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Abstract

A nonparametric model is introduced that al-
lows multiple related regression tasks to take
inputs from a common data space. Tradi-
tional transfer learning models can be inap-
propriate if the dependence among the out-
puts cannot be fully resolved by known input-
specific and task-specific predictors. The pro-
posed model treats such output responses as
conditionally independent, given known pre-
dictors and appropriate unobserved random
effects. The model is nonparametric in the
sense that the dimensionality of random ef-
fects is not specified a priori but is instead
determined from data. An approach to esti-
mating the model is presented uses an EM
algorithm that is efficient on a very large
scale collaborative prediction problem. The
obtained prediction accuracy is competitive
with state-of-the-art results.

1. Introduction

In transfer learning and multi-task learning, the ob-
served responses of interest can be seen as relational
measurements under a pair of heterogeneous condi-
tions. If there are M tasks and N shared observations,
the standard regression model forms M separate esti-
mates

Yij = µ + mi(zj) + εij , j = 1, . . . , N

εij
iid∼ N(0, σ2)

where µ is a bias parameter and zj ∈ Z is the vector
of input predictors for observation j. A more flexible
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approach is to model all of the data jointly, as

Yij = µ + m(xi, zj) + εij , (1)

εij
iid∼ N(0, σ2)

where now mij = m(xi, zj) is a regression function
based on task-specific predictors xi ∈ X . In order
to directly model the dependency between tasks, a
multi-task Gaussian process approach (Yu et al., 2007;
Bonilla et al., 2008) may assume

m ∼ GP(0,Ω⊗ Σ)

where Σ(zj , zj′ ; θΣ) � 0 is a covariance function among
inputs and Ω(xi,xi′ ; θΩ) � 0 a covariance function
among tasks, which means Cov(mij ,mi′j′) = Ωii′Σjj′ .
The parameters θΣ and θΩ can be estimated, for ex-
ample, by maximizing the marginalized likelihood.

The model is nonparametric in the sense that m lives
in an infinite-dimensional function space; it can be
more appropriate for capturing complex dependencies
than a fixed-dimension model. But this flexibility
comes at a computational price. If Y ∈ RM×N is
the random response matrix, including those elements
Yij that are observed and those that need to be pre-
dicted, the computational complexity of inference is
O(M3N3). It is thus infeasible to do inference if M
and (or) N are large. For example, in our experiments
on the Netflix dataset, M = 480, 189 and N = 17, 770.

Just as significantly, from a modeling perspective this
model may not be suitable in the situation where the
responses Yij cannot be fully explained by the predic-
tors xi and zj alone. In such a case the conditional
independence assumption

p(Y |m,x, z) =
∏
i,j

p(Yij |m,xi, zj)

implied by Eq. (1) is invalid. Such is often the case
for relational or networked observations. For instance,
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in the application of predicting users’ unobserved rat-
ings on movies, the observed ratings themselves are
often more informative than the users’ demographic
attributes and the movies’ genre attributes.

Motivated by these considerations, in this paper we
propose a transfer learning approach that satisfies
three desiderata. The model (1) is nonparametric with
sufficient flexibility, (2) is appropriate for dependent
responses that are not solely conditioned on the given
predictors, and (3) supports efficient learning on very
large scale data.

2. A Random Effects Model

In statistics, a random effects model is a kind of hierar-
chical linear model that that allows dependent obser-
vations occurring in repeated or multilevel structures.
The scenario of transfer learning matches such a form;
in particular, the population is grouped together ac-
cording to tasks, and each group repeatedly generates
random observations.

A natural extension of the previous model is to assume
the Yij are conditionally independent, given mij ≡
m(xi, zj) and additional additive random effects fij .
The model becomes

Yij = µ + mij + fij + εij , εij
iid∼ N(0, σ2)

where the distribution of m and f determines the de-
pendence among the variables Yij . One may wish to
choose a form of f that is appropriate to explain the
data dependence, for example, introducing latent vari-
ables ui and vj such that fij has a parametric form
f(ui,vj ; θf ), as suggested in (Hoff, 2005).

A nonparametric random effects model may assume
f ∼ GP(0,∆ ⊗ Υ), where the covariances ∆ and Υ
are parameters to be determined from data. While
this model is natural and flexible, it is subject to the
large computational limitations discussed above. We
address these limitations by imposing additional struc-
ture and developing an efficient estimation procedure.

