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Abstract IBllo = |supp(B)]. A natural method for sparse learning is

. : : : L regularization for desired sparsit
This paper investigates a new learning formula- oreg P y

tion calledstructured sparsitywhich is a natu- BLo = arg égé; Q(8) subjectto]Blfo < s,
ral extension of the standard sparsity concept in o ]
statistical learning and compressive sensing. By For simplicity, we only consider the least squares loss

bay _ 2 . . . . . .
allowing arbitrary structures on the feature set, ~ @(8) = [ X8 — y|j3 in this paper. Since this optimiza-
this concept generalizes the group sparsity idea. tion problem is generally NP-hard, in practice, one often
A general theory is developed for learning with considers approximate solutions. A standard approach is
structured sparsity, based on the notion of coding convex relaxation of.q regularization td., regularization,
complexity associated with the structure. More- often referred to as Lasso (Tibshirani, 1996). Another com-

over, a structured greedy algorithm is proposed monly used approach is greedy algorithms, ;uch as the or-
to efficiently solve the structured sparsity prob- thogonal matching pursuit (OMP) (Tropp & Gilbert, 2007).

lem. Experiments demonstrate the advantage of  |n practical applications, one often knows a structure on
structured sparsity over standard sparsity. the coefficient vector in addition to sparsity. For ex-
ample, in group sparsity (Yuan & Lin, 2006; Bach, 2008;
Stojnic et al., 2008; Huang & Zhang, 2009), one assumes
1. Introduction that variables in the same group tend to be zero or nonzero
simultaneously. However, the groups are assumed to be
We are in_terested_ i_n the sparse Iear_ning p“)b'e“? under th&atic and fixgd a priori. More%verl,3 algorithms such as
fixed design condition. Con5|derna fixed sepdja&s vec- group Lasso do not correctly handle overlapping groups
tors {xi,...,x,} wherex; € R" for eachj. Here,n (in that overlapping components are over-counted); that is

'S.tt::e slamplg ‘;")Z(e'b DenoterXj the n Xdp dati matnt)'(, a given coefficient should not belong to different groups.
with columnj o €ingx;. Iven arandom observation ;g requirement is too rigid for many practical applica-

— n i - . .. .
Yy = [y1,--.,ya] € R" that depends on an underlying co- ¢ 16 address this issue, a method called composite ab-

efficient vector3 € RP, we are interested in the problem ; . ;
S ' . . solute penalty (CAP) is proposed in (Zhao et al., ) which
of estimatings under the assumption that the target coeffi- P  ( ) IS prop ( )

AR ; - can handle overlapping groups. Unfortunately, no theory
uemﬁ IS sparse. Throughout the Ppaper, we consider flXe(li:s established to demonstrate the effectiveness of the ap-
design only. That is, we assuni¢ is fixed, and random-

oo S _ proach. Other structures have also been explored in the
ization is with respect to the noise in the observagon literature. For example, so-called tonal and transientstr
We consider the situation thBy can be approximated by a tures were considered for sparse decomposition of audio
sparse linear combination of the basis vect@tg:~ X5,  signals in (Daudet, 2004), but again without any theory.
where we assume that is sparse. Define the support Grimm et al. (Grimm et al., 2007) investigated positive
of a vector3 € RP assupp(3) = {j : B; # 0} and  polynomials with structured sparsity from an optimization
perspective. The theoretical result there did not address
Appearing inProceedings of th@6"™" International Conference the effectiveness of such methods in comparison to stan-
on Machine LearningMontreal, Canada, 2009. Copyright 2009 45¢g sparsity. The closest work to ours is a recent pa-
by the author(s)/owner(s). per (Baraniuk et al., 2008) which was pointed out to us
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by an anonymous reviewer. In that paper, a specific casstructured coding complexity of subsetsofwe can now

of structured sparsity, referred to as model based sparsitgefine the structured coding complexity of a sparse coeffi-
was considered. It is important to note that some theoretieient vector3 € R?.

cal results were obtained there to show the effectiveness of

their method in compressive sensing. However, their setDefinition 2.2 Giving a coding complexity( F"), the struc-
ting is more restrictive than the structured sparsity frame tured sparse coding complexity of a coefficient vegiar
work which we shall establish here. RP is

The purpose of this paper is to present a framework for ¢(8) = min{c(F) : supp(3) C F}.

