Multi-Instance Learning by Treating Instances
As Non-I.I.D. Samples

Zhi-Hua Zhou
Yu-Yin Sun
Yu-Feng Li

ZHOUZHQLAMDA.NJU.EDU.CN
SUNYY@QLAMDA.NJU.EDU.CN
LIYFQLAMDA.NJU.EDU.CN

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Abstract

Previous studies on multi-instance learning
typically treated instances in the bags as in-
dependently and identically distributed. The
instances in a bag, however, are rarely inde-
pendent in real tasks, and a better perfor-
mance can be expected if the instances are
treated in an non-i.i.d. way that exploits re-
lations among instances. In this paper, we
propose two simple yet effective methods. In
the first method, we explicitly map every bag
to an undirected graph and design a graph
kernel for distinguishing the positive and neg-
ative bags. In the second method, we im-
plicitly construct graphs by deriving affinity
matrices and propose an efficient graph ker-
nel considering the clique information. The
effectiveness of the proposed methods are val-
idated by experiments.

1. Introduction

In multi-instance learning (Dietterich et al., 1997),
each training example is a bag of instances. A bag is
positive if it contains at least one positive instance, and
negative otherwise. Although the labels of the training
bags are known, however, the labels of the instances
in the bags are unknown. The goal is to construct a
learner to classify unseen bags. Multi-instance learn-
ing has been found useful in diverse domains such as
image categorization (Chen et al., 2006; Chen & Wang,
2004), image retrieval (Zhang et al., 2002) , text cate-
gorization (Andrews et al., 2003; Settles et al., 2008),
computer security (Ruffo, 2000), face detection (Viola
et al., 2006; Zhang & Viola, 2008), computer-aided
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medical diagnosis (Fung et al., 2007), etc.

A prominent advantage of multi-instance learning
mainly lies in the fact that many real objects have in-
herent structures, and by adopting the multi-instance
representation we are able to represent such objects
more naturally and capture more information than
simply using the flat single-instance representation.
For example, suppose we can partition an image into
several parts. In contrast to representing the whole
image as a single-instance, if we represent each part as
an instance, then the partition information is captured
by the multi-instance representation; and if the parti-
tion is meaningful (e.g., each part corresponds to a re-
gion of saliency), the additional information captured
by the multi-instance representation may be helpful to
make the learning task easier to deal with.

It is obviously not a good idea to apply multi-
instance learning techniques everywhere since if the
single-instance representation is sufficient, using multi-
instance representation just gilds the lily. Even on
tasks where the objects have inherent structures, we
should keep in mind that the power of multi-instance
representation exists in its ability of capturing some
structure information. However, as Zhou and Xu
(2007) indicated, previous studies on multi-instance
learning typically treated the instances in the bags
as independently and identically distributed; this ne-
glects the fact that the relations among the instances
convey important structure information. Considering
the above image task again, treating the different im-
age parts as inter-correlated samples is evidently more
meaningful than treating them as unrelated samples.
Actually, the instances in a bag are rarely indepen-
dent, and a better performance can be expected if the
instances are treated in an non-i.i.d. way that exploits
the relations among instances.

In this paper, we propose two multi-instance learn-
ing methods which do not treat the instances as i.i.d.
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samples. Our basic idea is to regard each bag as an
entity to be processed as a whole, and regard instances
as inter-correlated components of the entity. Experi-
ments show that our proposed methods achieve perfor-
mances highly competitive with state-of-the-art multi-
instance learning methods.

The rest of this paper is organized as follows. We
briefly review related work in Section 2, propose the
new methods in Section 3, report on our experiments
in Section 4, conclude the paper finally in Section 5.

2. Related Work

Many multi-instance learning methods have been de-
veloped during the past decade. To name a few,
Diverse Density (Maron & Lozano-Pérez, 1998), k-
nearest neighbor algorithm Citation-kNN (Wang &
Zucker, 2000), decision trees RELIC (Ruffo, 2000) and
MITTI (Blockeel et al., 2005), neural networks BP-MIP
and RBF-MIP (Zhang & Zhou, 2006), rule learning
algorithm RIPPER-MI (Chevaleyre & Zucker, 2001),
ensemble algorithms MIBoosting (Xu & Frank, 2004)
and MILBoosting (Auer & Ortner, 2004), logistic re-
gression algorithm MI-LR (Ray & Craven, 2005), etc.

