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Abstract While the/; norm penalty leads to sparse models, it does
We propose a hew penalty function which, when not contain any prior information abque.g, possible
used as regularization for empirical risk mini- groups of covariates that one may wish to see selected

mization procedures, leads to sparse estimators.  10intly. Several authors have recently proposed new penal-
The support of the sparse vector is typically a ties to enforce the estimation of models WI'[h. specific spar-
union of potentially overlapping groups of co- sity patterns. For example, when the covariates are parti-
variates defined a priori, or a set of covariates tioned into groups, thgroup lassoleads to the selection
which tend to be connected to each other when  ©f groups of covariates (Yuan & Lin, 2006). The group

a graph of covariates is given. We study theo- lasso penalty for a model, also calléd/ ¢ pena_lty, is the
retical properties of the estimator, and illustrate sum {.e., ¢; norm) of thels norms of the restrictions of the

its behavior on simulated and breast cancer gene model to the differerjt groups of cqvariates. It recovers the
expression data. _support_ of a mod_el if the support is a union of groups and
if covariates of different groups are not too correlated. It
can be generalized to an infinite-dimensional setting (Bach
2008). Other variants of the group lasso include joint selec
tion of covariates for multi-task learning (Obozinski et, al
Estimation of sparse linear models by the minimization 0f2009) and penalties to enforce hierarchical selection of co
an empirical error penalized by a regularization term isvariatese.g, when one has a hierarchy over the covariates
a very popu|ar and successful approach in statistics anand wants to select covariates Only if their ancestors in the
machine learning. Controlling the trade-off between datdhierarchy are also selected (Zhao et al., 2009; Bach, 2009).
fitting and regularization, one can obtain estimators with|, this paper we are interested in a more general situation.
good statistical properties, even in very large dimension\ye assume that either (i) groups of covariates are given,
Moreover, sparse classifiers lend themselves particu'“'}ﬁotentially with overlap between the groups, and we wish
well to interpretation, which is often of primary import&nc 4 estimate a model whose support is a union of groups, or
in many applications such as biology or social sciences. Ayji) that a graph with covariates as vertices is given, and we
popular example is the penalization otga}cnte_rlor! by the \yish to estimate a model whose support contains covari-
¢, norm of the estimator, known &sso(Tibshirani, 1996)  5tes which tend to be connected to each others on the graph.
orbasis pursui{Chen et al., 1998). Interestingly, the 1asso pjthough quite general, this framework is motivated in par-
is able to recover the exact support of a sparse model fromeyar by applications in bioinformatics, when we have to
data generated by this model if the covariates are not tog|ye classification or regression problems with few sam-
correlated (Zhao & Yu, 2006; Wainwright, 2006). ples in high dimension, such as predicting the class of a
_ tumour from gene expression measurements with microar-
This work was undertaken while Guillaume Obozinski was rays and simultaneously select a few genes to establish a
affiliated with UC Berkeley, Department of Statistics. predictive signature (Roth, 2002). Selecting a few genes
Appearing inProceedings of the&6"" International Conference that either belong to the same functional groups, where
on Machine LearningMontreal, Canada, 2009. Copyright 2009 the groups are given a priori and may overlap, or tend to
by the author(s)/owner(s). be connected to each other in a given biological network,

1. Introduction
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could then lead to increased interpretability of the sigret
and potential better performances (Rapaport et al., 2007).

To reach this goal, we propose and study a new penalty o
which generalizes thg /¢> norm to overlapping groups for ]
the first case, and propose to cast the problem of selecting
connected covariates in a graph as the problem of selecting”
a union of overlapping groups, with adequate definition of . .
groups, for the second case. We mention various properties * e
of this penalty, and provide conditions for the consistency 2T e

of support estimation in the regression setting. Finally, w

report promising results on both simulated and real data. Figyre 1.Balls for Q% (-) (left) and QZ.....(-) (right) for the

group overlap

groupsG = {{1,2}, {2, 3}} wherews; is represented as the ver-
2. Problem and notations tical coordinate.