2.1. Our Model

In the following we introduce a refinement of the above
model that has specific structure, but exhibits some at-
tractive conceptual and computational properties. We
again take a hierarchical linear model:

Yij = µ + mij + fij ,

but now assume that

m ∼ GP(0,Ω0 ⊗ Σ),

fi
iid∼ GP(0, τΣ), i = 1, . . . ,M.

where τ > 0, Ω0(xi,xi′) is a given covariance function
based on task-specific predictors, and fi denotes the
function values of the random effects on task i. Fol-
lowing a hierarchical Bayesian framework, we let the
covariance function Σ be a random variable sampled
from a hyper-prior distribution

Σ ∼ IWP(κ, Σ0 + λδ),

which defines an inverse-Wishart process, where λ > 0,
κ is a degree-of-freedom parameter, δ is a Dirac delta
kernel function, and Σ0(zj , zj′) is a given covariance
function based on input data. The inverse-Wishart
process (IWP) is a nonparametric prior for random
covariance functions, based on a nonstandard notation
of the inverse-Wishart distribution (Dawid, 1981); a
brief introduction is given in the Appendix.

The deviation of Y from the population mean µ is
decomposed into two parts, random effects m and f .
Let Ω0(xi,xi′) = 〈φ(xi), φ(xi′)〉, where φ is an implicit
feature mapping; then m can be parameterized as

mij = mj(xi) = m(xi, βj) = 〈φ(xi), βj〉

where {βj} are latent Gaussian random variables
whose covariance follows E(〈βj , βj′〉) = Σj,j′ . Be-
cause of the coupling between mi and xi, mi is nonex-
changeable given Σ and the predictors xi, while fi is
exchangeable under the same condition. The separa-
tion of these two kinds of random effects can enable
computational advantages. For instance, one can let
the nonexchangeable part be parametric while the ex-
changeable part is nonparametric; we will develop this
strategy below in Sec. 3.

We note that the independent noise εij is no longer
separately required in this model, but can be absorbed
into the random effects f . Since the covariance Σ
is a random variable, it is fully capable of modeling
the total variance of the random effects and indepen-
dent noise. Indeed, this treatment can considerably
improve the computational efficiency, as we shall see
in Sec. 3.4.

Since the population mean µ can be reliably estimated
by pooling all the observations together and comput-
ing their average, hereafter, for simplicity of presenta-
tion, we assume Yij to be centered and thus µ will not
occur in the model.

2.2. An Equivalent Model

Note that the above row-wise generative model seems
to be arbitrary, because there is no particular reason
to prefer it over the alternative column-wise sampling



Large-scale Collaborative Prediction Using a Nonparametric Random Effects Model

process,

Ω ∼ IWP(κ, Ω0 + τδ),
m ∼ GP(0,Ω⊗ Σ0),

fj
iid∼ GP(0, λΩ), j = 1, . . . , N,

where similarly fj denotes the function values of the
random effects on case j, across tasks. It turns out
that the two models are equivalent — in both cases, if
we compute the marginal distribution of Y , namely

1.
∫

p(Y |m, τ, Σ)p(m|Σ,Ω0)p(Σ|Σ0, λ, κ) dm dΣ;

2.
∫

p(Y |m,λ,Ω)p(m|Ω,Σ0)p(Ω|Ω0, τ, κ) dm dΩ;

we obtain exactly the same closed-form distribution

Y ∼ MTP
(
κ, 0, (Ω0 + τδ), (Σ0 + λδ)

)
,

where MTP defines a matrix-variate Student-t process.
That is, any subset of matrix values Y ∈ RM×N fol-
lows a matrix-valued Student-t distribution (Gupta &
Naga, 1999). The proof of the equivalence is sketched
in the Appendix.

2.3. Discussion

The model is nonparametric at two levels. First, the
covariance functions Σ and Ω are nonparametric, be-
cause they both live in infinite dimensional function
spaces. Moreover, they do not have explicit paramet-
ric forms. Second, the dimensionality of any finite Y
is not specified a priori, but instead increases with the
observation size.

The equivalence between the two generative processes
reveals an appealing symmetry in the model. One can
either view the model as adapting the free-form covari-
ance function Σ to the data, or equivalently, adapting
the covariance Ω to the data. Therefore the model
is somewhat similar to those that deal with both Σ
and Ω simultaneously, such as the multi-task Gaussian
process discussed in Sec. 1. However, as we shall see in
Sec. 3, the model potentially allows us to avoid the pro-
hibitive computational cost O(M3N3), without sacri-
ficing significant flexibility.