Kernel methods for multi-instance learning have been
studied by many researchers. Gértner et al. (2002)
defined the MI-Kernel by regarding each bag as a set
of feature vectors and then applying set kernel di-
rectly. Andrews et al. (2003) proposed mi-SVM and
MI-SVM. mi-SVM tries to identify a maximal margin
hyperplane for the instances with subject to the con-
straints that at least one instance of each positive bag
locates in the positive half-space while all instances of
negative bags locate in the negative half-space; MI-
SVM tries to identify a maximal margin hyperplane
for the bags by regarding margin of the “most pos-
itive instance” in a bag as the margin of that bag.
Cheung and Kwok (2006) argued that the sign instead
of value of the margin of the most positive instance
was important. They defined a loss function which al-
lowed bags as well as instances to participate in the
optimization process, and used the well-formed con-
strained concave-convex procedure to perform the op-
timization. Later, Kwok and Cheung (2007) designed
marginalized multi-instance kernels by incorporating
generative model into the kernel design. Chen and
Wang (2004) proposed the DD-SVM method which
employed Diverse Density (Maron & Lozano-Pérez,
1998) to learn a set of instance prototypes and then
maps the bags to a feature space based on the in-
stance prototypes. Zhou and Xu (2007) proposed the
MissSVM method by regarding instances of negative
bags as labeled examples while those of positive bags

as unlabeled examples with positive constraints. Wang
et al. (2008) proposed the PPMM kernel by represent-
ing each bag as some aggregate posteriors of a mixture
model derived based on unlabeled data.

In addition to classification, multi-instance regres-
sion has also been studied (Amar et al., 2001; Ray
& Page, 2001), and different versions of generalized
multi-instance learning have been defined (Weidmann
et al., 2003; Scott et al., 2003). The main differ-
ence between standard multi-instance learning and
generalized multi-instance learning is that in standard
multi-instance learning there is a single concept, and
a bag is positive if it has an instance satisfies this
concept; while in generalized multi-instance learning
(Weidmann et al., 2003; Scott et al., 2003) there are
multiple concepts, and a bag is positive only when
all concepts are satisfied (i.e., the bag contains in-
stances from every concept). Recently, research on
multi-instance semi-supervised learning (Rahmani &
Goldman, 2006), multi-instance active learning (Set-
tles et al., 2008) and multi-instance multi-label learn-
ing (Zhou & Zhang, 2007) have also been reported. In
this paper we mainly work on standard multi-instance
learning (Dietterich et al., 1997) and will show that
our methods are also applicable to multi-instance re-
gression. Actually it is also possible to extend our
proposal to other variants of multi-instance learning.

Zhou and Xu (2007) indicated that instances in a bag
should not be treated as i.i.d. samples, and this paper
provides a solution. Our basic idea is to regard every
bag as an entity to be processed as a whole. There are
alternative ways to realize the idea, while in this paper
we work by regarding each bag as a graph. McGovern
and Jensen (2003) have taken multi-instance learning
as a tool to handle relational data where each instance
is given as a graph. Here, we are working on proposi-
tional data and there is no natural graph. In contrast
to having instances as graphs, we regard every bag as
a graph and each instance as a node in the graph.

3. The Proposed Methods

In this section we propose the MIGraph and miGraph
methods. The MIGraph method explicitly maps every
bag to an undirected graph and uses a new graph ker-
nel to distinguish the positive and negative bags. The
miGraph method implicitly constructs graphs by de-
riving affinity matrices and defines an efficient graph
kernel considering the clique information.

Before presenting the details, we give the formal def-
inition of multi-instance learning as following. Let
X denote the instance space. Given a data set



Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples

Figure 1. Example images with six marked patches each
corresponding to an instance

{(X1v1), (X, 9), -+, (Xn,yn)}, where X; =
{Zi1, -, @ij, -, Tipn, } C X is called a bag and y; €
Y = {—1,+1} is the label of X;, the goal is to gener-
ate a learner to classify unseen bags. Here x;; € X is
an instance [ﬂii]’h oy Ll ,Jiijd]/, Tij1 is the value
of x;; at the lth attribute, NV is the number of training
bags, n; is the number of instances in X;, and d is the
number of attributes. If there exists g € {1,---,n;}
such that x;, is a positive instance, then X; is a pos-
itive bag and thus y; = +1; otherwise y; = —1. Yet
the concrete value of the index g is unknown.

