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Abstract

This paper investigates a new learning formula-
tion calledstructured sparsity, which is a natu-
ral extension of the standard sparsity concept in
statistical learning and compressive sensing. By
allowing arbitrary structures on the feature set,
this concept generalizes the group sparsity idea.
A general theory is developed for learning with
structured sparsity, based on the notion of coding
complexity associated with the structure. More-
over, a structured greedy algorithm is proposed
to efficiently solve the structured sparsity prob-
lem. Experiments demonstrate the advantage of
structured sparsity over standard sparsity.

1. Introduction

We are interested in the sparse learning problem under the
fixed design condition. Consider a fixed set ofp basis vec-
tors {x1, . . . ,xp} wherexj ∈ R

n for eachj. Here, n
is the sample size. Denote byX the n × p data matrix,
with columnj of X beingxj . Given a random observation
y = [y1, . . . ,yn] ∈ R

n that depends on an underlying co-
efficient vectorβ̄ ∈ R

p, we are interested in the problem
of estimatingβ̄ under the assumption that the target coeffi-
cient β̄ is sparse. Throughout the paper, we consider fixed
design only. That is, we assumeX is fixed, and random-
ization is with respect to the noise in the observationy.

We consider the situation thatEy can be approximated by a
sparse linear combination of the basis vectors:Ey ≈ Xβ̄,
where we assume that̄β is sparse. Define the support
of a vectorβ ∈ R

p as supp(β) = {j : β̄j 6= 0} and
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‖β‖0 = |supp(β)|. A natural method for sparse learning is
L0 regularization for desired sparsitys:

β̂L0 = arg min
β∈Rp

Q̂(β) subject to‖β‖0 ≤ s,

For simplicity, we only consider the least squares loss
Q̂(β) = ‖Xβ − y‖2

2 in this paper. Since this optimiza-
tion problem is generally NP-hard, in practice, one often
considers approximate solutions. A standard approach is
convex relaxation ofL0 regularization toL1 regularization,
often referred to as Lasso (Tibshirani, 1996). Another com-
monly used approach is greedy algorithms, such as the or-
thogonal matching pursuit (OMP) (Tropp & Gilbert, 2007).

In practical applications, one often knows a structure on
the coefficient vector̄β in addition to sparsity. For ex-
ample, in group sparsity (Yuan & Lin, 2006; Bach, 2008;
Stojnic et al., 2008; Huang & Zhang, 2009), one assumes
that variables in the same group tend to be zero or nonzero
simultaneously. However, the groups are assumed to be
static and fixed a priori. Moreover, algorithms such as
group Lasso do not correctly handle overlapping groups
(in that overlapping components are over-counted); that is,
a given coefficient should not belong to different groups.
This requirement is too rigid for many practical applica-
tions. To address this issue, a method called composite ab-
solute penalty (CAP) is proposed in (Zhao et al., ) which
can handle overlapping groups. Unfortunately, no theory
is established to demonstrate the effectiveness of the ap-
proach. Other structures have also been explored in the
literature. For example, so-called tonal and transient struc-
tures were considered for sparse decomposition of audio
signals in (Daudet, 2004), but again without any theory.
Grimm et al. (Grimm et al., 2007) investigated positive
polynomials with structured sparsity from an optimization
perspective. The theoretical result there did not address
the effectiveness of such methods in comparison to stan-
dard sparsity. The closest work to ours is a recent pa-
per (Baraniuk et al., 2008) which was pointed out to us



Learning with Structured Sparsity

by an anonymous reviewer. In that paper, a specific case
of structured sparsity, referred to as model based sparsity,
was considered. It is important to note that some theoreti-
cal results were obtained there to show the effectiveness of
their method in compressive sensing. However, their set-
ting is more restrictive than the structured sparsity frame-
work which we shall establish here.

The purpose of this paper is to present a framework for
structured sparsity, and to study the more general estima-
tion problem under this framework. If meaningful struc-
tures exist, we show that one can take advantage of such
structures to improve the standard sparse learning.

2. Structured Sparsity

In structured sparsity, not all sparse patterns are equally
likely. For example, in group sparsity, coefficients within
the same group are more likely to be zeros or nonzeros si-
multaneously. This means that if a sparse coefficient’s sup-
port set is consistent with the underlying group structure,
then it is more likely to occur, and hence incurs a smaller
penalty in learning. One contribution of this work is to for-
mulate how to define structure on top of sparsity, and how
to penalize each sparsity pattern.