The model can easily incorporate group-specific ef-
fects, as do most classical random-effects models. For
example, one can expand the feature representation
by adding a constant term

√
c, such that Ω0(xi,xi′) =

〈φ(xi), φ(xi′)〉+ c. Then m can be parameterized as

mij = 〈φ(xi), βj〉+ γj

where γj is the j-th element of γ ∼ GP(0, cΣ), i.e.,
the column-specific random effects. Similarly, with
Σ0(zj , zj′) = 〈ϕ(zj), ϕ(zj′)〉 + b, one can deal with
the row-specific random effects as well.

3. Large-scale Inference and Learning

Given the model and some observed elements, denoted
by YO, we can make predictions by computing the
conditional expectation on unseen elements. To this
end, we need to compute the posterior distribution
p(Y|YO, θ), where θ includes Σ0,Ω0, λ, τ and κ.

It is highly challenging to apply nonparametric mod-
els to large-scale problems. We will present several
algorithms, each with an analysis of its computational
complexity in the context of the Netflix collabora-
tive prediction problem, which contains M = 480, 189
users and more than 100 millions ratings on N =
17, 770 movies. Our estimates of computing time are
based on a 2.66GHz Intel PC with 3.0GB memory.

3.1. Modeling Large-scale Data

Assuming M � N , e.g., the Netflix case, it is compu-
tationally more convenient to work with the row-wise
model. Since the computation is always on a finite
matrix Y ∈ RM×N , including those elements Yij that
are observed and those that need to be predicted, and
since the model is consistent under marginalization, in
the following we state the model on finite matrices

Σ ∼ IW(κ,Σ0 + λIN ),
m ∼ N(0,Ω0 ⊗Σ),
Yi ∼ N(mi, τΣ), i = 1, . . . ,M

where IW defines a finite inverse-Wishart distribution,
Σ and Σ0 are both N ×N covariance matrices, Ω0 is
M ×M , m>

i is the i-th row of m, and Y>
i is the i-th

row of Y.

To further facilitate a large-scale implementation, we
assume Ω0 has finite dimensions. i.e., Ω0(xi,xi′) =
φ(xi)>φ(xi′), with φ : X → Rp. For large-scale data,
it is reasonable to assume M � N � p. The finite-
dimension assumption is mainly due to computational
concerns for large-scale problems, though the model
itself does not require this. However, the sampled la-
tent covariance functions Σ and Ω are always infinite-
dimensional, and so is the function Y . Therefore the
overall model is still nonparametric.

Without loss of generality, we let Ω0(xi,xi′) =
〈p 1

2 xi, p
1
2 xi′〉. In this case, the random effects m follow

mi = β>xi, βk
iid∼ N(0,Σ), k = 1, . . . , p

where β is a p×N random matrix, and β>k is its k-th
row. Then the model becomes

Σ ∼ IW(κ,Σ0 + λIN ),
β ∼ N(0, Ip ⊗Σ),

Yi ∼ N(β>xi, τΣ), i = 1, . . . ,M
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3.2. Approximate Inference – Gibbs Sampling

Based on the joint distribution p(Y,β,Σ|θ) described
by the model, the prediction can be approximated by
a Markov chain Monte Carlo method∫

p(Y|YO, θ)YdY ≈ 1
T

T∑
t=1

Y δ(Y;Y(t))

where the samples Y(t), together with β(t),Σ(t) are
i.i.d. drawn from p(Y,β,Σ|YO, θ). For Gibbs sam-
pling, whose details are omitted here due to space lim-
itation, the computational cost of one Gibbs iteration
is roughly

O

(
M∑
i=1

N3
i + 2

(
M∑
i=1

N2
i

)
+ 2MN2 + N3

)
, (2)

where we count mainly multiplications, and ignore the
impact of factor p, since M � N � p. Compared
with O(M3N3) for the direct Gaussian process, this
is a dramatically reduced complexity. However, since
M is large, the cost O(2MN2) is still prohibitive—
each Gibbs iteration will take hundreds of hours on
the Netflix data.