We first explain our intuition of the proposed meth-
ods. Here, we use the three example images shown in
Figure 1 for illustration. For simplicity, we show six
marked patches in each figure, and assume that each
image corresponds to a bag, each patch corresponds
to an instance in the bag, and the marked patches
with the same color are very similar (real cases are of
course more complicated, but the essentials are simi-
lar as the illustration). If the instances were treated as
independent samples then Figure 1 can be abstracted
as Figure 2, which is the typical way taken by previ-
ous multi-instance learning studies, and obviously the
three bags are similar to each other since they contain
identical number of very similar instances. However,
if we consider the relations among the instances, we
can find that in the first two bags the blue marks are
very close to each other while in the third bag the blue
marks scatter among orange marks, and thus the first
two bags should be more similar than the third bag. In
this case, Figure 1 can be abstracted by Figure 3. It is
evident that the abstraction in Figure 3 is more desir-
able than that in Figure 2. Here the essential is that,
the relation structures of bags belonging to the same
class are relatively more similar, while those belonging
to different classes are relatively more dissimilar.

Now we describe the MIGraph method. The first
step is to construct a graph for each bag. Inspired by
(Tenenbaum et al., 2000) which shows that e-graph
is helpful for discovering the underlying manifold
structure of data, here we establish an e-graph for
every bag. The process is quite straightforward.
For a bag X;, we regard every instance of it as a
node. Then, we compute the distance of every pair
of nodes, e.g., x;, and x;,. If the distance between

Figure 2. If we do not consider the relations among the
instances, the three bags are similar to each other since
they have identical number of very similar instances

Figure 3. If we consider the relations among the instances,
the first two bags are more similar than the third bag.
Here, the solid lines highlight the high affinity among sim-
ilar instances

x;, and x; is smaller than a pre-set threshold
€, then an edge is established between these two
nodes, where the weight of the edge expresses the
affinity of the two nodes (in experiments we use the
normalized reciprocal of non-zero distance as the
affinity value). Many distance measures can be used
to compute the distances. According to the manifold
property (Tenenbaum et al., 2000), i.e., a small local
area is approximately an FEuclidean space, we use
Euclidean distance to establish the e-graph. When
categorical attributes are involved, we use VDM
(Value Difference Metric) (Stanfill & Waltz, 1986) as
a complement. In detail, suppose the first j attributes
are categorical while the remaining (d — j) ones are
continuous attributes normalized to [0, 1]. We can use
(391 VDM (1,5, Top)+ ey |10 — T20]?) 2
to measure the distance between xi and x5. Here
the VDM distance between two values z; and z9 on
categorical attribute Z can be computed by

2

¢ |Nzze -

NZ,Zl

Nz e
)
NZ,ZQ

VDM (2’1, ZQ) = Z (1)

c=1

where Nz . denotes the number of training examples
holding value z on Z, Nz . . denotes the number of
training examples belonging to class ¢ and holding
value z on Z, and C' denotes the number of classes.

After mapping the training bags to a set of graphs, we
can have many options to build a classifier. For exam-
ple, we can build a k-nearest neighbor classifier that
employs graph edit distance (Neuhaus & Bunke, 2007),
or we can design a graph kernel (Gértner, 2003) to cap-
ture the similarity among graphs and then solve clas-
sification problems by kernel machines such as SVM.
The MIGraph method takes the second way, and the
idea of our graph kernel is illustrated in Figure 4.
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Figure 4. Illustration of the graph kernel in MIGraph

Briefly, to measure the similarity between the two bags
shown in the left part of Figure 4, we use a node kernel
(i-e., knode) to incorporate the information conveyed
by the nodes, use an edge kernel (i.e., kegge) to in-
corporate the information conveyed by the edges, and
aggregate them to obtain the final graph kernel (i.e.,
k¢). Formally, we define k¢ as follows.

