote
the half plane generated by the misclassified example. Ev-
idently, we haveu € C; N &; sincey;u'z; > ~. For the
convenience of discussion, we rewrite theGeds follows

2Pghih] Py >

d2
P = — T RRETR 1
LT R ( " (d+ 1)h] Pehy @)

2.2. The Classical Ellipsoid Method for Online

Learning (CELLIP) Ci={z¢ Rd\at B g:(z —w;) < 0} 4)

In this section, we focus on binary classification problems, _
and assume that there existsramargin classifier, ¢ R¢ ~ Whereo, andg, are defined as
that classifies any instande;, y) with a margin~, i.e.,

T,
yu'x > v, wherer € R andy € {—1,+1}. For the con- , = L Y g = Yt Ty (5)
venience of discussion, we assumg = 1 and|z|, < 1 V! Py V! Py

for any instance. The extension of the ellipsoid method
to the inseparable case and multiple-label learning will beNote thato; > 0 sincey;w, x; < 0 andg,' P;g; = 1. The
discussed later. following theorem shows a family of updating equations

. L . for wy; and P, that ensures§; ,; 2O & NC;.
To exploit the ellipsoid method, we convert an online learn- ¢ k =t

ing problem into a feasibility problem, namely how to effi- Theorem 1. Given a misclassified instande:, y:), the
ciently find a solution that is close to themargin classifier ~ following updating equations far;, and P, will guar-
u given the sequentially received training examples. In parantee that the resulting new ellipsafgl, ; covers the inter-
ticular, at each triat, we consider constructing the sdf ~ section&: N C:
that is defined as follows:

wepr = we+ (o + p)Prge (6)

Ar={z € Rd|yix;rz >ay,i=1,...,t} (2) P = p’Pi+ (1—oay— p]2 — /f)PtgtgtTPt @)
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Algorithm 1 The classical ellipsoid method (CELLIP) for all the training examples irD with a margin0 < ~ < 1,

online learning i.e., yu' x; > ~ for any (z;,y;) in D. We then have the
1: INPUT: mistake made by the classical ellipsoid method when learn-
e ~ > 0: the desired classification margin ing from D (Algorithm 1), denoted by/, upper bounded
e a € [0, 1]: atradeoff parameter by
2. INITIALIZE: wy =0andP; = (1+ (1 —a)y)14
3 fort=1,2... Tdo M < 2log(1 —a) +2logy —log(1+ (1 —a)y) (13)
4:  receive an instance, log (1 —a?y?/(1 + (1 —a)v)?)
5. predictits class labelj;, = sign(w, ;)
6: receive correct class labg) The proof of the above theorem can be found in Appendix
7: if y, # 9, then B of the supplementary materials.
8: computew;,; and P, ;1 using (10) and (11)
9: else 2.3. Improved Ellipsoid Method for Online Learning
1(1) enqgtﬁl —wandby — B One major problem with the above classical ellipsoid

method for online learning is that it is theoretically inca-
pable of handling the inseparable case. In this subsection,
we present an improved ellipsoid method for online learn-
ing that is able to address the inseparable case.

12: end for

if parameterp > 0 and . > 0 satisfy the following con-

straint Clearly, for the inseparable cases, we have to drop the idea
1-a? 2 of ca§t_ing online Iea_lrning asa feasibility problem since no
5 o 2 <1 (8) classifier can classify all the instances correctly. Irndtea
K (I-ar—p) we treatw; and P, i.e., the center and the positive defi-

, , nite matrix of ellipsoid, as a summarization of information
The proof can be found in the Appendix A of the supple-tqm the received training examples. Since,; is a linear

mentary materials. The following corollary shows the vol- .o mpination of the training examples received in the first

ume reduction after the update. trials, it can be viewed as a kind of first order statistics for
Corollary 2. Using the updating equations in (6) and (7), training examples. To understand the relationship between
we have P, and received training examples, we derive the updating

vol(é’t“): =y equation forP " using (11)

vol(&;) L—ai=p) ©)

1 20[,5
P—l _ P—l T
MTTT2 T a1 —an

For the convenience of discussion, we chopse 0 and
u = /1 —a?. The corresponding updating equations for
w; and P; become

The above expression follows directly from the matrix in-
verse lemma. Using the above expression, it is not difficult
to show

Wil = wg + o Pygy (10) ¢ t

Py = (1—o})Pi—20(1—a)Pgig) P (11)  Prh =00P ' + ) 0igi9] < boPr+ Y Gwiw] (14)

=1 =1

The volume reduction under the above updating equation is . .
whered; and¢; are functions of{ }§:i- The expression

(1 _ 2\ (d=1)/2/7 _ in (14) indicates that?,! can be viewed as a weighted
=1 -a) (1 — o) 12) . . t . :

covariance matrix that stores the second order information
of training examples. The above observation motivates the
development of an improved ellipsoid method for online
learning.