3.3. Approximate Inference – EM

We first introduce some necessary notation. Let Ji ⊂
{1, . . . , N} be the index set of the Ni observed ele-
ments in the row Yi, and Σ[:,Ji] ∈ RN×Ni be the ma-
trix obtained by keeping the columns of Σ indexed by
Ji. Then let Σ[Ji,Ji] ∈ RNi×Ni be obtained from Σ[:,Ji]

by further keeping only the rows indexed by Ji. We
can similarly define Σ[Ji,:], Y[i,Ji] and m[i,Ji].

Alteratively, the conditional expectation can be ap-
proximated by∫

p(Y|YO, θ)YdY

=
∫ ∫ ∫

p(Y|YO,β,Σ)p(β,Σ|YO, θ)Y dβdΣdY

≈
∫

p(Y|YO, β̂, Σ̂)Y dY

where β̂ and Σ̂ are the maximum a posteriori esti-
mates

β̂, Σ̂ = arg max
β,Σ

p(β,Σ|YO, θ).

When the number of observations is sufficiently large
that the posterior distribution is concentrated around
its mode, the above approximation can be tight. The
expectation-maximization (EM) algorithm is a popu-
lar approach to finding the mode, alternating the fol-
lowing two steps:

• E-step: compute the posterior distribution of Y
given the current β,Σ

Q(Y) =
M∏
i=1

p(Yi|YOi
,β,Σ) =

M∏
i=1

N(Yi|υi,Ci),

where the sufficient statistics are

mi = β>xi,

υi = mi + Σ[:,Ji]Σ
−1
[Ji,Ji]

(Y[i,Ji] −m[i,Ji])
>,

Ci = τΣ− τΣ[:,Ji]Σ
−1
[Ji,Ji]

Σ[Ji,:].

• M-step: optimize β and Σ

β̂, Σ̂ = arg min
β,Σ

{
EQ(Y) [− log p(Y,β,Σ|θ)]

}
and then let β ← β̂,Σ← Σ̂.

It turns out that β̂ can be nicely decoupled from Σ̂,
and has a closed form:

β̂ = (x>x + τIp)−1x>υ.

Plugging β̂ into the optimization cost, we have

Σ̂ =
τ−1[C− υ>x(x>x + τIp)−1x>υ] + Σ0 + λIN

M + 2N + p + κ

where C =
∑M

i=1(Ci + υiυi). Further detail on the
M-step can be found in the Appendix.

The overall cost of a single EM iteration is

O

(
M∑
i=1

N3
i +

(
M∑
i=1

N2
i

)
N +

(
M +

M∑
i=1

Ni

)
N2

)
.

The computational cost seems to be even higher than
that of Gibbs sampling, since N2 is multiplied by the
large factor (M +

∑M
i=1 Ni), and N is a large multi-

plicative factor of
∑M

i=1 N2
i . We estimate that, in a

single EM step, excluding the term O(
∑M

i=1 N3
i ), the

computation would take several thousands of hours for
the Netflix problem.

3.4. Efficient EM Implementation

In order to introduce a faster algorithm, we now fix
some notation. Let Ui ∈ RN×Ni be a column selection
operator, whose (s, t) element is one, if the index s
equals to the t-th element of Ji, otherwise zero, so that
Σ[:,Ji] = ΣUi and Σ[Ji,Ji] = U>

i ΣUi. Furthermore,
UiΣ[Ji,Ji]U

>
i restores a N × N sparse matrix where

the elements of Σ[Ji,Ji] is placed back to their original
positions in Σ.
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The major cost is from the E-step that computes
the sufficient statistics υi and Ci for every i. Our
key observation is that, the M-step only needs C =∑M

i=1 Ci + υ>υ and υ>x from the previous E-step.
To obtain them, in fact it is unnecessary to compute
υi and Ci at all. For example, by using Σ[:,Ji] = ΣUi,
we have

M∑
i=1

Ci =
M∑
i=1

(
τΣ− τΣ[:,Ji]Σ

−1
[Ji,Ji]

Σ[Ji,:]

)
=

M∑
i=1

(
τΣ− τΣUiΣ−1

[Ji,Ji]
U>

i Σ
)

= τMΣ− τΣ

(
M∑
i=1

UiΣ−1
[Ji,Ji]

U>
i

)
Σ

Since multiplication with Ui is done by memory access
only, above reduces O(

∑M
i=1 N3

i + NN2
i + N2Ni) to

O(
∑M

i=1 N3
i + 2N3). In a similar way we have

υ>υ = β>x>xβ + Σ

(
M∑
i=1

Uiaia>i U>
i

)
Σ +

Σ

(
M∑
i=1

Uiaix>i

)
β + β>

(
M∑
i=1

Uiaix>i

)>
Σ

υ>x = β>x>x + Σ

(
M∑
i=1

Uiaix>i

)
where ai = Σ−1

[Ji,Ji]
(Y −m)[i,Ji].