Definition 1 Given two multi-instance bags X; and
X; which are presented as graphs Gp({Tnu}ylq,
{ehv}vzl) h = i,j, where ny and mp are the num-
ber of nodes and edges in Gy, respectively.

PO
PO D

where knode and keqqe are positive semidefinite kernels.
To avoid numerical problem, kg is normalized to

kG(XZ',Xj) node wzavw]b)

edge emaejb) (2)

kG(Xz,X)
VEa(Xi, Xi) ke (X5, X;)

ko(Xi, X;) = (3)

The kpoge and keqge can be defined in many ways. Here
we simply define ko4 using Gaussian RBF kernel as

—zpll®), @)

and so the first part of Eq. 2 is exactly the MI-Kernel
using Gaussian RBF kernel (Gértner et al., 2002).
kedge 1s also defined in a form as similar as Eq. 4, by
replacing x;, and x;;, with e;, and ej;, respectively.

knode(miav mjb) = eXp(7’Y| |miﬂ

Here a key is how to define the feature vector de-
scribing an edge. In this paper, for the edge con-
necting the nodes x;, and x;, of the bag X;, we de-
fine it as [dy, pu, dy, pv)’, where d,, is the degree of the
node x;,, that is, the number of edges connecting x;,,
with other nodes. Note that it has been normalized
through dividing it by the total number of edges in
the graph corresponding to X;. d, is the degree of the
node x;,, which is defined similarly. p, is defined as
Pu = Wyp/ Y, Wy «, where the numerator is the weight
of the edge connecting x;,, to @;,; Wy, « is the weight of

the edge connecting x;, to any nodes in X, thus the
denominator is the sum of all the weights connecting
with @;,,. It is evident that p, conveys information on
how important (or unimportant) the connection with
the node x;, is for the node x;,,. p, is defined similarly
for the node x;,. The intuition here is that, edges are
similar if properties of their ending nodes (e.g., high-
degree nodes or low-degree nodes) are similar.

The kg defined in Eq. 2 is a positive definite kernel and
it can be used for any kinds of graphs. The computa-
tional complexity of kq(X;, X;) is O(n;n; + m;m;).
The k¢ clearly satisfies all the four major properties
that should be considered for a graph kernel definition
(Borgwardt & Kriegel, 2005).1 Our above design is
very simple, but in the next section we can see that
the proposed MIGraph method is quite effective.

A deficiency of MIGraph is that the computational
complexity of kg is O(n;n; + m;m;), dominated by
the number of edges. For bags containing a lot of in-
stances, there will exist a large number of edges and
MIGraph will be hard to execute. So, it is desired to
have a method with smaller computational cost. For
this purpose, we propose the miGraph method which
is simple, efficient but effective.

For bag X;, we can calculate the distance between its
instances and derive an affinity matrix W* by com-
paring the distances with a threshold §. For example,
if the distance between the instances x;, and x;, is
smaller than 5, W¥s element at the ath row and uth
column, w?,, is set to 1, and 0 otherwise. There are
many ways to derive W for X;. In this paper we
calculate the distances using Gaussian distance, and
set 0 to the average distance in the bag. The key of
miGraph, the kernel kg, is defined as follows.

Definition 2 Given two multi-instance bags X; and
X; which contains n; and n; instances, respectively.

an b 1W ka(wia,a:jb)

a=1

Za:l Wia Zb:l ij 7

where Wiq = 1/ 3" wi,, Wy, = 1/3 07 1wbv, and
k(xiq, xjp) is defined as similar as Eq. 4.

kg(Xi, X;) = (5)

To understand the intuition of kg, it is helpful to con-
sider that once we have got a good graph, instances
in one clique can be regarded as belonging to one con-
cept. To find the cliques is generally expensive for
large graphs, while k, can be viewed as an efficient

We have tried to apply some existing graph kernels
directly but unfortunately the results were not good. Due
to the page limit, comparison with different graph kernels
will be reported in a longer version.
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soft version of clique-based graph kernel, where the
following principles are evidently satisfied:

- 1) When W' = I, i.e., every two instances do not be-
long to the same concept, all instances in a bag should
be treated equally, i.e., W;, = 1 for every instance x;,;

- 2) When Wi = E (E is all-one matrix), i.e., all
instances belong to the same concept, each bag can
be view as one instance and each instance contributes
identically, i.e., W;, = 1/n;;

- 3) When W' is a block matrix, i.e., instances are
clustered into cliques each belongs to a concept, W;, =
1/n;a where n;, is size of clique to which x;, belongs.
In this case, k4 is exactly an clique-based graph kernel;

- 4) When the value of any entries of W* increases,
for example wiw W;a and W;, should decrease since
they become more similar, while other W;, (¢ # a,b)
should not be affected.