structured sparsity, and to study the more general estima-

tion problem under this framework. If meaningful struc- Later in the paper, we will show that if a coefficient vec-
tures exist, we show that one can take advantage of sudor 3 has a small coding complexity(3), then3 can be

structures to improve the standard sparse learning. effectively learned, with good in-sample prediction perfo
mance (in statistical learning) and reconstruction perfor
2. Structured Sparsity mance (in compressive sensing). In order to see why the

definition requires addingF'| to cl(F'), we consider the
In structured sparsity, not all sparse patterns are equallgenerative model for structured sparsity mentioned earlie
likely. For example, in group sparsity, coefficients within In this model, the number of bits to encode a sparse coef-
the same group are more likely to be zeros or nonzeros sficient vector is the sum of the number of bits to encéde
multaneously. This means that if a sparse coefficient’s sup@which iscl(F")) and the number of bits to encode nonzero
port set is consistent with the underlying group structurecoefficients inF (this requiresO(|F'|) bits up to a fixed
then it is more likely to occur, and hence incurs a smallemprecision). Therefore the total number of bits required is
penalty in learning. One contribution of this work is to for- cl(F') + O(]F|). This information theoretical result trans-
mulate how to define structure on top of sparsity, and howates into a statistical estimation result: without adufitil
to penalize each sparsity pattern. regularization, the learning complexity for least squaiees
gression within any fixed support sét is O(|F|). By
adding the model selection complexitl ) for each sup-
port setF, we obtain an overall statistical estimation com-

. . plexity of O(cl(F') + | F|). While the idea of using coding
cl(F) is an upper bound of the coding length/d{number based penalization resembles minimum description length

of bits needed to represefitby a computer program) in a (MDL), the actual penalty we obtain for structured spar-

pre-chosen prefix coding scheme. It is a well-known fact . -
in information theory that mathematically, the existente o sity problems is different from the standard MDL penalty

such a coding scheme is equivalendt. 9—cl(F) < 1, for model selection. This (_:hfference is |mp9rtant, aqd thus
i - i (R in order to prevent confusion, we avoid using MDL in our

From the Bayesian statistics point of vielv, can be terminology.

regarded as a lower bound of the probability/of The

probability model of structured sparse learning is thust fir

generate the sparsity pattefd according to probability 3- General Coding Scheme
2—<i(F): then generate the coefficientsh

In order to formalize the idea, we denoteby- {1, ..., p}
the index set of the coefficients. We assign a ¢bdl) to
any sparse subsét C {1,...,p}. In structured sparsity,

We introduce a general coding scheme calliatk coding

The basic idea of block coding is to define a coding scheme
on a small number of base blocks (a block is a subs&),of
and then define a coding scheme on all subsefs udging

Definition 2.1 A cost functiorcl(F') defined on subsets of
7 is called a coding length (in base-2) if

Z 9=a(F) < q, these base blocks.
FCI.F#0 Consider a subséd C 2Z. That is, each element (a block)
We give a coding length 0. The corresponding structured ©f B is a subset of. We call5 a block set it = Upes B
sparse coding complexity &f is defined as and all single element se{g} belong to55 (j € 7). Note
that 5 may contain additional non single-element blocks.
c(F) = |F|+ cl(F). The requirement oB containing all single element sets is

for convenience, as it implies that every subBet 7 can

. . L ,
A coding lengthcl(F) is sub-additive ifcl(F U F') < be expressed as the union of blockd3in

cl(F) + cl(F’), and a coding complexity(F') is sub-
additive ifc(F U F') < ¢(F) + c¢(F"). Let cly be a code length of:

Clearly if cI(F') is sub-additive, then the corresponding Z 9=clo(B) < 1.

coding complexitye(F') is also sub-additive. Based on the BeB
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we definecl(B) = clp(B) + 1 for B € B. It not difficult  coding lengthy log,(2m) can be significantly smaller than
to show that the following cost function oA C Z is a  the standard sparsity coding lengthgf, log,(p). As we

code-length shall see later, the smaller coding complexity implies bet-
ter learning behavior, which is essentially the advantdge o
b b using group sparse structure.
cl(F) = min ch(Bj) F = U B; (Bj € B)
i=1 j=1 Graph sparsity
This is a coding length because We consider a generalization of the group sparsity idea that
employs a directed graph structukeon Z. Each element
Z 9—cl(F) < Z Z 9= X iz cl(Be) of Z is a node ofG but G may contain additional nodes.
FCI,F#0 b>1 {B,}eBY For simplicity, we assumé& contains a starting node not in
b Z. At each node € G, we define coding lengttl, (S) on
< Z H Z 9—cl(Be) < Z 2=b — 1. the neighborhoodV, of v (that contains the empty set), as
b>1 =1 BB b>1 well as any other single nodee G with cl, (u), such that
Ssen, 27 £ 37 27 < 1. To encodeF C
Itis obvious that block coding is sub-additive. G, we start with the active set containing only the starting