Before running the EM iterations, we pre-compute
x>x and (x>x + τIp)−1, since they are both repeat-
edly used in the algorithm. Then we implement the
E-step as the following

Reset A1 ∈ RN×N ,A2 ∈ RN×p;
For i = 1, . . . ,M ;

P = Σ−1
[Ji,Ji]

;

a = P(Y[i,Ji] − x>i β[:,Ji])
>;

A1 ← A1 + Ui(aa> − τP)U>
i ;

A2 ← A2 + Uiax>i ;
End.

The statistics required by the M-step are computed as

C = τMΣ + β>x>xβ + ΣA1Σ + ΣA2β + β>A>
2 Σ

υ>x = β>x>x + ΣA2

With this new implementation, the major cost of a
single EM step is

O

(
M∑
i=1

N3
i + 2

M∑
i=1

N2
i + 2N3

)
.

This is a dramatic efficiency improvement; for each EM
iteration on Netflix, the original thousands of hours
are now reduced to several hours. The remaining ma-
jor cost O(

∑M
i=1 N3

i ) comes from the matrix inversion
Σ−1

[Ji,Ji]
. Occasionally a row may have an unusually

large number of observations, so we truncate Ni by
randomly selecting 2000 observations if Ni > 2000. In
the end, a single EM step takes about 5 hours, and
the whole optimization typically converges in about
30 steps.

As mentioned in Sec. 2.1, considerable computation is
also saved by avoiding to separately model the noise
εij . Otherwise, one has to spend O(

∑M
i=1(2N2

i +2N3
i ))

operations to compute the noise statistics in a single
EM step, which amounts to about 10 hours of com-
puting time.

4. Related Work

There is a large body of research on multi-task learn-
ing using Gaussian processes, including those that
learn the covariance Σ shared across tasks (Lawrence
& Platt, 2004; Schwaighofer et al., 2005; Yu et al.,
2005), and those that additionally consider the covari-
ance Ω between tasks (Yu et al., 2007; Bonilla et al.,
2008). The methods that only use Σ have been applied
to collaborative prediction (Schwaighofer et al., 2005;
Yu et al., 2006). However, due to the computational
cost, they were both evaluated on very small data sets,
where M and N are several hundreds only.

Our work differs from the above models in two aspects:
First, a new nonparametric model is proposed to ex-
plicitly combine known predictors and random effects
for multi-task predictions; Second, considerations in
both model designing and algorithm engineering are
put together to scale the nonparametric model to very
large data sets.

Another class of related work is the so-called semi-
parametric models, where the observations Yij are lin-
early generated from a finite number of basis functions
randomly sampled from a Gaussian process prior (Teh
et al., 2005). Our approach is more related to a re-
cent work (Zhu et al., 2009), where Yij is modeled by
two sets of multiplicative factors, one sampled from
GP(0,Σ) and the other from GP(0,Ω), namely, Y be-
comes a low-rank random function.

Low-rank matrix factorization is perhaps the most
popular and the state-of-the-art method for collabo-
rative filtering, e.g., (Salakhutdinov & Mnih, 2008a).
Our model generalizes them in the sense that it models
an infinite-dimensional relational function. A simpli-
fication of our work leads to a nonparametric prin-
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Table 1. Prediction Error on EachMovie Data

Method RMSE Standard Error
User Mean 1.4251 0.0004
Movie Mean 1.3866 0.0004
FMMMF 1.1552 0.0008
PPCA 1.1045 0.0004
BSRM-1 1.0902 0.0003
BSRM-2 1.0852 0.0003
NREM-1 1.0816 0.0003
NREM-2 1.0758 0.0003

cipal component analysis (NPCA) model (Yu et al.,
2009). A non-probabilistic nonparametric method,
i.e., maximum-margin matrix factorization, was intro-
duced in (Srebro et al., 2005). Very few matrix fac-
torization methods use known predictors. One such a
work is by (Hoff, 2005) that introduces low-rank mul-
tiplicative random effects, in addition to known pre-
dictors, to model networked observations.