For any vectow € R?, |lw|| denotes the Euclidean norm of We see that this penalty ?nducgs the estimation of sparse
w, and supgw) C [1, p| denotes the support af, i.e, the ~ VECLOrs, whose support in typlca}IIy the complement of
set of covariates € [1, p] such thatw; # 0. A group of co- @ union of groups.  Although this may be relevant for
variates is a subsgtc [1, p]. The set of all possible groups SOme applications, with appropriately designed families o
is thereforeP([1, p]), the power set ofl, p]. Throughout 9roups — as considered by (Jenatton et al., 2009) — , we
the paperG C P([1,p]) denotes a set of groups, usually ar€ interested in this paper in penalties which induce the
fixed in advance for each application. We say that two@PpPosite effect: that the support@fbe a union of groups.
groups overlap if they have at least one covariate in comEFor that purpose, we propose instead the following penalty:
mon. For any vectotw € R?, and any grougy € G, we

denotew, € RP the vector whose entries are the same as Vvertap(w) = vev Zinf o vl @

w for the covariates iy, and ared for other other covari- @150ed T geg

ates. However, we use a different convention for eIement@vhen the groups do not overlap and form a partition of
g i} _
of Vg C RP*“ the set ofG|-tuples of vectors' = (v,), g, [1,p], there exists a unique decompositionefe R? as

where eachy, is this time a separate vector kP, which w =3 v, with supp(v,) C g, namely,v, — w, for
satisfies su C g for eachg € G. For any differen- —£e9eg 9 9 - Voo g
bl functi?)%};)~ ]Rpgﬂ B wegdengote be(yw) c R all g € G. In that case, both penalties (1) and (2) are the
the gradient off .at w e R’P and byV, f(w) € RY the same. If some groups overlap, then we show below that this
A ) .
partial gradient off with respect to to the covariates o penalty induces the selection ofthat can be decomposed
asw = > ., v, Where somey, are equal ta). If we

_ ] denote byg, C G the set of groupg with v, # 0, then we

3. Group lasso with overlapping groups immediately getv = 3__, vy, and therefore:

When the groups irg do not oyerlap, .the group lasso supp(w) C Ugeglg-
penalty (Yuan & Lin, 2006) is defined as:
In other words, the penalty (2) leads to sparse solutions
Yw ERY, Qgop(w) = [lwg]| - (@) Whose support is typically a union of groups, matching
9€g the setting of applications that motivate this work. In the
When the groups ig form a partition of the set of covari- rest of this paper, we therefore investigate in more details
ates, ther2§,,,(w) is a norm whose balls have singulari- ngenap(.), both theoretically and empirically.
ties when somev,, are equal to zero. Minimizing a smooth
convex risk functional over such a ball often leads to a so
lution that lies on a singularity,e., to a vectornw such that

wy = 0 for some of thgy in G.

Figure 1 shows the ball for both norms¥ with groups

G = {{1,2},{2,3}}. The pillow shaped ball of2§,,,(-)

has four singularities corresponding to cases where either
only wy or only ws is non-zero. By contrast2gea,(-)
When some of the groups i@ overlap, the penalty (1) has two circular sets of singularities corresponding tesas
is still a norm (if all covariates are in at least one group)where(w, , ws) only or (w2, w3) only is non zero.

whose ball has singularities when somg are equal to
zero. Indeed, for a vectar, if we denote byG, C G the

i g
set of groups such that, = 0, then 4. Some properties of 2 ()

overlap

¢ We first analyze the decomposition of a veciorE R? as
supp(w) C (Ugego 9) : 3" 4eg vy induced by (2). For that purpose, Ft(w) C Vg
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be the set ofG|-tuples of vectors = (vy) ., which reach

the minimum in (2)].e., which satisfy

w=3 vy and Q

= deg llvg|l -

overlap( )

The optimization problem (2) def'n'r@ovenap( w) is acon-

By strong duality (sincee.g, Slater’s condition is fulfilled),
the optimal valualove”ap( w) of the primal is equal to the
maximum of the dual problem. Maximizing this dual func-
tion overy, = 1, ||3,] < vy anday = —f, is equivalent
to maximizinga "w over the vectorsy € RP such that
lag|l < 1forall g € G, which proves (3). To prove the

vex problem and its objective is coercive, so that the set osecond point, we note that the variableésv, o, 3, ) are

solutionsV (w) is non-empty and convex. Moreover,

Lemmal w — Qove”ap( w) is a norm.