The main purpose of introducing block coding is to de_node, and finish when the set becomes empty. At each node

sign computational efficient algorithms based on the block’ pﬁforglterrlnmatrlsn, ste may elt:er plckg su.bﬁej( é\_fv'
structure. In particular, we consider a structured greédy a With coding lengtil, (5), oranode in: € G, with coding

gorithm that can take advantage of block structures. In théengthd”(“)' and then put the selection into the active set.

structured greedy algorithm, instead of searching over alfVé then remove from the active set (once is removed,

subsets off up to a fixed coding complexity (exponen- !t does_ not retur_n to the _active set anymore). This process
tial in s number of such subsets), we greedily add blockdS continued until the active set becomes empty.

from B one at a time. Each search problem offecan  The wavelet coefficients of a signal are well known to have
be efficiently performed becaudeis supposed to contain a tree-graph structure, which has been widely used for com-
only a computationally manageable number of base blockssressing natural images and is a special case of graph spar-
Therefore the algorithm is computationally efficient. Con-sity. Each wavelet coefficient of the signal is connected to
crete structured sparse coding examples described beloig parent coefficient and its child coefficients. The wawele

can be efficiently approximated by block coding. coefficients of 1D signals have a binary tree connected
graph structure while the wavelet coefficients of 2D images
Standard sparsity have a quad-tree connected graph structure.

A simple coding scheme is to code each suliset 7 of =~ As a concrete example, we consider image processing
cardinality & using k log, (2p) bits, which corresponds to problem, where each image is a rectangle of pixels (nodes);
block coding withB consisted only of single element sets, each pixel is corrected to four adjacent pixels, which forms
and each base block has a coding lerigg} p. This corre-  the underlying graph structure. At each pixel, the number
sponds to the complexity for the standard sparse learningof subsets in its neighborhood 28 = 16 (including the
empty set), with a coding length, (S) = 5 each; we also

Group sparsity encode all other pixels in the image with random jumping,

) ) each with a coding length + log, p. Using this scheme,
The concept of group sparsity has been appeared in varjye can encode each connected regidby no more than
ous recent wqu, such a;_the group Lasso in (Yuan.& L'”'log2p+5\F\ bits by growing the region from a single point
2006). Consider a partition af = UJL,G; to m dis- iy the region. Therefore if” is composed of connected
joint groups. LetBg contain them groupsGj, andBi yegions, then the coding lengthdsog,, p-+5| |, which can
containp single element blocks. The strong group spar-ye significantly better than standard sparse coding lerfgth o
sity coding scheme is to give each elementSina code- | p|1og, . This example shows that the general graph cod-
lengthcly of oo, and each element ific a code-length g scheme presented here favors connected regions (that
clp of log, m. Then the block coding scheme with blocks s ‘nodes that are grouped together with respect to the graph
B = Bg U B, leads to group sparsity, which only 100ks girycture). This scheme can be efficiently approximated
for S|gr_1als consisted of the groups. The resulting codingyith plock coding as follows: we consider relatively small
length is:cl(B) = glog,(2m) if B can be represented as gjzed hase blocks consisted of nodes that are close together
the union ofg disjoint groupsG;; andcl(B) = oo oth-  ith respect to the graph structure, and then use the induced

erwise. Note that if the signal can be expressed as thgjock coding scheme to approximate the graph coding.
union ofg groups, and each group sizékig then the group
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4. Algorithms for Structured Sparsity selectB(®) so that

The following algorithm is a natural extension b§ regu- ¢(B(’“)) > ymax ¢(B),
larization to structured sparsity problems. It penalites t Beb

coding complexity instead of the cardinality (sparsity) of wherey € (0, 1] is a fixed approximation ratio that speci-
the feature set. fies the quality of approximate optimization.