5. Experiments

5.1. EachMovie Data

We did experiments on the entire EachMovie data,
which include 74, 424 users’ 2, 811, 718 numeric rat-
ings Yij ∈ {1, 2, 3, 4, 5, 6} on 1, 648 movies. The data
are very sparse because 97.17% of the elements are
missing. We randomly selected 80% of the observed
ratings of each user for training and used the user’s
rest 20% ratings for testing. This random partition
was repeated 10 times independently. We calculated
RMSE (root mean square error) for each partition and
averaged the 10 results to compute the mean and the
standard error.

In our experiments, for each evaluated method, we
used one training/testing partition to do model se-
lection, including determining hyper parameters and
dimensionality. The selected model was then used
for other partitions. For low-rank matrix factoriza-
tion methods, we chose the dimensionality from D =
50, 100, 200. We found that larger dimensionality gen-
erally gave rise to better performances, but the accu-
racy was tending to saturate after the dimensionality
got more than 100.

We used 1% of the training ratings for setting the stop-
ping criterion: for each method, we terminated the
iterations if RMSE on the holdout set is observed to
increase, and then included the holdout set to run one
more iteration of training. We recorded the total run
time of each method. In the experiments, we imple-
mented the following methods:

Table 2. Computation Time on EachMovie Data

Method Run Time (hours)
FMMMF 4.94
PPCA 1.26
BSRM-1 1.67
BSRM-2 1.70
NREM-1 0.59
NREM-2 0.59

• User Mean and Movie Mean: baseline methods
that predict ratings by computing the empiri-
cal mean of the same users’ observed ratings, or,
other users’ ratings on the same movie.

• FMMMF: fast max-margin matrix factorization
(Rennie & Srebro, 2005), a low-rank method with
`2 norm regularization on the factors, optimized
by conjugate gradient descent.

• PPCA: probabilistic principal component analysis
(Tipping & Bishop, 1999), which is a probabilistic
low-rank matrix factorization method optimized
by EM algorithm.

• BSRM: Bayesian stochastic relational model (Zhu
et al., 2009), a semi-parametric model imple-
mented by Gibbs sampling, where Y is finite-
dimensional. BSRM-1 does not use additional
user/movie attributes, while BSRM-2 does.

• NREM: Nonparametric random effects model, the
work of this paper, which models Y as an infinite-
dimensional random function. NREM-1 does not
use additional attributes, i.e., we let Σ0 and Ω0

be a constant c, as suggested in Sec. 2.3.

For both BSRM-2 and NREM-2, we obtain the user
and movie attributes from the top 20 eigenvectors of
the binary matrix that indicates whether or not ratings
are observed in the training set. Note that there can
be different ways to obtain useful attributes, which is
not the focus of this paper.

All the results are summarized in Tab. 1 and Tab. 2.
Our models achieved lower prediction errors than other
methods. This result is perhaps not entirely surpris-
ing, because nonparametric models are generally more
flexible to explain complex data than parametric mod-
els. On the other hand, the training of our models is
even faster, which is a significant result.

5.2. Netflix Problem

The data contain 100, 480, 507 ratings from 480, 189
users on 17, 770 movies. In this case Yij ∈
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{1, 2, 3, 4, 5}. In addition, Netflix.com provides a set
of validation data with 1, 408, 395 ratings. Therefore
there are 98.81% of elements missing in the rating ma-
trix. For evaluation, a set of 2, 817, 131 ratings are
withheld. People need to submit their results in or-
der to obtain the RMSE result from Netflix.com. We
decided to direct compare our results with those re-
ported in the literature, since they were all evaluated
on the same test data.

The results are shown in Tab. 3, where Cinematch is
the baseline provided by Netflix. Besides those intro-
duced in Sec. 5.1, there are several other methods:

• SVD: a method almost the same as FMMMF,
using a gradient-based method for optimization
(Kurucz et al., 2007).

• RBM: Restricted Boltzmann Machine trained by
contrast divergence (Salakhutdinov et al., 2007).

• PMF and BPMF: probabilistic matrix factoriza-
tion (Salakhutdinov & Mnih, 2008b), and its
Bayesian version (Salakhutdinov & Mnih, 2008a).

• PMF-VB: probabilistic matrix factorization using
a variational Bayes method for inference (Lim &
Teh, 2007).