Proof. Positive homogeneity and positive definiteness hold
triviaIIy We show the triangular inequality. Consider

w,w € RP; let (vy)g.g and (v, ), g be respectively op-
timal decompositions ofy andw’ so that g, ¢pap(w)
52, [0y andOG guap(w') = 3=, [0} 1. Since(vy +v) geg
is a (a priori non-optimal) decomposition af + w’, we
clearly haverver,ap(erw’) < deg lvg + vgll

2 g (lvgll + [lvgll) = +Q

overlap( ) overlap( /)

Using the conic dual of (2), we give another formulation of

the noeroverlap( ) yelding some important properties.
Lemma2. 1. Itholds that:
Qoverlap( w) = SUPaeRr:Vgeg,|a, <1 alw. )

2. Avectorn € R? is a solution of(3) if and only if there
existsv = (vg) g € V(w) such that:

Vgeg, ifuy#0, a,= else [|ay|| <1 (4)

3. Conversely, @-tuple of vectorsr = (v,) 5 € Vg
such thatw = Zg v4 IS a solution to(2) if and only if
there exists a vectar € R? such that(4) holds.

Proof. Let us introduce slack variablés= (t,) s € RY
and rewrite the optimization problem (2) as follows:

Ztg s.t. ng =wandVg € G, ||vg]| < tg.

geg g9eg

min
teRY9,veVg

We can form a Lagrangian for this problem with the dual

variablesar € RP for the constrain®_ _;v, = w, and

(B,7) € Vg x RY with || 3,]| < ~, for the conic constraints
lvg]] < t4, and get:

L:Ztg+a—r<w72vg) fZ(BJ'Ung”ygtg).

9€g 9€g Y

The minimum of L with respect to the primal variablas
andv is non trivial only ify, = 1 anda, = — g, for any
g € G. Therefore, we get the dual function:
a'w ify,=1anda, = —3,forallgeg,
—oo  otherwise.

min L =
t,v

primal/dual optimal for this convex optimization problem
if and only if the Karush-Kuhn-Tucker (KKT) conditions
are satisfiedie., if and only if, for allg € G:

supp(vg) = g, [lvgll <t and w=73_
SUpp(ﬂg) =g, 185l < g
—fBy andy, =1

ﬁ Vg + Y9ty =0

geg Vg

Eliminating 8 and~ with the stationarity conditions, all
conditions are fulfilled if and only it = >~ __; v, and for
all g € G, (i) eithervy, = 0 and||ay|| < 1, (ii) or v, # 0
anda, = vy /||vg|l. If apair (e, v) fulfills these conditions,
then we obtain a primal/dual solution by takitig= ||v,]|,
By = —ag andy, = 1. This proves point& and3. O

Denote byg, the group-support ab, i.e., the set of groups
belonging to the support of at least one optimal decompo-
sition ofw: Gy ={g € G |3Iv=(vq9)y € V(w), vy # 0}
andJ; the corresponding set of variablés = Ugcg, g.

Lemma 3. Leta be an optimum in the formulatiof3) of
therveHap( ) norm, then 7, is uniquely defined.

Proof. Consider any solutionr = (v,)4eg Of (2). Leta be
any optimal solution of (3). Sindev, «) form a primal/dual
pair, they must satisfy the KKT conditions. In particular,
for all g such that, # 0, o, is defined uniquely by, =
T gH Since this is true for all solutions € V(w), oy, is
uniquely defined. O

Corollary 1. Foranyv,v’ € V(w) and for anyg € G,

gl x [[uh ]| =0 or 3ny >0 st v, =,

(®)

Proof. If v, # 0 andv;, # 0, leta be solution of (3), by the

’
previous lemma, is unique andy, = oy = . O

llogll — llvg]

5. Using Q¢

We now consider a learning scenario where we use
ngerlap(w) as a regularization term to the minimization of
an objective functiorR(w), typically an empirical risk. We
assume thaR(w) is convex and differentiable i, and

consider the optimization problem:

overlap ( ) asa penalty

mingere R(w) + AQ (6)

overlap( )
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where\ > 0 is a regularization parameter. We first de- then (7) is equivalent té&'(w, , a5, , g, ) = 0. We use the
rive optimality conditions for any solution of (6). For that implicit function theorem for non-differentiable functiof
purpose, let us denotdg(w) the set of vectorsy € RP (Kumagai, 1980). The theorem states that for a continuous

solution of (3). function F : RI/1l x RINIXIG — RIKIXIG sych that
Lemmad4. A vectorw € R? is a solution of(6) if and only ~ #'(wo, (a0, m0)) = 0, if there exist open neighborhoods
if —~VR(w)/\ € Ag(w). U c Rl andU’ ¢ RIV:+1X19:1 of wy and(ap,n0) respec-

tively, such that, for altv € U, F(w,-) : U" — RI/1/x191

derivation as for Lemma 2, adding only the loss terniy ~ Uo C R/l andUg ¢ RI711¥19:1 of wy and(ao, 1), such
that, for allw € Uy, the equation?’(w, (o, n)) = 0 has a