In order to formalize the idea, we denote byI = {1, . . . , p}
the index set of the coefficients. We assign a costcl(F ) to
any sparse subsetF ⊂ {1, . . . , p}. In structured sparsity,
cl(F ) is an upper bound of the coding length ofF (number
of bits needed to representF by a computer program) in a
pre-chosen prefix coding scheme. It is a well-known fact
in information theory that mathematically, the existence of
such a coding scheme is equivalent to

∑

F⊂I 2−cl(F ) ≤ 1.
From the Bayesian statistics point of view,2−cl(F ) can be
regarded as a lower bound of the probability ofF . The
probability model of structured sparse learning is thus: first
generate the sparsity patternF according to probability
2−cl(F ); then generate the coefficients inF .

Definition 2.1 A cost functioncl(F ) defined on subsets of
I is called a coding length (in base-2) if

∑

F⊂I,F 6=∅

2−cl(F ) ≤ 1.

We give∅ a coding length 0. The corresponding structured
sparse coding complexity ofF is defined as

c(F ) = |F | + cl(F ).

A coding lengthcl(F ) is sub-additive ifcl(F ∪ F ′) ≤
cl(F ) + cl(F ′), and a coding complexityc(F ) is sub-
additive ifc(F ∪ F ′) ≤ c(F ) + c(F ′).

Clearly if cl(F ) is sub-additive, then the corresponding
coding complexityc(F ) is also sub-additive. Based on the

structured coding complexity of subsets ofI, we can now
define the structured coding complexity of a sparse coeffi-
cient vectorβ̄ ∈ R

p.

Definition 2.2 Giving a coding complexityc(F ), the struc-
tured sparse coding complexity of a coefficient vectorβ̄ ∈
R

p is

c(β̄) = min{c(F ) : supp(β̄) ⊂ F}.

Later in the paper, we will show that if a coefficient vec-
tor β̄ has a small coding complexityc(β̄), then β̄ can be
effectively learned, with good in-sample prediction perfor-
mance (in statistical learning) and reconstruction perfor-
mance (in compressive sensing). In order to see why the
definition requires adding|F | to cl(F ), we consider the
generative model for structured sparsity mentioned earlier.
In this model, the number of bits to encode a sparse coef-
ficient vector is the sum of the number of bits to encodeF
(which iscl(F )) and the number of bits to encode nonzero
coefficients inF (this requiresO(|F |) bits up to a fixed
precision). Therefore the total number of bits required is
cl(F ) + O(|F |). This information theoretical result trans-
lates into a statistical estimation result: without additional
regularization, the learning complexity for least squaresre-
gression within any fixed support setF is O(|F |). By
adding the model selection complexitycl(F ) for each sup-
port setF , we obtain an overall statistical estimation com-
plexity of O(cl(F ) + |F |). While the idea of using coding
based penalization resembles minimum description length
(MDL), the actual penalty we obtain for structured spar-
sity problems is different from the standard MDL penalty
for model selection. This difference is important, and thus
in order to prevent confusion, we avoid using MDL in our
terminology.

3. General Coding Scheme

We introduce a general coding scheme calledblock coding.
The basic idea of block coding is to define a coding scheme
on a small number of base blocks (a block is a subset ofI),
and then define a coding scheme on all subsets ofI using
these base blocks.

Consider a subsetB ⊂ 2I . That is, each element (a block)
of B is a subset ofI. We callB a block set ifI = ∪B∈BB
and all single element sets{j} belong toB (j ∈ I). Note
thatB may contain additional non single-element blocks.
The requirement ofB containing all single element sets is
for convenience, as it implies that every subsetF ⊂ I can
be expressed as the union of blocks inB.

Let cl0 be a code length onB:

∑

B∈B

2−cl0(B) ≤ 1,
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we definecl(B) = cl0(B) + 1 for B ∈ B. It not difficult
to show that the following cost function onF ⊂ I is a
code-length

cl(F ) = min







b
∑

j=1

cl(Bj) : F =
b

⋃

j=1

Bj (Bj ∈ B)







.