Note that sometimes the running time was not found
in the papers. For BPMF, we gave a rough estima-
tion by assuming it went through 300 iterations (each
took 220 minutes as reported in the paper). Similar
to the EachMovie experiments, BSRM-2 and NREM-
2 used the top 40 eigenvectors of the binary indi-
cator matrix as additional attributes. As shown in
Tab. 3, if compared with those matrix factorization
methods, NREM-1 used no additional attributes ei-
ther, but generated more accurate predictions. Fur-
thermore, NREMs are highly competitive if compared
with the semi-parametric method BSRM. In terms of
efficiency for training, our nonparametric model turns
out to be even faster than those compared parametric
and semi-parametric models.

We note that the top performers in the Netflix compe-
tition reported better results by combining heteroge-
nous models. For example, the progress award winner
in 2007 combined predictions from about one hundred
of different models (Bell et al., 2007). However, our
focus here is not on developing ensemble methods.

6. Conclusion

In this paper a nonparametric model for multi-task
learning is introduced. The contributions are two-
fold: First, the model provides a novel way to use

Table 3. Performance on Netflix Data

Method RMSE Run Time (hours)
Cinematch 0.9514 -
SVD 0.920 300
PMF 0.9265 -
RBM 0.9060 -
PMF-VB 0.9141 -
BPMF 0.8954 1100
BSRM-2 0.8881 350
NREM-1 0.8876 148
NREM-2 0.8853 150

random effects and known attributes to explain the
complex dependence of data; Second, an algorithm is
proposed to speed up the model on very large-scale
problems. Our experiments demonstrate that the al-
gorithm works very well on two challenging collabo-
rative prediction problems. In the near future, it will
be promising to perform a full Bayesian inference by a
parallel Gibbs sampling method.
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7. Appendix

7.1. Inverse-Wishart Processes

A nonstandard definition of inverse-Wishart distribu-
tion Σ ∼ IW(κ,Ψ) was introduced in (Dawid, 1981),
with its p.d.f. proportional to |Σ|−κ+2N

2 etr(−1
2 Σ−1Ψ).

The distribution is consistent under marginaliza-
tion, namely, its any principal submatrix Σ11 follows
IW(κ,Ψ11). Therefore, just like Gaussian processes,
one can characterize a random covariance function Σ
by an inverse-Wishart process.

7.2. Proof Sketch of the Model Equivalence

The proof is based on Theorem 4.2.1 in (Gupta &
Naga, 1999). Using our notation, it states: Let
S ∼ W(κ + N − 1,Σ−1), X ∼ N(0, IN ⊗ Ω), if Y =
X>(S−

1
2 ), then Y follows a matrix-variate Student-

t distribution MT(κ, 0,Ω,Σ). The theorem implies:
If S−1 ∼ IW(κ,Σ) and Y ∼ N(0,Ω ⊗ S−1), then
Y ∼ MT(κ, 0,Ω,Σ). This can be used to derive our
result in the case where Y is a random matrix. Since
both inverse-Wishart and Gaussian are consistent un-
der marginalization (Dawid, 1981), the result can be
generalized to the case of random functions Y .

7.3. Derivation of the M-step

The optimization cost of the M-step can be written as

EQ(Y) [− log p(Y|β,Σ)]︸ ︷︷ ︸
J1(β,Σ)+const1

− log p(β|Σ)︸ ︷︷ ︸
J2(β,Σ)+const2

− log p(Σ|θ)︸ ︷︷ ︸
J3(Σ)+const3

where

J1 =
1
2τ

tr
{
Σ−1

[
C− 2β>x>υ + β>x>xβ

]}
+

M

2
log |Σ|

J2 =
1
2
tr
[
Σ−1(β>β)

]
+

p

2
log |Σ|

J3 =
1
2
tr
[
Σ−1(Σ0 + λIN )

]
+

κ + 2N

2
log |Σ|

The part containing β can be organized into

1
2τ

tr
{
Σ−1

[
(β − b)>(x>x + τIp)(β − b)− υ>xb

]}
where b = (x>x + τIp)−1x>υ. This clearly suggests
β̂ = b. Removing irrelevant constants, we have

J(β̂,Σ) =
M + 2N + p + κ

2
log |Σ|+ 1

2
tr
{
Σ−1Ψ

}
where Ψ = τ−1(C− υ>x(x>x + τIp)−1x>υ) + Σ0 +
λIN . Then a closed form Σ̂ is obtained from ∂J

∂Σ = 0.