V0|(5t+1)
vol(&;)

Algorithm 1 summarizes the classical ellipsoid method for
online learning. Note that in Algorithm 1, we initialize
P = (14 (1-a)y)ItoensureB = {z||z — ulz <

(1 —a)y} C & . We refer to it asClassical Ellipsoid We keep the updating equation (10) oy, and modify the
Method for Online Learningor CELLIP for short. The updating equation foP; as follows

following theorem shows the mistake bound for CELLIP. 1
Theorem 3. LetD = {(z;,1:),i = 1,2,...,T} be the P =1 .
set of training examples. Assume all the examples are nor-

malized, i.e.||z;|2 < 1. We assume that there exists an wherec; € [0,1]. We sete; = cb'~! where0 < ¢,b < 1
classifieru € R? with ||u/|3 = 1 that is able to classified are two constants that are set manually. The exponential

(Pt - CtPtgtgtTPt) (15)
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Algorithm 2 The improved ellipsoid method (IELLIP) for Theorem 4. LetD = {(x;,y;),i = 1,2,...,T} be the set

online learning of training examples. Let be the optimal classifier with
INPUT: norm |u|3 = 1. Assume all the examples are normalized,
e ~ > (: the desired classification margin i.e., ||lz;i|l2 < 1. If parameterc, andb satisfy conditions
e 0 < ¢, b < 1: parameters controlling the memory c¢+b < 1, we have the number of mistakes made by running
of online learning Algorithm 2 upper bounded by the following expression
INITIALIZE: wy =0andP; = I T
fort=1,2,...,7Tdo M§i+g 1-5 le(u) (18)
receive an instance, 7 yl-b-ce

predict its class labelj; = sign(w, =)

. wherel; (u) = max(0,y — u ' x;).
receive correct class labgl i(w) 0, i)

if y¢ # . then The proof of Theorem 4 can be found in Appendix C of the
computew;+1 and P41 using (10) and (15) supplementary materials. Note that wher: 0, the mis-
else take bound is reduced 1972 + 3", l;(u)/~, a common
W1 — wyand Py «— Py mistake bound for online learning.
end if
end for 2.4. Ellipsoid Methods for Multiple-Label Online
Learning

form for ¢; is important for the proof of mistake bound as We now follow the framework by Crammer et al. (Cram-
revealed in the supplementary materials. It is not difficultmer & Singer, 2002) and extend the ellipsoid method to

to verify the inductive relationship faP, *, i.e., multi-label learning. Lefx” be the total number of classes.
_ d ;i _ - -
Pt111 = (1—c)P "+ gyl We denote byw,; € R% i = 1,..., K as the weight vec

tors for the K classes. Given an exampleassigned to
Asindicated above’,}, can be viewed as a mixture of ma- a subset of classés, we define the classification margin
tricesP, ! andg,g,”. Givenc, = cb*~ 1, itis not difficult to  with respect to a classifies asn(W;z,Y) = néig wlr—
see thatty.1 is a weighted sum af,z; where the weight w, x. We then define the loss functid(';/V; z,Y) as
for x;z; decays exponentially ih By varying constant 2¢Y

andb, we are able to adjust “memory” d#,. In particu- {(W;2,Y) = max(0,y—n(W;z,Y)) wherey is a prede-
lar, the smalleb is, the shorter the memory is. The effect fined margin.

of b will be further revealed in our empirical study. Algo- 14 extend the ellipsoid method for multi-label learning, we
rithm 2 summarizes the improved ellipsoid method for on-.qnstruct vecton — (w1,...,wg). For a misclassified

line learning. We refer to it aBnproved Ellipsoid Method example(z;,Y;), i.e., n(W;z;,Y;) < 0, we define two
for Online Learningor IELLIP for short. class indicei‘ai andb; as YT