This is a coding length because

∑

F⊂I,F 6=∅

2−cl(F ) ≤
∑

b≥1

∑

{B`}∈Bb

2−
∑ k

`=1 cl(B`)

≤
∑

b≥1

b
∏

`=1

∑

B`∈B

2−cl(B`) ≤
∑

b≥1

2−b = 1.

It is obvious that block coding is sub-additive.

The main purpose of introducing block coding is to de-
sign computational efficient algorithms based on the block
structure. In particular, we consider a structured greedy al-
gorithm that can take advantage of block structures. In the
structured greedy algorithm, instead of searching over all
subsets ofI up to a fixed coding complexitys (exponen-
tial in s number of such subsets), we greedily add blocks
from B one at a time. Each search problem overB can
be efficiently performed becauseB is supposed to contain
only a computationally manageable number of base blocks.
Therefore the algorithm is computationally efficient. Con-
crete structured sparse coding examples described below
can be efficiently approximated by block coding.

Standard sparsity

A simple coding scheme is to code each subsetF ⊂ I of
cardinalityk usingk log2(2p) bits, which corresponds to
block coding withB consisted only of single element sets,
and each base block has a coding lengthlog2 p. This corre-
sponds to the complexity for the standard sparse learning.

Group sparsity

The concept of group sparsity has been appeared in vari-
ous recent work, such as the group Lasso in (Yuan & Lin,
2006). Consider a partition ofI = ∪m

j=1Gj to m dis-
joint groups. LetBG contain them groupsGj , andB1

containp single element blocks. The strong group spar-
sity coding scheme is to give each element inB1 a code-
length cl0 of ∞, and each element inBG a code-length
cl0 of log2 m. Then the block coding scheme with blocks
B = BG ∪ B1 leads to group sparsity, which only looks
for signals consisted of the groups. The resulting coding
length is:cl(B) = g log2(2m) if B can be represented as
the union ofg disjoint groupsGj ; and cl(B) = ∞ oth-
erwise. Note that if the signal can be expressed as the
union ofg groups, and each group size isk0, then the group

coding lengthg log2(2m) can be significantly smaller than
the standard sparsity coding length ofgk0 log2(p). As we
shall see later, the smaller coding complexity implies bet-
ter learning behavior, which is essentially the advantage of
using group sparse structure.

Graph sparsity

We consider a generalization of the group sparsity idea that
employs a directed graph structureG on I. Each element
of I is a node ofG but G may contain additional nodes.
For simplicity, we assumeG contains a starting node not in
I. At each nodev ∈ G, we define coding lengthclv(S) on
the neighborhoodNv of v (that contains the empty set), as
well as any other single nodeu ∈ G with clv(u), such that
∑

S⊂Nv
2−clv(S) +

∑

u∈G 2−clv(u) ≤ 1. To encodeF ⊂
G, we start with the active set containing only the starting
node, and finish when the set becomes empty. At each node
v before termination, we may either pick a subsetS ⊂ Nv,
with coding lengthclv(S), or a node inu ∈ G, with coding
lengthclv(u), and then put the selection into the active set.
We then removev from the active set (oncev is removed,
it does not return to the active set anymore). This process
is continued until the active set becomes empty.

The wavelet coefficients of a signal are well known to have
a tree-graph structure, which has been widely used for com-
pressing natural images and is a special case of graph spar-
sity. Each wavelet coefficient of the signal is connected to
its parent coefficient and its child coefficients. The wavelet
coefficients of 1D signals have a binary tree connected
graph structure while the wavelet coefficients of 2D images
have a quad-tree connected graph structure.

As a concrete example, we consider image processing
problem, where each image is a rectangle of pixels (nodes);
each pixel is corrected to four adjacent pixels, which forms
the underlying graph structure. At each pixel, the number
of subsets in its neighborhood is24 = 16 (including the
empty set), with a coding lengthclv(S) = 5 each; we also
encode all other pixels in the image with random jumping,
each with a coding length1 + log2 p. Using this scheme,
we can encode each connected regionF by no more than
log2 p+5|F | bits by growing the region from a single point
in the region. Therefore ifF is composed ofg connected
regions, then the coding length isg log2 p+5|F |, which can
be significantly better than standard sparse coding length of
|F | log2 p. This example shows that the general graph cod-
ing scheme presented here favors connected regions (that
is, nodes that are grouped together with respect to the graph
structure). This scheme can be efficiently approximated
with block coding as follows: we consider relatively small
sized base blocks consisted of nodes that are close together
with respect to the graph structure, and then use the induced
block coding scheme to approximate the graph coding.