Remark 1. By point2 of Lemma 2, an equivalent formula- ynique solution(r,7) = ¢(w) € U}, where is a con-
tion is the following: a vector € R” is a solution of(6)if  tinuous function fromt, into Uj. By continuity of the
and only if it can be decomposed as= }_ . v, Where,  addition, the product and the Euclidean norm, the above
foranyg € G, vy € R?, supp(vy) = g, and ifv, = 0 then  gefinedF is continuous. For each fixed, F'(w, - is bijec-

[VoR(w)|| < A andVyR(w) = —Avg/||v,]| otherwise. tive, because of the assumption of the existence of a unique
decomposition in a neighborhoodof Applying the theo-

6. Consistency rem of (Kumagai, 1980) then yields the desired result.

Before we present a consistency result(bﬁgeﬂap(.), we U

will need the following lemma. We are now ready to prove the consistencﬁ@\f,er,ap(.).

Lemma 5. Assume that for alky’ in a small neighbor-  Consider the linear regression model= Xw + ¢, where
hoodU of w, w’ admits a unique decompositign)),cg X € R™*” is a design matrix}” € R” is the response
of minimal norm supported by the same set of grogps Vvector and € R? is a vector of i.i.d. random variables with
asw. Writing n, = ||v,||, there exists a neighborhodd, mean0 and finite variance. We denote the true regression
of wy, in RI"1l"and a neighborhoodJ) of (aj,,ng,) in  function byw. We assume that

RI/11x1911 such that there exists a unique continuous func-

tion ¢ : wy, — (g, (w),ng, (w)) from Uy to U}. 1. (H) $:=1XTX>0

2. (H2) There exists a neighborhood ©fin which (2)

Proof. The dual problem (3) is equivalent to the saddle- : ;
has a unique solution.

point problemmin, max, L'(c, n,w) s.t.n, € Ry with
lagrangianL/ (o, n, w) = —a'w + PR 2 (Jlagll® — 1) _ _ . .
and KKT conditions: If G, is the set of group supporting the unique solution of
A A
Vg € G, llagl* < 1, (primal feas,) ~ (2), we denotgj, = G\G, and.J> = [1,p]\./1. For con-
Vg eG.m >0 dual f venience, for any group of covariatgswe note X, the
gE€Yng =0, ( Ha eas-.) n x | g| design matrix restricted to the predictorsginand
Vi € [1,p], —w; + (Zgai 779) a; =0, (stationarity)  for any two groupsy, ¢’ we noteX,, = X, X,. We can
Vg € G, ny(|lagl|* — 1) =0, (comp.slack.)  then provide a condition under which minimizing the least-
) . ) . square error penalized b?ffver,ap(w) leads to an estimator
By stationarity,(v,)4eg defined byv, = 1,40, is adecom- ith the correct support. Consider the two conditions:
position ofw; it is optimal because it satisfies property 3 of

lemma 2; finally we have, = ||v,|| consistently with our Vg € G, \\29'112}11',1@]1 (w)]| <1 (C1)
definition ofn, (w). For anyw with the same set of support-
ing groupsg:, we havel|a,(w)|| = 1 forall g € G; and Vg € Ga, |\29J12}11J1ajl (o) <1 (C2)

ng = 0forall g € G\G;. For allw, with group-support no
smaller thargG;, the corresponding paiiv s, (w), ng, (w))

is therefore a solution of the set of non-linear equations: Lemma 6. With assumptions (H1-2), fok, — 0 and

Ant/? — oo, conditions(C1) and (C2) are respectively
Vi e Jp, —w; + (Zgai Ug) a; =0 necessary and sufficient for the solution(6) to estimate
Vg e G llagl? —1=0 ) consistently the group-support @f