Before we present the mistake bound for the improved el- a; = maxw, ¥;, b; = minw, z;

lipsoid method, like many online learning algorithms, we Y2y YyeY,
introduce the following quantity for measuring the progres \we the construct a big vectar € RX* that includes
of online learning information fromz; andY’, i.e.,
@ = (u—w) Pt (u—w) (16) | ab = (b —1)d+k
whereu is some optimal classifier. Note that compared to g=q —w j=(a—-1)d+k

the conventional approaches for analysis of online legrnin 0 otherwise

algorithms, we introduce?,* in (20) for measuring the Similar to the previous discussion, we construct a half

distance between andw;. The following lemma shows planeP; for each misclassified exampig

an important inductive property fag, which is key to the B Kxd T

proof of mistake bound Pr={veR™ oy — (v—u) g < 0}

Lemma 2. wherea; andg; are identical the expressions in (5) except
thaty,x, is replaced by;. Using the definition of classi-

G < (I—c)a+77 +clu’g)® =27 gh17)  fier v, misclassified example, a; andg:, we can directly

wherey; = v/v/z: Pz, extend the tw_o ellipsoid method_s c_jescri_bed in Algorithm 1
and 2 to multi-label learning. Similar mistake bounds can

It is straightforward to verify the result in Lemma 2. We be derived for multi-label learning. Since the proof isrlte

now state the mistake bound for the improved ellipsoid forally a word-by-word copy of the proof for binary classifi-

online learning. cation, we omit them completely.
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3. Evaluation It is defined as the number of prediction mistakes made on
a given sequence of examples normalized by the length of
hod f ine | X his is b he classi he sequence. The traditional concept of “epoch” is adopted
method for online learning. T IS Is because the classicalg 5, ordering (random permutations) of all the examples
ellipsoid method for online learning is theoretically ukab ;o training set. For example, in our experiments of

to handle the inseparable cases as pointed out before. Thigiee enoches, we cycle through all the training examples
is further confirmed by our empirical study, which showed, o¢ (imes, with a different random permutation for each

the classical ellipsoid method is usually outperformed byepoch, before calling the online learner. We report the re-

the '”_‘pro"e.d version. We thus omit the d|sgu§3|qn for thesults averaged over three random permutations for all the
classical ellipsoid method due to the space limitation. four datasets

We focus on the evaluation of the improved ellipsoid

For IELLIP, we initialize P, to be an identity matrix at the
scale 0f0.1; the vectow is randomly initialized around the  3.3. Results of Multiclass Classification
origin. We seth = 0.3 for all experiments except for the
experiment that is devoted to examining the rolé of the
proposed online learning algorithm. Note that since only
the relatively scale betweel;, andc is useful, by setting
the scale ofP, we don't have to setin the implementation

of IELLIP.

Fig 1 shows the classification results of the three online
learning algorithms for datasets USPS, UCI Letter, UCI
Isolet, and UCI Shuttle: the first row shows the test errors,
and the second row shows the number of updates; the three
columns, from left to right, correspond to the results of the
first, second, and third epoch, respectively.

3.1. Datasets First, as indicated in the first row of Fig 1, we observe that
. the test error of IELLIP is either comparable to or better
The experlmen_ts are c_:onducted on the USPS_ datqhan the best performance between PA and MIRA. The sec-
set of handwritten o_I|g|t'_5 ant_j three UCI multiclass ond row of Fig 1 reveals that in general, a smaller number
data-sets fttp://archive.ics.uci.edu/ml/ of updates are required by IELLIP to achieve a test error
data-sets.ntml ). The data information is summa- .+ s either comparable to or better than that of PA and

rized in Table 1. For the UCI Isolet and Lett.er. datasets, wg pa For instance, for dataset UCI Shuttle, we found
select80% from each clgss to form the training d"’V[a'set’that both PA and IEELIP achieve similar test errors across
and use the rest as testing data_l. ) For the USPS_ ?”d Ulfree epoches. But, the number of updates made by IEL-

Shuttle dataset, we adopt the splitting between trainingy an | s significantly smaller than that of PA. One excep-
testing as provided in the original data packages. tion is dataset UCI Letter, in which the number of updates
) ) ] made by IELLIP and PA are significantly larger than that