Learning with Structured Sparsity

4. Algorithms for Structured Sparsity

The following algorithm is a natural extension ofL0 regu-
larization to structured sparsity problems. It penalizes the
coding complexity instead of the cardinality (sparsity) of
the feature set.

β̂constr = arg min
β∈Rp

Q̂(β) subject toc(β) ≤ s. (1)

The optimization of (1) is generally hard. There are two
common approaches to alleviate this problem. One is con-
vex relaxation (L1 regularization to replaceL0 regulariza-
tion for standard sparsity); the other is forward greedy algo-
rithm. We do not know any extensions ofL1 regularization
like convex relaxation that can handle general structured
sparsity formulations. However, one can extend greedy al-
gorithm by using a block structure. We call the resulting
procedure structured greedy algorithm (see Algorithm 1),
which approximately solves (1).

Algorithm 1 Structured Greedy Algorithm (StructOMP)

1: Input: (X,y), B ⊂ 2I , s > 0
2: Output: F (k) andβ(k)

3: let F (0) = ∅ andβ(0) = 0
4: for all K = 1, ... do
5: selectB(k) ∈ B to maximize progress (∗)
6: let F (k) = B(k) ∪ F (k−1)

7: let β(k) = arg minβ∈Rp Q̂(β)
subject tosupp(β) ⊂ F (k)

8: if (c(β(k)) > s) break
9: end for

In Algorithm 1, we are given a set of blocksB that con-
tains subsets ofI. Instead of searching all subsetsF ⊂ I
up to a certain complexity|F | + c(F ), which is computa-
tionally infeasible, we search only the blocks restricted to
B. It is assumed that searching overB is computationally
manageable. At each step(∗), we try to find a block fromB
to maximize progress. It is thus necessary to define a quan-
tity that measures progress. Our idea is to approximately
maximize the gain ratio:

λ(k) =
Q̂(β(k−1)) − Q̂(β(k))

c(β(k)) − c(βk−1)
,

which measures the reduction of objective function per unit
increase of coding complexity. This greedy criterion is
a natural generalization of the standard greedy algorithm,
and essential in our analysis. For least squares regression,
we can approximateλ(k) using the following definition

φ(B) =
‖PB−F (k−1)(Xβ(k−1) − y)‖2

2

c(B ∪ F (k−1)) − c(F (k−1))
, (2)

wherePF = XF (X>
F XF )−1X>

F is the projection matrix
to the subspaces generated by columns ofXF . We then

selectB(k) so that

φ(B(k)) ≥ γ max
B∈B

φ(B),

whereγ ∈ (0, 1] is a fixed approximation ratio that speci-
fies the quality of approximate optimization.

5. Theory of Structured Sparsity

Due to the space limitation, the proofs of the theorems are
detailed in (Huang et al., 2009).

5.1. Assumptions

We assume sub-Gaussian noise as follows.

Assumption 5.1 Assume that{yi}i=1,...,n are indepen-
dent (but not necessarily identically distributed) sub-
Gaussians: there exists a constantσ ≥ 0 such that∀i and
∀t ∈ R, Eyi

et(yi−Eyi) ≤ eσ2t2/2.

We also need to generalize sparse eigenvalue condition,
used in the modern sparsity analysis. It is related to (and
weaker than) the RIP (restricted isometry property) as-
sumption (Candes & Tao, 2005) in the compressive sensing
literature. This definition takes advantage of coding com-
plexity, and can be also considered as (a weaker version of)
structured RIP. We introduce a definition.

Definition 5.1 For all F ⊂ {1, . . . , p}, define

ρ−(F ) = inf

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

,

ρ+(F ) = sup

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

.

Moreover, for alls > 0, define

ρ−(s) = inf{ρ−(F ) : F ⊂ I, c(F ) ≤ s},
ρ+(s) = sup{ρ+(F ) : F ⊂ I, c(F ) ≤ s}.