It is evident that the computational complexity of &, is
as similar as that of the multi-instance kernel shown in
Eq. 4, ie., O(n;n;). Note that once the multi-instance
kernel is obtained, the Gaussian distances between ev-
ery pair of instances have already been calculated, and
it is easy to get the W’s.

4. Experiments
4.1. Benchmark Tasks

First, we evaluate the proposed MIGraph and mi-
Graph methods on five benchmark data sets popularly
used in studies of multi-instance learning, including
Muskl1, Musk2, Elephant, Fox and Tiger. Muskl con-
tains 47 positive and 45 negative bags, Musk2 contains
39 positive and 63 negative bags, each of the other
three data sets contains 100 positive and 100 negative
bags. More details of the data sets can be found in
(Dietterich et al., 1997; Andrews et al., 2003).

We compare MIGraph, miGraph with MI-Kernel
(Gértner et al., 2002) via ten times 10-fold cross vali-
dation (i.e., we repeat 10-fold cross validation for ten
times with different random data partitions). All these
methods use Gaussian RBF Kernel and the parame-
ters are determined through cross validation on train-
ing sets. The average test accuracy and standard de-
viations are shown in Table 12. The table also shows
the performance of several other multi-instance kernel
methods, including MI-SVM and mi-SVM (Andrews

2We have re-implemented MI-Kernel since the compari-
son with MI-Kernel will clearly show whether it is helpful to
treat instances as non-i.i.d. samples (this is the only differ-
ence between our methods and MI-Kernel). Note that the
performance of MI-Kernel in our implementation is better
than that reported in (Géartner et al., 2002).

Table 1. Accuracy (%) on benchmark tasks

Algorithm  Muskl  Musk2 Elept  Fox Tiger
MIGraph 90.0 90.0 85.1 61.2 81.9

+3.8  4+27 428 £1.7 +15
miGraph 889  90.3 868 61.6 86.0

+33 426 +07 428 +16
MI-Kernel ~ 88.0  89.3 843 603 842

+31 415 416 £1.9 +1.0
MI-SVM 779 843 814 594  84.0
mi-SVM 874 836 820 582 789
MissSVM ~ 87.6 800 N/A N/A N/A
PPMM 956 812 824 60.3 824
DD 880 840 N/A N/A N/A
EM-DD 848 849 783 561 721

et al., 2003), MissSVM (Zhou & Xu, 2007) and PPMM
kernel (Wang et al., 2008), and the famous Diverse
Density algorithm (Maron & Lozano-Pérez, 1998) and
its improvement EM-DD (Zhang & Goldman, 2002).
The results of all methods except Diverse Density were
obtained via ten times 10-fold cross validation; they
were the best results reported in literature and since
they were obtained in different studies and the stan-
dard deviations were not available, these results are
only for reference instead of a rigorous comparison.
The best performance on each data set is bolded.

Table 1 shows that the performance of MIGraph and
miGraph are quite good. On Musk! they are only
worse than PPMM kernel; note that the results of
PPMM kernel were obtained through an exhaustive
search that may be prohibitive in practice (Wang et al.,
2008). On Musk2, FElephant and Foxr miGraph and
MIGraph are respectively the best and second-best al-
gorithms. Pairwise t-tests at 95% significance level
indicate that miGraph is significantly better than MI-
Kernel on all data sets except that on Musk2 there is
no significant difference.

4.2. Image Categorization

Image categorization is one of the most successful ap-
plications of multi-instance learning. The data sets
1000-Image and 2000-Image contain ten and twenty
categories of COREL images, respectively, where each
category has 100 images. Each image is regarded as a
bag, and the ROIs (Region of Interests) in the image
are regarded as instances described by nine features.
More details of these data sets can be found in (Chen
& Wang, 2004; Chen et al., 2006).