Beonstr = arg min Q(B) subjecttoc(3) <s. (1)
AER? 5. Theory of Structured Sparsity

The optimization of (1) is generally hard. There are twoDue to the space limitation, the proofs of the theorems are
common approaches to alleviate this problem. One is condetailed in (Huang et al., 2009).

vex relaxation {; regularization to replacé, regulariza- )

tion for standard sparsity): the other is forward greedpalg °-1- ASsumptions

rithm. We do not know any extensions bf regularization  \ye assume sub-Gaussian noise as follows.

like convex relaxation that can handle general structured

sparsity formulations. However, one can extend greedy alAssumption 5.1 Assume that{y;};—1,.., are indepen-
gorithm by using a block structure. We call the resultingdent (but not necessarily identically distributed) sub-
procedure structured greedy algorithm (see Algorithm 1) Gaussians: there exists a constant> 0 such thatvi and
which approximately solves (1). Vt € R, Ey, !V Eyi) < ¢°1/2,

Algorithm 1 Structured Greedy Algorithm (StructOMP)  We also need to generalize sparse eigenvalue condition,

1: Input: (X,y), BC 2%, 5> 0 used in the modern sparsity analysis. It is related to (and
2: Output; F:(k) and3®) weaker than) the RIP (restricted isometry property) as-
3 let FO = gand3® =0 sumption (Candes & Tao, 2005) in the compressive sensing
4 foral K = 1. ... do literature. This definition takes advantage of coding com-
5. selectB® ’e B to maximize progress () plexity, and can be also considered as (a weaker version of)
6 let FF) — gt |y plk—1) structured RIP. We introduce a definition.
7. let %) = arg mingeps Q(B) - )

subject tasupp(8)  F() Definition 5.1 For all F' C {1,...,p}, define
8 if (c(B®) > s) break (1
o end for p-(F) =int { LIXBI/ 1613 s supp() < F

In Algorithm 1, we are given a set of blocisthat con-
tains subsets df. Instead of searching all subsdtsc 7
up to a certain complexityF'| + ¢(F'), which is computa-
tionally infeasible, we search only the blocks restricted t
B. It is assumed that searching O\Kéng computationally p_(s) =inf{p_(F): F C T,c(F)
manageable. At each stép), we try to find a block fron3

to maximize progress. It is thus necessary to define a quan-
tity that measures progress. Our idea is to approximately

1
po(F) =sup { IXGIR/1013  suwn() © F ).
Moreover, for alls > 0, define

< s},
pi(s) =sup{ps(F) : F C T,e(F) < s}.

maximize the gain ratio: In the theoretical analysis, we need to assume ghas)
. A is not too small for some that is larger than the sig-
Nk _ Q(B*=1) —Q(B®) nal complexity. Since we only consider eigenvalues for
c(BR)) —e(ph-1) 7 submatrices with small cost(3), the sparse eigenvalue

which measures the reduction of objective function perunitrp_(s) can be significantly larger than the corresponding

increase of coding complexity. This greedy criterion is atio for standard sparsity (which will consider all sub-
2 ' . sets of{1,... up to sizes). For example, for random
a natural generalization of the standard greedy algorithm {1,...p} up ) b

o . .Oprojections used in compressive sensing applications, the
and essential in our analysis. For least squares regressi

we can approximata(*) using the following definition @odmg lengthe(supp(5)) is O(kInp) in standard spar-

sity, but can be as low agsupp(3)) = O(k) in struc-

| Pg_po—1 (X BFD —y)||3 tured sparsity (if we can guesspp(3) approximately cor-
#(B) = (BU F—1)) — o(F—1)) ° (2 rectly. Therefore instead of requiring= O(kInp) sam-

ples, we requires onl (k + cl(supp(5))). The difference
where Pr = Xr(X; Xr)~1 X} is the projection matrix can be significant whep is large and the coding length

to the subspaces generated by columns{ef We then cl(supp(53)) < klnp.
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The theorem implies that the structured RIP condition isa generalization of corresponding results in compressive

satisfied with sample size O((k/ko) In(p/ko)) in
group sparsity rather than= O(k In(p)) in standard spar-
sity.

Theorem 5.1 (Structured-RIP) Suppose that elements in
X are iid standard Gaussian random variabl@g(0, 1).
Foranyt > 0 andd € (0,1), let

n> §[1n3+t+sln(1+8/5)}.