In the theoretical analysis, we need to assume thatρ−(s)
is not too small for somes that is larger than the sig-
nal complexity. Since we only consider eigenvalues for
submatrices with small costc(β̄), the sparse eigenvalue
ρ−(s) can be significantly larger than the corresponding
ratio for standard sparsity (which will consider all sub-
sets of{1, . . . , p} up to sizes). For example, for random
projections used in compressive sensing applications, the
coding lengthc(supp(β̄)) is O(k ln p) in standard spar-
sity, but can be as low asc(supp(β̄)) = O(k) in struc-
tured sparsity (if we can guesssupp(β̄) approximately cor-
rectly. Therefore instead of requiringn = O(k ln p) sam-
ples, we requires onlyO(k +cl(supp(β̄))). The difference
can be significant whenp is large and the coding length
cl(supp(β̄)) � k ln p.
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The theorem implies that the structured RIP condition is
satisfied with sample sizen = O((k/k0) ln(p/k0)) in
group sparsity rather thann = O(k ln(p)) in standard spar-
sity.

Theorem 5.1 (Structured-RIP) Suppose that elements in
X are iid standard Gaussian random variablesN(0, 1).
For anyt > 0 andδ ∈ (0, 1), let

n ≥ 8

δ2
[ln 3 + t + s ln(1 + 8/δ)].

Then with probability at least1 − e−t, the random matrix
X ∈ R

n×p satisfies the following structured-RIP inequal-
ity for all vector β̄ ∈ R

p with coding complexity no more
thans:

(1 − δ)‖β̄‖2 ≤ 1√
n
‖Xβ̄‖2 ≤ (1 + δ)‖β̄‖2.

5.2. Coding complexity regularization

Theorem 5.2 Suppose that Assumption 5.1 is valid. Con-
sider any fixed target̄β ∈ R

p. Then with probability ex-
ceeding1 − η, for all λ ≥ 0, ε ≥ 0, β̂ ∈ R

p such that:
Q̂(β̂) ≤ Q̂(β̄) + ε, we have

‖Xβ̂ − Ey‖2 ≤ ‖Xβ̄ − Ey‖2 + σ
√

2 ln(6/η) + 2Γ,

Γ = (7.4σ2c(β̂) + 2.4σ2 ln(6/η) + ε)1/2.

Moreover, if the coding schemec(·) is sub-additive, then

nρ−(c(β̂) + c(β̄))‖β̂ − β̄‖2
2 ≤ 10‖Xβ̄ − Ey‖2

2 + ∆,

∆ = 37σ2c(β̂) + 29σ2 ln(6/η) + 2.5ε.

This theorem immediately implies the following result for
(1): ∀β̄ such thatc(β̄) ≤ s,

1√
n
‖Xβ̂constr − Ey‖2 ≤ 1√

n
‖Xβ̄ − Ey‖2 + Λ,

Λ =
σ√
n

√

2 ln(6/η) +
2σ√

n
(7.4s + 4.7 ln(6/η))1/2,

‖β̂constr − β̄‖2
2 ≤ 1

ρ−(s + c(β̄))n

[

10‖Xβ̄ − Ey‖2
2 + Π

]

,

Π = 37σ2s + 29σ2 ln(6/η).

In compressive sensing applications, we takeσ = 0, and
we are interested in recoverinḡβ from random projections.
For simplicity, we letXβ̄ = Ey = y, and our result
shows that the constrained coding complexity penalization
method achieves exact reconstructionβ̂constr = β̄ as long
asρ−(2c(β̄)) > 0 (by settings = c(β̄)). According to
Theorem 5.1, this is possible when the number of random
projections (sample size) reachesn = O(2c(β̄)). This is

a generalization of corresponding results in compressive
sensing (Candes & Tao, 2005). As we have pointed out
earlier, this number can be significantly smaller than the
standard sparsity requirement ofn = O(‖β̄‖0 ln p), when
the structure imposed is meaningful.

5.3. Structured greedy algorithm

Definition 5.2 GivenB ⊂ 2I , define

ρ0(B) = max
B∈B

ρ+(B), c0(B) = max
B∈B

c(B)

and

c(β̄,B) = min

b
∑

j=1

c(B̄j), supp(β̄) ⊂
b

⋃

j=1

B̄j (B̄j ∈ B).