3.2. Baseline Methods and Evaluation Metrics of MIRA for the second and third epoch. However, it is

To demonstrate the efficiency and efficacy of IELLIP also important to note that the test error of IELLIP and PA
for multi-class learing, we compare it to two baseline@'® significantly lower than thgt of MIRA for both epoches.
algorithms.  The first baseline is th@nline Passive- When we compare IELLIP with PA on dataset UCI Let-
Aggressive algorithm (PAJCrammer et al., 2006). We ter, we still observe a noticeable reduction in the number
implement the PA algorithm, by using the aggressivenes8f updates by IELLIP. Therefore, we conclude that the pro-
parameter corresponding to the best performance evaldposed onl_lne learning aIgonthm is more efficient than the
ated in (Crammer et al., 2006). As indicated in (Cram-_tWO baselines. Furthermore, since the number of updates
mer, 2004), PA in general performs better than the generS closely related to the number of examples used to con-
alized Perceptron algorithms because of the aggress'wene%trUCt the classifier, the above analysis |nd|cat¢s that the
(i.e. large margins). The second baseline algorithm is th@"0P0osed approach tends to favor a sparse solution than PA
Margin Infused Relaxed Algorithm (MIRALrammer & @nd MIRA, a desirable property to have.

Singer, 2003), an online learning algorithm for multiclass

large margin classifiers with good generalization perfor-3.4. The Role of Parametet: Tradeoff Between

mance. We use in our experiment the implementation of ~ Accuracy and Sparseness

MIRA downloaded fromhttp://www.cis.upenn. As indicated in the previous analysis, paraméteontrols

edu/ ) crammer/code-mdex.h';ml ' Fc_)r fair COM" * the “memory” of the proposed algorithm. In order to exam-
parison, all methods are restricted to use Im_ear clas‘smflerine the role of parameteét we follow (Crammer & Singer,

To this end, fof MIRA, we set the polynomial degree to 2003), in which a natural tradeoff between accuracy and
bel. The margin parameter was set tobeé for all algo- g5 rseness of solutions was revealed for a family of addi-
rithms and for all datasets. Test error (Crammer & Singerg ¢ gnjine learners. Fig 2 shows the number of updates vs.

2003) is used as the main evaluation metric in our studyye errors of IELLIP for all four datasets at the 3rd epoch
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Table 1.Data-sets used in the online learning experiments

NAME | NO. OF TRAINING EG.S [ NO. OF TESTINGEG.S | NO. OF CLASSES | NO. OF ATTRIBUTES
USPSs! 7,291 2,007 10 256

UCI LETTER 15,998 4,002 26 16

UCI ISOLET 800 200 10 200

UCI SHUTTLE 43,500 14,500 7 9

balance between accuracy and sparseness of solutions, as
revealed by the previous study.

4. Conclusion

We present novel methods for online learning method (EL-
LIP) by exploiting the ellipsoid method for convex pro-
gramming. Unlike the conventional approaches for online
learning that only maintain a single classifier, the propose
method is able to capture all the classifiers that are consis-
(c) 3rd epochtent with training examples via an ellipsoid. In additidme t
shape of the ellipsoid, represented by a positive definite ma

Figure 1.Experimental results for datasets USPS, UCI Letter,mx’ allows us t_o store more information of trf_;’unlng exqm-
UCl Isolet, and UCI Shuttle. The first row shows the test errors,PI€s, and provide additional controls for online updating.
and the second row shows the number of updates. We also present an analysis of mistake bound and a gen-
eralization to multi-label learning for the ellipsoid meth
Empirically studies demonstrates the effectiveness of the
proposed method, compared with two state-of-the-art on-
line learners. In the future, we plan to examine other vari-
ants of ellipsoid methods for online learning.

(a) 1st epoch
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axis and Y-axis represent the number of updates and test erogg40543 and 1S-0643494) and US Army Research Office

that are normalized by the corresponding quantities of MIRA. (W911NF-08-1-0403). Any opinions, findings, and con-
clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views
when we vary from 0.1 to 0.3, 0.6, and0.9. For the con- of NSE and ARO.

venience of comparison, both X-axis and Y-axis, which re-

spond to the number of updates and test errors respectivel& .

are normalized by the quantities of MIRA. Note that since”APPendix A: Proof of Theorem 1
the sparsity of solutions is closely related to the number o ) ~1/2 .