25

Then with probability at least — ¢~*, the random matrix
X € R"*? satisfies the following structured-RIP inequal-
ity for all vector 3 € RP with coding complexity no more
thans:

1 =0)lIBl2 < TIIXﬂHz (L +0)lIBll2-

5.2. Coding complexity regularization

Theorem 5.2 Suppose that Assumption 5.1 is valid. Con-
sider any fixed targef € RP. Then with probability ex-
ceedingl — », forall A\ > 0,¢ > 0,3 € R? such that:
Q(B) < Q(B) + ¢, we have

|X3 —Eyll2 < | XB — Eyll2 + 0/2In(6/n) + 2T,
I = (7.40%¢(B) + 2.40% In(6/n) + €)*/2.

Moreover, if the coding schena¢ ) is sub-additive, then

np—(c(B) + (BN — BlI3 < 10 X5 — Ey||3 + A,

A = 376%¢(B) + 290 In(6/1) + 2.5¢.

This theorem immediately implies the following result for
(1): V3 such that(5) < s

1 ~
ﬁ”Xﬁconstr_EyH2 \/—HXﬁ EY||2+A

A= 2111(6/7)+ (7 4s +4.7In(6/n))'/?,

7

Hﬁconstr

NG

[10][X 8 — Ey|3 +11] ,

I S
ol = G @

IT = 370%s + 2907 In(6/7).
In compressive sensing applications, we take- 0, and

we are interested in recoverimtfrom random projections.
For simplicity, we letX3 = Ey = y, and our result

shows that the constrained coding complexity penallzat|on

method achieves exact reconstructmlaw, = [ as long
asp_(2¢()) > 0 (by settings = ¢(3)). According to

sensing (Candes & Tao, 2005). As we have pointed out
earlier, this number can be significantly smaller than the
standard sparsity requirementiof= O(| 3o In p), when

the structure imposed is meaningful.

5.3. Structured greedy algorithm

Definition 5.2 GivenB c 27, define

po(B) = max p.(B), co(B) = maxc(B)

and

b
3,B) = Z B;), supp(3

b
U (B; € B).

The following theorem shows thatdf 3, B) is small, then
one can use the structured greedy algorithm to find a coef-
ficient vector3(*®) that is competitive tg3, and the coding
complexityc(5™)) is not much worse than that ow, B).
“This implies that if the original coding complexity3) can

be approximated by block complexity3, B), then we can
approximately solve (1).

Theorem 5.3 Suppose the coding scheme is sub-additive.
Consider3 ande such thak € (0, ||y||3 — || X3 —y||3] and

po(B)e(B,B) | lyll3 X8 —yl3
~ vp-(s+c(B)) € '

Then at the stopping timee we have
Q(B™) < Q(B) + e

By Theorem 5.2, the result in Theorem 5.3 implies that

|XB8™ — Eyll2 < | X3 — Ey|l2 + 0+/2In(6/n) + A,
A =20(7.4(s + co(B)) +4.7In(6/n) + ¢/0*)/2,
(k) _ A2 [IOHXB - EY\@ +_H}
VB =Pl = v e + )
I = 370%(s + co(B)) + 2902 In(6/1) + 2.5¢.

The result shows that in order to approximate a sig-
nal § up to e, one needs to use coding complexity
O(In(1/€))e(3,B). If B contains small blocks and their
sub-blocks with equal coding length, and the coding
scheme is block coding generated By thenc(3,B) =
c(B). In this case we nee@(sn(1/¢)) to approximate a
signal with coding complexity.

In order to get rid of theO(In(1/¢)) factor, backward

Theorem 5.1, this is possible when the number of randongreedy strategies can be employed, as shown in various re-

projections (sample size) reaches= O(2¢(3)). This is

cent work such as (Zhang, 2008). For simplicity, we will
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not analyze such strategies in this paper. However, in th&. Experiments

following, we present an additional convergence result for.

structured greedy algorithm that can be applied to weakl);r he purpofse of thesc(ej expenments IS to dgmgnstratg the ad-
sparsep-compressible signals common in practice. It is vANtage of structured sparsity over standard sparsity. We

shown that thdn(1/¢) can be removed for such weakly compare the proposed StructOMP to OMP and Lasso,

sparse signals. More precisely, we introduce the folIowingWh'Ch are standard algorithms to achieve sparsity but with-

concept of weakly sparse compressible target that genefUt consu(jjt_afr_mé;lstructurel. In our_experlm;ents, we usr?
alizes the corresponding concept of compressible signal ifr@SSo-modified least angle regression (LAS/Lasso) as the

standard sparsity from the compressive sensing Iiteratur@OIVer of Lassp (Bradley Efron & Tibshirani, 2004)' In
(Donoho, 2006). order to gquantitatively compare performance of different