We use the same experimental routine as that de-
scribed in (Chen et al., 2006). On each data set, we
randomly partition the images within each category in
half, and use one subset for training while the other
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Table 2. Accuracy (%) on image categorization

Algorithm 1000-Image 2000-Image
MIGraph 83.9:[81.2,85.7] 172.1:[71.0,73.2]
miGraph 82.4 : [80.2,82.6 70.5 : [68.7,72.3
MI-Kernel 81.8 : [80.1,83.6 72.0: [71.2,72.8
MI-SVM 4.7 : [74.1,75.3 54.6 : [53.1,56.1
DD-SVM 81.5: [78.5,84.5 67.5:[66.1,68.9
MissSVM 78.0 : [75.8,80.2 65.2 : [62.0,68.3
kmeans-SVM 69.8 : [67.9,71.7 52.3 : [51.6,52.9
MILES 82.6 : [81.4,83.7 68.7: [67.3,70.1

for testing. The experiment is repeated for five times
with five random splits, and the average results are
recorded. Ome-against-one strategy is used by MI-
Graph, miGraph and MI-Kernel for this multi-class
task. Following the style of (Chen & Wang, 2004; Chen
et al., 2006), we present the overall accuracy as well as
95% confidence intervals in Table 2. For reference, the
table also shows the best results of some other multi-
instance learning methods reported in literature, in-
cluding MI-SVM (Andrews et al., 2003; Chen & Wang,
2004), DD-SVM (Chen & Wang, 2004), kmeans-SVM
(Csurka et al., 2004), MissSVM (Zhou & Xu, 2007)
and MILES (Chen et al., 2006).

It can be found from Table 2 that on the image catego-
rization task our proposed MIGraph and miGraph are
highly competitive with state-of-the-art multi-instance
learning methods. In particular, MIGraph is the best
performed method. This confirms our intuition that
MIGraph is a good choice when each bag contains a
few instances, and miGraph is better when each bag
contains a lot of instances.

By examining the detail results on 1000-Image, we
found that both MIGraph and miGraph or at least
one of them are better than MI-Kernel on most cate-
gories, except on African and Dinosaurs. This might
owe to the fact that the structure information of ex-
amples belonging to these complicated concepts? is too
difficult to be captured by the simple schemes used in
MIGraph and miGraph, while using incorrect struc-
ture information is worse than conservatively treating
the instances as i.i.d. samples.

For all three methods the largest errors occur between
Beach and Mountains (the full name of this category
is Mountains & glaciers). This phenomenon has been
observed before (Chen & Wang, 2004; Chen et al.,
2006; Zhou & Xu, 2007), owing to the fact that many
images of these two categories contain semantically re-
lated and visually similar regions such as those corre-
sponding to mountain, river, lake and ocean.

3 Dinosaurs is complicated since it contains many dif-
ferent kinds of imaginary animals, toys and even bones.

Table 3. Accuracy (%) on text categorization

Data set MI-Kernel  miGraph

alt.atheism 60.2+39 65.5+4.0
comp.graphics 470+£33 T78+1.6
comp.os.ms-windows.misc  51.0£5.2 63.1+1.5
comp.sys.ibm.pc.hardware  46.9+ 3.6 59.5 +2.7
comp.sys.mac.harware 44.5+3.2 61.7+48
comp.window.x 50.8+4.3 69.8+21
misc.forsale 51.8+2.5 552427
rec.autos 529+33 720437
rec.motorcycles 50.6 +3.5 64.0+ 2.8
rec.sport.baseball 51.7+28 64.7+3.1
rec.sport.hockey 51.3+34 85.0+2.5
sci.crypt 56.3+3.6 69.6+21
sci.electronics 50.6 +2.0 87.1+4+1.7
sci.med 506+19 62.1+3.9
sci.space 54.7+2.5 T757+34
sci.religion. christian 49.24+34 59.0+4.7
talk.politics.guns 477+ 3.8 58.5+6.0
talk.politics.mideast 55.9+2.8 173.6+2.6
talk.politics.misc 51.56+3.7 70.4+3.6
talk.religion.misc 55.4+43 63.3+3.5

4.3. Text Categorization

The twenty text categorization data sets were derived
from the 20 Newsgroups corpus popularly used in text
categorization. Fifty positive and fifty negative bags
were generated for each of the 20 news categories.
Each positive bag contains 3% posts randomly drawn
from the target category and the other instances (and
all instances in negative bags) randomly and uniformly
drawn from other categories. Each instance is a post
represented by the top 200 TFIDF features.