upda[t)es, tze plots in Fig 2 esseyntially reveal the tradeoi’gNe definey = B, (=~ w) and a unit ball and a half
between accuracy and sparseness of solutions that are cdi2"® ;0”’ as€ = {ollvlp < 1} andC; = {vfay —
trolled by the parametdr. We clearly see a overall trend 9/ P}?v < 0. We then rewrites; andC; as¢&, = {z =
between accuracy and sparseness across all four datasets.+ P,./%v|v € £} andC, = {z = w;, + P, *v|v € C;}.
In particular, a largeb usually leads to a higher sparsenessWe thus have

(i.e., a smaller number of updates) and a lower accuracy -~ ~

(i.e., a higher test error). This can be understood as fol- vol(E:NC) = | P, ?vol(ENCy)

lows: when we keep a longer history of training examplesF_ 3 sh le of the i ion b h
in P matrix (i.e., a large), the learning algorithm is less lgure 3 shows an example of the intersection between the

likely to be updated, and as a consequence, those impotnit ball & and the hyper-plane; — g P,"*v < 0. Note
tant examples may not be assigned enough weights, whidhat P,/ g, is an unit vector becaus®, /%" P/*g, =
could lead to a lower classification accuracy. Hence, by, P.g: = 1. Using the symmetry argument, the new
settingb a modest value (e.g0.3), we able to achieve a ellipsoid in the transformed space, denoted&y; =
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{v|(v —vo)TQ (v — wy) < 1}, should have its center from the fact

vy move along the direction dPl/Qgt We denote by the t—1
distance between the center&f ; and the hyper-plang,. Po<(1—ai )P < H(l —a?)P,
As shown in Figure 3, the centeg is written as i=1
The property in (23) follows from the fact
vo = (ar + p) P} %g, (19) property In (23)
-1

Furthermore, based on the argument of symmetry, the ma- (pt - mt(l_;‘“)ptgtgjpt)
trix @ of ellipsoid &;,1 should be isometric along almost 1 —aj

; ; 1/2 _ _
alllthe directions except foP; ' “g;, and therefore can be =P, 1/2 (I+ at 1/2gtgtTPt1/2> P, 1/2
written as -y

Q=T+ ((1— o — p)? — )P 29[ P/*  (20) =B +1 9 O

where 1 — oy — p is the length for axIePl/zgt and Lemma 4. We have the following properties fog

© > 0 is the length of other axles. Using the transform
1/2

z = wy + P""v, we have&;; expressed in terms of ay -1 1o
both vg andQ which further leads to the updating equa- WA [[a=a)) 2 <a, <1 (24)
tions in Theorem 1. To ensu®,; O & N C;, we en- max(P1) ;)

force the pointe in Figure 3, i.e., an intersection point ) . . .
betweené and(C,, to be on the surface of the new ellip- Proof. Since there exists an classifiethat classifies any

soid&:.,1. Note, if we use the center &k, as the origin |abeled ezample with margin, we will haveu < & N
and its axles as bases, the coordinates of pobecomes  1?|% = ¢¢ (# —w¢) < 0}. Therefore, we have

A1 —=a?)/(d—1),...,4/(1—a?)/(d—1)). Since -
ipe 5( V\fz)r(a(ve ) o anl ) a < gl (u—w) = (Ptl/th)T(Pt 1/2(U—wt))
t+1»
! < PPl |PT Y (= wp)| = 1,

2 1—a2)/(d—1 -
P +(d— 1)%4) <1, which proves the the upper bound fer. The lower bound

1— — )2
( o = o) K follows from the fact
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Using the results in the above lemmas, we now show how to
prove the mistake bound stated in Theorem 3. After receiv-
Figure 3.lllustration of updating ellipsoids ing T misclassified examples, the volume of the ellipsoid,
denoted byol(Er) is reduced to

Appendix B: Proof of Theorem 3

vol(& P2 2)(d-1/2(q
We will first show the properties @f; and P, that are useful (br—1) = 71| H (1= ar)
for our proof of mistake bound. A(T—1)/2
Lemma 3. We have the following properties f@,. > P2 (1 - ay
T Amax(jjl)
g Prge =1 (21) T /2
ST —(asa-am (1o =) )
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i=1
20y Since&r O B, we have
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(1 — Oét)(l — Oét2

" T=1_ 4/2
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Proof. The property in (21) can be easily verified by using 1+(1—a)y

the expressions fqy, and P,. The property in (22) follows > (1 —a)ly?
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