algorithms, we use recovery error, defined as the relative
Definition 5.3 The targetEy is (a, g)-compressible with difference in 2-norm between the estimated sparse coef-
respect to block3 if there exist constants,q > 0 such ficient vectorg3.,, and the ground-truth sparse coefficient

that for eachs > 0, 33(s) such that:(3(s), B) < s and B: ||Best — Bll2/||B]l2. Our experiments focus on graph
1 sparsity that is more general than group sparsity. In fact,
- | X3(s) —Eyl||3 < as™ . connected regions may be regarded as dynamic groups that

are not pre-defined. For this reason, we do not compare to
Theorem 5.4 Suppose that the target is(a,q)-  group-Lasso which requires pre-defined groups.
compressible with respect t8. Then with probability

1 — 7, at the stopping timé, we have 2 (&) ey Sene kT l oo I

~ . 0 0 L . L ] n
QBM) < Q(B(s)) + 2na/s' + 20%[In(2/n) + 1], . 1 L LA (U A
100 200 300 400 500 100 200 300 400 500

Where 5 (c) Lasso 2 (d) StructOMP
sy . _ 0 [hanpa i R J‘.‘ 0 |“ Il_
< —"——minp_(s+ c(B(u))). ! '

(10 + 3¢)po (B) uss’ ( (Bw))) 2 00 200 800 400 500 100 200 300 400 500

This result shows that we can approximate a compressiblgjg,re 1 Recovery results of 1D signal with graph-structured
signal of complexitys’ with complexity s = O(gs’) US-  sparsity. (a) original data; (b) recovered results with OMP (er-
ing greedy algorithm. This means the greedy algorithmyor is 0.9921); (c) recovered results with Lasso (error is 0.6660);
obtains optimal rate for weakly-sparse compressible sig¢d) recovered results with StructOMP (error is 0.0993).

nals. The sample complexity suffers only a constant fac-

tor O(g). Combine this result with Theorem 5.2, and takeg 1. 1D Signals with Line-Structured Sparsity

union bound, we have with probability— 27, at stopping _ _
time k: In the first experiment, we randomly generaté/a struc-

tured sparse signal with valugd, wherep = 512, k = 32
%HXﬁ(k) —Eyll» < /% + oy /M + 20V/A, andg = 2. The support set of these signals is composed of
n S n

g connected regions. Here, each element of the sparse coef-

A 7.4(s+ ¢co(B)) +6.71n(6/7) n 2a ficient is connected to two of its adjacent elements, which
- n 025/’ forms the underlying graph structure. The graph sparsity
&) _ 72 1 15a 11 concept introduced earlier is used to compute the coding

18 = Bllz < p_(s+5 +co(B)) [571 g] ’ length of sparsity patterns in StructOMP. The projection

matrix X is generated by creating anx p matrix with
i.i.d. draws from a standard Gaussian distributié(0, 1).
Given a fixedn, we can obtain a convergence result by For simplicity, the rows ofX are normalized to unit mag-
choosings (and thuss’) to optimize the right hand side. nitude. Zero-mean Gaussian noise with standard deviation
The resulting rate is optimal for the special case of stane = 0.01 is added to the measurements. Figure 1 shows
dard sparsity, which implies that the bound has the optimabne generated signal and its recovered results by different
form for structured;-compressible targets. In particular, in algorithms whem = 4k = 128. To study how the sam-
compressive sensing applications where- 0, we obtain  ple sizen effects the recovery performance, we change the
when samples size reaches= O(gs’), the reconstruction sample size and record the recovery results by different al-
performance is gorithms. Figure 2(a) shows the recovery performance of
Hﬂ_(k) — B2 = O(a/s') the three algor_ithms, averaged over 100 random runs for
2 ’ each sample size. As expected, StructOMP is better than
which matches that of the constrained coding complexitithe OMP and Lasso and can achieve better recovery per-
regularization method in (1) up to a constan(y). formance for structured sparsity signals with less samples

I = 3702 (s + co(B)) + 340% In(6/7).
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" X 6.3. 2D Images with Tree-structured Sparsity