The following theorem shows that ifc(β̄,B) is small, then
one can use the structured greedy algorithm to find a coef-
ficient vectorβ(k) that is competitive tōβ, and the coding
complexityc(β(k)) is not much worse than that ofc(β̄,B).
This implies that if the original coding complexityc(β̄) can
be approximated by block complexityc(β̄,B), then we can
approximately solve (1).

Theorem 5.3 Suppose the coding scheme is sub-additive.
Considerβ̄ andε such thatε ∈ (0, ‖y‖2

2−‖Xβ̄−y‖2
2] and

s ≥ ρ0(B)c(β̄,B)

γρ−(s + c(β̄))
ln

‖y‖2
2 − ‖Xβ̄ − y‖2

2

ε
.

Then at the stopping timek, we have

Q̂(β(k)) ≤ Q̂(β̄) + ε.

By Theorem 5.2, the result in Theorem 5.3 implies that

‖Xβ(k) − Ey‖2 ≤ ‖Xβ̄ − Ey‖2 + σ
√

2 ln(6/η) + Λ,

Λ = 2σ(7.4(s + c0(B)) + 4.7 ln(6/η) + ε/σ2)1/2,

‖β(k) − β̄‖2
2 ≤

[

10‖Xβ̄ − Ey‖2
2 + Π

]

ρ−(s + c0(B) + c(β̄))n
,

Π = 37σ2(s + c0(B)) + 29σ2 ln(6/η) + 2.5ε.

The result shows that in order to approximate a sig-
nal β̄ up to ε, one needs to use coding complexity
O(ln(1/ε))c(β̄,B). If B contains small blocks and their
sub-blocks with equal coding length, and the coding
scheme is block coding generated byB, thenc(β̄,B) =
c(β̄). In this case we needO(s ln(1/ε)) to approximate a
signal with coding complexitys.

In order to get rid of theO(ln(1/ε)) factor, backward
greedy strategies can be employed, as shown in various re-
cent work such as (Zhang, 2008). For simplicity, we will
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not analyze such strategies in this paper. However, in the
following, we present an additional convergence result for
structured greedy algorithm that can be applied to weakly
sparsep-compressible signals common in practice. It is
shown that theln(1/ε) can be removed for such weakly
sparse signals. More precisely, we introduce the following
concept of weakly sparse compressible target that gener-
alizes the corresponding concept of compressible signal in
standard sparsity from the compressive sensing literature
(Donoho, 2006).

Definition 5.3 The targetEy is (a, q)-compressible with
respect to blockB if there exist constantsa, q > 0 such
that for eachs > 0, ∃β̄(s) such thatc(β̄(s),B) ≤ s and

1

n
‖Xβ̄(s) − Ey‖2

2 ≤ as−q.

Theorem 5.4 Suppose that the target is(a, q)-
compressible with respect toB. Then with probability
1 − η, at the stopping timek, we have

Q̂(β(k)) ≤ Q̂(β̄(s′)) + 2na/s′q + 2σ2[ln(2/η) + 1],

where

s′ ≤ s γ

(10 + 3q)ρ0(B)
min
u≤s′

ρ−(s + c(β̄(u))).

This result shows that we can approximate a compressible
signal of complexitys′ with complexitys = O(qs′) us-
ing greedy algorithm. This means the greedy algorithm
obtains optimal rate for weakly-sparse compressible sig-
nals. The sample complexity suffers only a constant fac-
tor O(q). Combine this result with Theorem 5.2, and take
union bound, we have with probability1 − 2η, at stopping
timek:

1√
n
‖Xβ(k) − Ey‖2 ≤

√

a

s′q
+ σ

√

2 ln(6/η)

n
+ 2σ

√
Λ,

Λ =
7.4(s + c0(B)) + 6.7 ln(6/η)

n
+

2a

σ2s′q
,

‖β(k) − β̄‖2
2 ≤ 1

ρ−(s + s′ + c0(B))

[

15a

s′q
+

Π

n

]

,

Π = 37σ2(s + c0(B)) + 34σ2 ln(6/η).