On each data set we run ten times 10-fold cross vali-
dation (i.e., we repeat 10-fold cross validation for ten
times with different random data partitions). MI-
Graph does not return results in a reasonable time,
and so we only present the average accuracy with stan-
dard deviations of miGraph and MI-Kernel in Table 3,
where the best result on each data set is bolded.

Pairwise t-tests at 95% significance level indicate that,
miGraph is significantly better than MI-Kernel on all
the text categorization data sets. It is impressive that,
by examining the detail results we found that if we
consider each time of the ten times 10-fold cross val-
idation, the number of win/tie/lose of miGraph ver-
sus MI-Kernel is 10/0/0 on 16 out of the 20 data
sets, 9/0/1 on two data sets (talk.politics.guns and
talk.religion.misc), and 7/2/1 on the other two data
sets (alt.atheism and misc.forsale).

4.4. Multi-Instance Regression

We also compare MIGraph, miGraph and MI-Kernel
on four multi-instance regression data sets, includ-
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Table 4. Squared loss on multi-instance regression tasks

Algorithm LJ160.1 LJ160.1S LJ80.1 LJ80.1S
MIGraph 0.0080 0.0112 0.0111  0.0154
miGraph 0.0084 0.0094 0.0118  0.0113
MI-Kernel  0.0116 0.0127 0.0174 0.0219
DD 0.0852 0.0052 N/A 0.1116
BP-MIP 0.0398 0.0731 0.0487 0.0752
RBF-MIP 0.0108 0.0075 0.0167 0.0448

ing 1.J-160.166.1, LJ-160.166.1-S, 1.J-80.166.1 and LJ-
80.166.1-S (abbreviated as LJ160.1, LJ160.1S, LJ80.1
and LJ80.1S, respectively). In the name LJ-r.f.s, r is
the number of relevant features, f is the number of
features, and s is the number of scale factors used for
the relevant features that indicate the importance of
the features. The suffix S indicates that the data set
uses only labels that are not near 1/2. More details of
these data sets can be found in (Amar et al., 2001).

We perform leave-one-out tests and report the re-
sults in Table 4. For reference, the table also shows
the leave-one-out results of some other methods re-
ported in literature, including Diverse Density (Maron
& Lozano-Pérez, 1998; Amar et al., 2001), BP-MIP
and RBF-MIP (Zhang & Zhou, 2006). In Table 4 the
best performance on each data set is bolded. It is evi-
dent that our proposed miGraph and MIGraph meth-
ods also work well on multi-instance regression tasks.

5. Conclusion

Previous studies on multi-instance learning typically
treated instances in the bags as i.i.d. samples, neglect-
ing the fact that instances within a bag are extracted
from the same object, and therefore the instances are
rarely i.i.d. intrinsically and the relations among in-
stances may convey important information. In this
paper, we propose two methods which treat the in-
stances in an non-i.i.d. way. Experiments show that
our proposed methods are simple yet effective, with
performances highly competitive with the best per-
forming methods on several multi-instance classifica-
tion and regression tasks. Note that our methods can
also handle i.i.d. samples by using identity matrix.

An interesting future issue is to design a better graph
kernel to capture more useful structure information
of multi-instance bags. Applying graph edit distance
or metric learning methods to the graphs correspond-
ing to multi-instance bags is also worth trying. The
success of our proposed methods also suggests that
it is possible to improve other multi-instance learn-
ing methods by incorporating mechanisms to exploit
the relations among instances, which opens a promis-
ing future direction. Moreover, it is possible to ex-

tend our proposal to other settings such as gener-
alized multi-instance learning, multi-instance semi-
supervised learning, multi-instance active learning,
multi-instance multi-label learning, etc.
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