—#— Structomp |

It is well known that the 2D natural images are sparse in
a wavelet basis. Their wavelet coefficients have a hierar-
chical tree structure (Mallat, ). Figure 4(a) shows a widely
used example image with siBd x 64: cameramanEach
T sy | T s | 2D wavelet coefficient of this image is connected to its par-
@) (b) ent coefficient and child coefficients, which forms the un-
derlying hierarchical tree structure (which is a speciakca
Figure 2Recovery error vs. Sample size ratio/k): a) 1D sig-  Of graph sparsity). In our experiment, we choose Haar-
nals; (b) 2D gray images wavelet to obtain its tree-structured sparsity wavelef-coe
ficients. The projection matriX and noises are generated
with the same method as that for 1D structured sparsity sig-
nals. OMP, Lasso and StructOMP are used to recover the
To demonstrate the structure sparsity concept on 2D imwavelet coefficients from the random projection samples
ages, we randomly generate® structured sparsity im- respectively. Then, the inverse wavelet transform is used t
age by putting four letters in random locations, wherereconstruct the images with these recovered wavelet coef-
p=H=xW = 4848, k = 160 andg = 4. The sup- ficients. Our task is to compare the recovery performance
port set of these signals is thus composed ebnnected  of the StructOMP to those of OMP and Lasso. Figure 4
regions. Here, each pixel of the 2D gray image is con-shows one example of the recovered results by different al-
nected to four of its adjacent pixels, which forms the un-gorithms. It shows that StructOMP obtains the best recov-
derlying graph structure. The graph sparsity coding schemered result. Figure 5(a) shows the recovery performance
discussed earlier is applied to calculate coding length of @f the three algorithms, averaged over 100 random runs for
sparsity pattern. Figure 3 shows one example of 2D gragach sample size. The StructOMP algorithm is better than
images and the recovered results by different algorithmgoth Lasso and OMP in this case. The difference of this
whenm = 4k = 640. We also record the recovery re- example from the previous example is that real image data
sults by different algorithms with increasing sample sizesare only weakly sparse, for which even the standard OMP
Figure 2(b) shows the recovery performance of the three alwithout structured sparsity) bound obtained in this paper
gorithms, averaged over 100 random runs for each sampl@atches that of Lasso. It is thus consistent with our theory
size. The recovery results of StructOMP are always bettefhat StructOMP should outperform unstructured Lasso in
as shown in the next two examples, real data are often not (b)
ods (Needell & Tropp, 2008)(Zhang, 2008). It will be a

than those of OMP. Comparing to Lasso, however, the difthis case.

(c) (d)
strongly sparse, and StructOMP can significantly outper-
future work to include such modifications into StructOMP.

6.2. 2D Images with Graph-structured Sparsity

ference is not always clear cut. This result is reasonable
considering that this artificial signal is strongly spaessd
our theory says that OMP works best for weakly sparse
signals. For strongly sparse signals, recovery bounds fo
Lasso are known to be better than that of OMP. However,

form Lasso. We shall mention that a few recent works hav ure 4Recovery results with sample size= 2048: (a) the
shown that the backward greedy strategies can be addng ckground subtracted image, (b) recovered image with OMP (er-
to further improve the forward greedy methods and obtainy is 0.21986), (c) recovered image with Lasso (error is 0.1670)
similarly results as those df; regularization based meth- and (d) recovered image with StructOMP (error is 0.0375)

ol W
1200 1400 1600 1800 2000 2200 2400 2600 2800 500 1000 1500 2000 2500
sample Size

(@) (b)

Figure 3.Recovery results of a 2D gray image: (a) original gray

image, (b) recovered image with OMP (error is 0.9012), (c) recov-Figure 5.Recovery error vs. Sample size: a) 2D image with tree-
ered image with Lasso (error is 0.4556) and (d) recovered imagstructured sparsity in wavelet basis; (b) background subtracted
with StructOMP (error is 0.1528) images with structured sparsity
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6.4. Background Subtracted Images Candes, E. J., & Tao, T. (2005). Decoding by linear pro-
gramming. |IEEE Trans. on Information Theonbl,
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: tured tyArch. Math, 89, 399-403.
We randomly choose 100 background subtracted images as ured sparstyAre a
test images. The recovery performance is recorded as Huang, J., & Zhang, T. (2009)The benefit of group spar-
function of increasing sample sizes. Figure 6 and Figure sity (Technical Report). Rutgers University.
5(b) demonstrate that StructOMP significantly outperforms

OMP and Lasso in recovery performance on video data. Huang, J., Zhang, T., & Metaxas, D. (200@garning with
structured sparsityTechnical Report). Rutgers Univer-
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