Given a fixedn, we can obtain a convergence result by
choosings (and thuss′) to optimize the right hand side.
The resulting rate is optimal for the special case of stan-
dard sparsity, which implies that the bound has the optimal
form for structuredq-compressible targets. In particular, in
compressive sensing applications whereσ = 0, we obtain
when samples size reachesn = O(qs′), the reconstruction
performance is

‖β̄(k) − β̄‖2
2 = O(a/s′q),

which matches that of the constrained coding complexity
regularization method in (1) up to a constantO(q).

6. Experiments

The purpose of these experiments is to demonstrate the ad-
vantage of structured sparsity over standard sparsity. We
compare the proposed StructOMP to OMP and Lasso,
which are standard algorithms to achieve sparsity but with-
out considering structure. In our experiments, we use
Lasso-modified least angle regression (LAS/Lasso) as the
solver of Lasso (Bradley Efron & Tibshirani, 2004). In
order to quantitatively compare performance of different
algorithms, we use recovery error, defined as the relative
difference in 2-norm between the estimated sparse coef-
ficient vectorβ̂est and the ground-truth sparse coefficient
β̄: ‖β̂est − β̄‖2/‖β̄‖2. Our experiments focus on graph
sparsity that is more general than group sparsity. In fact,
connected regions may be regarded as dynamic groups that
are not pre-defined. For this reason, we do not compare to
group-Lasso which requires pre-defined groups.
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Figure 1.Recovery results of 1D signal with graph-structured
sparsity. (a) original data; (b) recovered results with OMP (er-
ror is 0.9921); (c) recovered results with Lasso (error is 0.6660);
(d) recovered results with StructOMP (error is 0.0993).

6.1. 1D Signals with Line-Structured Sparsity

In the first experiment, we randomly generate a1D struc-
tured sparse signal with values±1, wherep = 512, k = 32
andg = 2. The support set of these signals is composed of
g connected regions. Here, each element of the sparse coef-
ficient is connected to two of its adjacent elements, which
forms the underlying graph structure. The graph sparsity
concept introduced earlier is used to compute the coding
length of sparsity patterns in StructOMP. The projection
matrix X is generated by creating ann × p matrix with
i.i.d. draws from a standard Gaussian distributionN(0, 1).
For simplicity, the rows ofX are normalized to unit mag-
nitude. Zero-mean Gaussian noise with standard deviation
σ = 0.01 is added to the measurements. Figure 1 shows
one generated signal and its recovered results by different
algorithms whenn = 4k = 128. To study how the sam-
ple sizen effects the recovery performance, we change the
sample size and record the recovery results by different al-
gorithms. Figure 2(a) shows the recovery performance of
the three algorithms, averaged over 100 random runs for
each sample size. As expected, StructOMP is better than
the OMP and Lasso and can achieve better recovery per-
formance for structured sparsity signals with less samples.



Learning with Structured Sparsity

2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R

ec
ov

er
y 

E
rr

or

Sample Size Ratio ( n / k )

 

 
OMP
Lasso
StructOMP

(a)

2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
ec

ov
er

y 
E

rr
or

Sample Size Ratio (n/k)

 

 
OMP
Lasso
StructOMP

(b)

Figure 2.Recovery error vs. Sample size ratio(n/k): a) 1D sig-
nals; (b) 2D gray images

6.2. 2D Images with Graph-structured Sparsity

To demonstrate the structure sparsity concept on 2D im-
ages, we randomly generate a2D structured sparsity im-
age by putting four letters in random locations, where
p = H ∗ W = 48 ∗ 48, k = 160 andg = 4. The sup-
port set of these signals is thus composed ofg connected
regions. Here, each pixel of the 2D gray image is con-
nected to four of its adjacent pixels, which forms the un-
derlying graph structure. The graph sparsity coding scheme
discussed earlier is applied to calculate coding length of a
sparsity pattern. Figure 3 shows one example of 2D gray
images and the recovered results by different algorithms
whenm = 4k = 640. We also record the recovery re-
sults by different algorithms with increasing sample sizes.
Figure 2(b) shows the recovery performance of the three al-
gorithms, averaged over 100 random runs for each sample
size. The recovery results of StructOMP are always better
than those of OMP. Comparing to Lasso, however, the dif-
ference is not always clear cut. This result is reasonable,
considering that this artificial signal is strongly sparse,and
our theory says that OMP works best for weakly sparse
signals. For strongly sparse signals, recovery bounds for
Lasso are known to be better than that of OMP. However,
as shown in the next two examples, real data are often not
strongly sparse, and StructOMP can significantly outper-
form Lasso. We shall mention that a few recent works have
shown that the backward greedy strategies can be added
to further improve the forward greedy methods and obtain
similarly results as those ofL1 regularization based meth-
ods (Needell & Tropp, 2008)(Zhang, 2008). It will be a
future work to include such modifications into StructOMP.