In other words consider the function Proof. We follow the line of proof of (Bach, 2008) but
consider a fixed design for simplicity of notations. Let
us first consider the subproblem of estimating a vector
(—wi + {Zgai 779] %‘)7,6] only on the support of by using only the groups in
(lagl? = 1)4eq, S Ji in the penalty,.e., considerw; € R’/ a solution of

F o RIIXIx]Gi] _ RIJ1x|G1]

(wy,,a,,mg,) + (
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N, cR1 =Y = X wy, 17 + An Qover,ap(le) . By  no formal statement on how to choBeit intuitively con-
standard arguments, we can prove that converges in trols the size of the groups of connected variables which
Euclidean norm tow restricted toJ; asn tends to in- are selected, and should therefore be typically chosen to
finity (Fu & Knight, 2000). In the rest of the proof we be slightly smaller than the size of the minimal connected
show how to construct a vectar € RP from w; which  component expected in the support of the model.
under condition (C2) is with high probability a solution
to (6). By adding null compo.nents to,, we obtain a vec- 8. Implementation
tor w € RP whose support is alsd;, andu = w — w
therefore satisfies sugp) C J;. A direct computation A simple way to implement empirical risk minimization
of the gradient of the risk?(w) = ||Y — Xw|* gives  using Qoverlap() as the regularizer is to explicitly dupli-
VR(w) = Yu — W, whereW = %Xe. From this  cate the variables in the design matrig. to replace
we deduce thatt = 7', (V, R(w) +W,,), and since X € R"™*? by X € R**>l¢! defined by the concatena-

Vs, R(w) = —\,ay, (w) we have : tion of copies of the design matrix restricted each to a
certain groupg, i.e., X = [Xg, X, .., X4 ], Where
ViR(w)=S5,,575 (W, = Apag, (w) = W, . G = {g1,...,9¢} To see this, denot&, = (v,;)ic, and
v = (Og,,...,0g,)" . and consider that, for an empiri-

To show thatw is a feasible solution to (6) it is enough to cal risk of the formR(w) — R(Xw), we can eliminates
show thatvg € G, [[VyR(w)| < A,. Moreover, since o (6) to getR(w) = R(X (Y. v,)) = R(X¥) and thus
the noise has bounded variangkg, ;, ¥ J1J1WJ1 Wy, = for the full obiective - 2( X% -‘7/\ I That way th
X, [1X,57) X, —I]eis/n-consistent and ° e~u objective : ( Y) + ZS’_HU’]H' al a_y €

1 vectorv € RX19! can be directly estimated frof with a
1IV.R <|Ix -1 + O, (\"1p-1/2). classical group lasso for non-overlapping groups. We im-
an Ve RO < 12025, 5y ()] + Op (A ™5 plemented the approach of (Meier et al., 2008) to estimate

By Lemma 5, we have that,, is a continuous function the group lasso in the expanded space. Note that (Roth
& Fischer, 2008) provides a faster algorithm for the group

) P - ) Lasso. When there are many groups with important over-
plies a, (w) — oy, (w). Since we chose,, such that |ap however, an alternative implementation without esplic

of w in a neighborhood ofv so thatw, L Wy, im-

A tn~12 — 0, we have data duplicationg.g, with a variational formulation simi-
L 1 B lar to the one of (Rakotomamonjy et al., 2008) might be
Ve Rw)I| < 129,35, 5, 0, (0) ]| + 0p(1). more scalable.
Hence the result for the sufficient condition. Symmetri- .
cally, for the necessary condition we have 9. Experiments
_ _ 9.1. Synthetic data: given overlapping groups
S VeR@)) 2 295, 255, e (@)]] - 0p(1). ¥ 9 apping grodp

To assess the performance of our method when overlap-
ping groups are given as a priori, we simulated data with
p = 82 variables, covered by0 groups of10 variables
7. Graph lasso With 2 variables of overlap between two successive groups:
,10},{9,...,18},...,{73,...,82}. We chose the
E‘SUpport ofw to be the union of group@and5 and sampled
both the support weights and the offset from i.i.d. Gaussian