(a) (b) (c) (d)

Figure 3.Recovery results of a 2D gray image: (a) original gray
image, (b) recovered image with OMP (error is 0.9012), (c) recov-
ered image with Lasso (error is 0.4556) and (d) recovered image
with StructOMP (error is 0.1528)

6.3. 2D Images with Tree-structured Sparsity

It is well known that the 2D natural images are sparse in
a wavelet basis. Their wavelet coefficients have a hierar-
chical tree structure (Mallat, ). Figure 4(a) shows a widely
used example image with size64 × 64: cameraman. Each
2D wavelet coefficient of this image is connected to its par-
ent coefficient and child coefficients, which forms the un-
derlying hierarchical tree structure (which is a special case
of graph sparsity). In our experiment, we choose Haar-
wavelet to obtain its tree-structured sparsity wavelet coef-
ficients. The projection matrixX and noises are generated
with the same method as that for 1D structured sparsity sig-
nals. OMP, Lasso and StructOMP are used to recover the
wavelet coefficients from the random projection samples
respectively. Then, the inverse wavelet transform is used to
reconstruct the images with these recovered wavelet coef-
ficients. Our task is to compare the recovery performance
of the StructOMP to those of OMP and Lasso. Figure 4
shows one example of the recovered results by different al-
gorithms. It shows that StructOMP obtains the best recov-
ered result. Figure 5(a) shows the recovery performance
of the three algorithms, averaged over 100 random runs for
each sample size. The StructOMP algorithm is better than
both Lasso and OMP in this case. The difference of this
example from the previous example is that real image data
are only weakly sparse, for which even the standard OMP
(without structured sparsity) bound obtained in this paper
matches that of Lasso. It is thus consistent with our theory
that StructOMP should outperform unstructured Lasso in
this case.

(a) (b) (c) (d)

Figure 4.Recovery results with sample sizen = 2048: (a) the
background subtracted image, (b) recovered image with OMP (er-
ror is 0.21986), (c) recovered image with Lasso (error is 0.1670)
and (d) recovered image with StructOMP (error is 0.0375)
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Figure 5.Recovery error vs. Sample size: a) 2D image with tree-
structured sparsity in wavelet basis; (b) background subtracted
images with structured sparsity
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6.4. Background Subtracted Images

Background subtracted images are typical structure spar-
sity data in static video surveillance applications. They
generally correspond to the foreground objects of in-
terest. These images are not only spatially sparse
but also inclined to cluster into groups, which cor-
respond to different foreground objects. In this
experiment, the testing video is downloaded from
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. One
sample image frame is shown in Figure 6(a). Each pixel of
the 2D background subtracted image is connected to four of
its adjacent pixels, forming the underlying graph structure.
We randomly choose 100 background subtracted images as
test images. The recovery performance is recorded as a
function of increasing sample sizes. Figure 6 and Figure
5(b) demonstrate that StructOMP significantly outperforms
OMP and Lasso in recovery performance on video data.

(a) (b) (c) (d)

Figure 6.Recovery results with sample sizen = 900: (a) the
background subtracted image, (b) recovered image with OMP (er-
ror is 1.1833), (c) recovered image with Lasso (error is 0.7075)
and (d) recovered image with StructOMP (error is 0.1203)

7. Conclusion

This paper develops a theory for structured sparsity where
prior knowledge allows us to prefer certain sparsity patterns
to others. A general framework is established based on a
coding scheme, which includes the group sparsity idea as
a special case. The proposed structured greedy algorithm
is the first efficient algorithm to handle the general struc-
tured sparsity learning. Experimental results demonstrate
that significant improvements can be obtained on some real
problems that have natural structures, and the results are
consistent with our theory. Future work include additional
computationally efficient methods such as convex relax-
ation methods and backward greedy strategies.
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