'ti t?e set Oft covanattes ar\t)li/ cIxlI Istt? tset of edhg(tes variables Note that in this setting, the support can be ex-
at connect covariates. Ve suppose that we WiSh 10 €356556 a5 g union ofgroups but not as the complement of a

timate a sparse model such that selected covariates te u‘ijuon Thereforeﬂo\,er,ap( ) can recover the right support,

to be connected to each othée., form a limited num- h b ruction ing th
ber of connected components on the graph. An obvioud/€reas by constructi gfoup( ) using the same groups
would be unable to recover it.

approach is to consider the prlérogver,ap() where G is
a set that generates by union the connected componentshe model is learned from data pointgx;, y;), with y; =

For example, we may consider fgf the set of edges, w'xz; + ¢, ¢ ~ N(0,02), 0 = |E(Xw + b)|. Using ant,
cliques, or small linear subgraphs. As an example, contoss R(w) = ||Y — Xw — b||?, we learn models frons0
sidering all edgesj.e, G = E leads toQgapw) =  such training sets. On Figure 2, for each variable (on the
mingeyy, Y ep llvell St cpve =w, supp(ve) =e.  vertical axis), we plot its frequency of selection in levefs
gray as a function of the regularization parameteboth

for the lasso penalty arnd

We now consider the situation where we have a simpl
undirected grapl/, E), where the set of verticds= [1, k]|

Alternatively, we will consider in the experiments the set

of all linear subgraphs of length > 1. Although we have Ove”ap( )-
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X, the lasso selects one and is less robust ﬂzé,gr,ap(.)
which uses all the variables. Note that when enough train-
ing points become available (last point on Figure 3), Fig-

20

40 ure 2 shows that the selected model is generally better but
60 still not correct wherea&g, .., () selects the right model,

even if it does not give much lower error anymore.

log,(A) log,(A)
9.2. Synthetic data: given linear graph structure

We now consider that the prior given on the variables is
a graph structure and that we are interested by solutions
which are connected components on this graph. As a first
simple illustration, we consider a chain. We use= R?,

p = 100, supp(w) = [20, 40]. The nodes of the graph are

20 20

40 40,

60 60

80 80

log, ) log, (%) the variablesy;, the edges are all the pait®;, w;1),i =

1,...,n. The model's weights, offset and t/36 training
Figure 2.Frequency of selection of each variable with the lassoexamples(z,y) are drawn using the same protocol as in
(left) andﬂgver,ap(.) (right) for n = 50 (top) and100 (bottom). the previous experiment. We take for the groups all the

sub-chains of lengtlk. We present the results for various

For any choice of\ the lasso frequently misses some vari- choices of and compare 1o the lassb ¢ 1).

ables from the support, Whil@ogver,ap(.) never misses any
variable from the support for a large part of the regulariza-
tion path. Besides, we observed that over the replicates, th
lasso never selected the exact correct patterm far 100.
Forn = 100, the right pattern was selected with low fre-
guency on a small part of the regularization p:ﬂﬁ,e”ap(.)

on the other hand selected it up 8% of the times for .
n = 50 and more tha®9% on more than one third of the log,() log,(A)
path forn = 100. We tried the same experiment for various

n and as long as was too small for the lasso to recover the
right support, the group regularization always helped.

40

60

10 . —overlapping
8 z lasso 80
I 100
Yoe log,(\) log,(\)
b=
x 4
. . . g .
2 Flgqre 4.Variable selection frequency witftg,.,,(.) using the
0 ; s 2 chains of lengthk (left) as groups, fok = 1, 2,4, 8.
log, ,(n)

Figure 4 shows the frequency of each variable selection
. over20 replications. Here again, using a group prior helps
Figure 3.Root mean squared error of overlapped group lasso anghe pattern recovery. We also observe as expected that the
lasso as a function of the number of training points. choice ofk plays a role in the improvement.

Figure 3 shows the root mean squared error of both met
ods for variousn. For both methods, the full regulariza-
tion path is computed and tested on three replicates of Here we consider the same setting as in the linear case,
training and100 testing points. The best average parame-except that instead of a chain we are given a grid structure
ter is selected and used to train and test a model on a fourthn the variables. Each node is connected todthedes
replicate. On a large range of ngerlap(')' not only helps  above, below, left and right. The support i2@&variable

to recover the right pattern, improves the regression perregion in the center of the gridi-axis4 to 7, y-axis4 to 8.
formance. A possible explanation is that if several vari-As groups, we use all thécycles, which is a natural prior

ables from the support are correlated in the design matrigiven the graph topology and the expected pattern.

hE').B. Synthetic data: given non-linear graph structure
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Figure 5 shows the variable selection frequency of eac
variable for both methods at a fixed chosen in both cases
to give the best behavior)Qogver,ap(.) seems to generally
give better selection performances than lasso.

hrable 1.Classification error, number and proportion of pathways
selected by thé;, andQy,.,..,(.) on the3 folds.

overlap

. ) ) METHOD / (914 .
Besides, we observed that on each run, variables incor- ! overar ()

rectly selected where always unions of groups whereas the  gpror 0.38 + 0.04 0.36 + 0.03
lasso selected disconnected variables on the graph. We 4 path. 148,58, 183 6,5,78
made the same observation for the linear graph case. Thisis = Pror PATH.  0.32,0.14,0.41  0.01,0.01,0.17
an expected property of our method, and implies that even
if variables which are not in the model are selected, they en-
ter the model as large connected components, whereas thée estimate by3-fold cross validation the accuracy of a
false positive of the lasso are more randomly distributed ortogistic regression witlf; and ngerlap(') penalties, using

the graph, often as isolated variables. This is an intergsti the pathways as groups. As a pre-processing, we keep the
property for real applications because it may then be easie€300 genes most correlated with the output (on each training
to discard manually a few large connected components afet). ) is selected by cross validation on each training set.
false positives, than many isolated variables (assuming O{able 1 shows the results of both methods.

) . Usin
course that the right variables are selected as well). ngerlap () instead of thet, penalty leads to a slight g

improvement in the prediction performances, and much
sparser solutions at the pathway level, which makes the se-
lected model easier to interpret.

9.5. Breast cancer data: graph analysis

Another important application in microarray data analysis
is the search for potential drug targets. In order to iden-
tify genes which are related to a disease, one would like
Figure 5.Grid view of the variable selection frequencies with the to find groups of genes forming connected components on
graph setting. Left: lasso, right2g,.,,(.) using4-cycles as  a graph carrying biological information such as regulation
groups.n = 30 training points\ is arbitrarily fixed. involvement in the same chain of metabolic reactions, or
protein-protein interaction. Similarly to what is done in
pathway analysis, (Chuang et al., 2007) built a network by
compiling several biological networks and performed such

An important motivation for our method is the possibility 9raph analysis by identifying discriminant subnetworks in
to perform gene selection from microarray data using prior$ne step and using these subnetworks to learn a classifier
which are overlapping groups. For example, one may want @ separate step. We use this network and the approach
to analyse microarrays in terms of biologically meaning_described in section 7, taking all the edges on the network
ful gene sets. In most such analysis, genes discriminatings the groups, on the breast cancer dataset. Here again,
the classese(g. tumors leading to metastasis versus non-We restrict the data to the910 genes which are present
metastasis) are selected in a first step, then enrichmelt and the network, and use the same correlation-based pre-
ysis is performed by looking for gene sets in which selectedProcessing as for the pathway analysis.

genes are overrepresented (Subramanian et al., 2005). Séigple 2 shows the results of the logistic regression with
eral organizations of the genes into gene sets are availabje 5 09, (.). Here again, both methods give similar
in various databases. We use the canonical pathways from P

. : - performances, with a slight advantage fijerlap(.). On
MSigDB (Subrama_mla_n et al., 2005) containfi& groups the other hand, while thé, mostly selects disconnected
of genes(37 of which involve genes from our study.

variables on the grapmgver,ap(.) tends to select variables
We use the breast cancer dataset compiled by (Van de Viwhich are grouped into larger connected components on the
jver et al., 2002), which consists of gene expression datgraph. This would make the interpretation and the search
for 8,141 genes irR95 breast cancer tumorgg metastatic ~ for new drug targets easier.

and 217 non-metastatic). We restrict the analysis to the

3510 genes which are in at least one pa_thway. _ Sin<_:e thq_o_ Discussion

dataset is very unbalanced, we balance it by u8ingpli-

cates of each metastasis patient (keeping all duplicates MWe have presented a generalization of the group lasso

the same fold during cross-validation). penalty, which leads to sparse models with sparsity pat-

10

2 4 6 8 10

2 4 6 8 10

9.4. Breast cancer data: pathway analysis
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