Learning When to Stop Thinking and Do Something!

Barnabas Péczos
Yasin Abbasi-Yadkori
Csaba Szepesvari
Russell Greiner
Nathan Sturtevant

POCZOSQCS.UALBETA.CA
YASIN.ABBASIQGMAIL.COM
SZEPESVAQCS.UALBERTA.CA
GREINERQCS.UALBERTA.CA
NATHANST@QCS.UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8 CANADA

Abstract

An anytime algorithm is capable of return-
ing a response to the given task at essen-
tially any time; typically the quality of the re-
sponse improves as the time increases. Here,
we consider the challenge of learning when
we should terminate such algorithms on each
of a sequence of iid tasks, to optimize the ex-
pected average reward per unit time. We pro-
vide a system for addressing this challenge,
which combines the global optimizer Cross-
Entropy method with local gradient ascent.
This paper theoretically investigates how far
the estimated gradient is from the true gradi-
ent, then empirically demonstrates that this
system is effective by applying it to a toy
problem, as well as on a real-world face de-
tection task.

1. Introduction and Motivation

A mail sorter will scan each envelope as it passes by,
trying to find and read the zip code. If it misreads the
zip code, that mail item may be misdelivered, which
incurs a penalty. It is also important for the sorter to
be efficient, as there are many remaining mail items
queued up — and spending too long on one envelope
will delay the others, and possibly prevent some from
being delivered. . . which is also problematic (Russell &
Subramanian, 1995).

Here, it is important to be both accurate and efficient.
This is true of many other situations — finding and
classifying parts in a factory assembly line, finding and
identifying car license plates as cars drive in a freeway,

Appearing in Proceedings of the 26" International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

or detecting possible terrorists in airports.

In all of these situations, we assume an anytime sys-
tem has already been designed for the task (e.g., sort-
ing the mail), which basically runs a series of subrou-
tines (A;(:), A2(:), ...) on each instance (e.g., each
envelope); we assume that later subroutines generally
return successively higher quality responses. This pa-
per addresses the challenge of learning a “stopping
policy”: That is, after the k'™ subroutine Ax(X;)
has terminated on instance X;, after spending time
Tj(; = T,;,, the stopping policy has to decide whether
to accept that algorithm’s decision about X; (that is,
decide to route X; to Ag(X;)) and then proceed to
process instance X;41, or instead to consider running
the next subroutine Agy; on this instance X; (which
means it will return the value of Ay, (Xy), or perhaps
Ak42(Xt)...). To help make this decision, Aj(X:)
returns some information that can help the stopping
policy. Such information might indicate whether the
envelope was handwritten or typed, information about
the layout of the address field or any other information
that became available when the subroutine processed
the envelope.

For each instance X;, once the system has accepted
the decision of a subroutine, say, at the L,"-stage of
the thinking process, the overall system (and hence
the stopping policy) receives a (real-valued) reward,
ry = r(X, AL,) € R, based on whether the letter
X, was routed correctly. This is after the system
has spent some time “thinking” about this instance,
which is the sum of the times required by the subrou-
tines A4, ..., Ay, on this instance, Eitzl T~ The time
spent with the decision to stop at the k'"-stage is in-
cluded in 7,;,. Also, the reward function r = r(z, a) is
not available for the decision maker (otherwise, the op-
timal action would be easy to compute, at least when
the action space is not large). Our ultimate goal is
to maximize the average reward, which is the accumu-

Learning When to Stop Thinking

lated reward on the envelope sequence divided by the
time we spent “thinking” about the envelopes. There-
fore, we have to consider both the reward we can ac-
cumulate, as well as the thinking time required.

Obviously, our problem can be viewed as finding an
optimal policy in an average-reward partially observ-
able Markovian Decision Problem (MDP) (Sutton &
Barto, 1998), where the actions have different (pos-
sibly random) durations: The hidden state (in one
formalization of the problem) is the optimal action
arg max, (X, a) (i.e., the zip-code), the observations
are the information that is gathered while processing
the instance, including the decision of the subroutines;
the actions are ‘stop thinking’ or ’continue’; and the
reward is based on whether the letter was correctly
routed. (A formal description appears in Section 2).
Given that the full scanned image of an envelope is
available in the computer, one may as well model the
problem as a fully observable MDP, where the state
is X;. This is promising since powerful value-function
based approaches tend to work poorly in partially ob-
servable environments when state aliasing is a prob-
lem. However, by the very nature of our problem
it seems that practical value-function based methods
would themselves need to introduce significant state
aliasing: Since we want to keep the processing times
small, we cannot allow arbitrary complex procedures
when computing the values of actions for some input
X;. Indeed, all standard value function computations
would extract some finite (small) representation of X
and obtain the values based on this representation.
Given the complicated nature of X;, significant state
aliasing seems then unavoidable.

Therefore, in this paper we consider policy search
approaches. More precisely, we investigate both
generic policy search based on the Cross-Entropy (CE)
method (Rubinstein & Kroese, 2004) and policy gra-
dient methods (Williams, 1992; Baxter & Bartlett,
2001), and their combination, given some fixed para-
metric class of policies. The main problem with policy
gradient methods is that the variance of the gradi-
ent estimate is hard to control. Due to the aforemen-
tioned difficulties related to the use of value-functions,
we do not attempt to employ value-function based ap-
proaches to reduce the variance, which usually is essen-
tial to achieve good performance (Greensmith et al.,
2004). Thanks to the special structure of our problem,
we will show how to obtain reasonable estimates of the
gradient. This observation is one of the main contribu-
tions of the paper. We prove a bound on the quality
of the estimate of the gradient as a function of the
number of instances processed and propose a stopping
rule for deciding if the gradient estimate is sufficiently

good. We also demonstrate that these approaches are
effective using empirical studies on a simple artificial
example, as well as on a real-world face detection ap-
plication.

After Section 2 formally defines our problem, Section 3
provides two efficient learning algorithms, and sum-
marizes our empirical studies to evaluate these algo-
rithms. We close this section with a brief overview of
related work.

Related work: As mentioned above, as an anytime
algorithm (Zilberstein, 1996) is working on a problem,
it can be interrupted; if so, it will then return its cur-
rent best answer. Note this model assumes the exter-
nal world will terminate the process (e.g., when the
current envelope is gone and a new one appears in its
place); by contrast, our task is to design a policy that
decides itself when to terminate. Russell and Sub-
ramanian (1995) consider “bounded rational agents”
in this anytime framework. Their work focuses on the
challenge of building this sequence of algorithms, given
the relevant information about the world. Our paper,
by contrast, describes a way to learn how to make de-
cisions based on the available information.

Turney (2000) summarizes many different types of
“cost” in the context of learning. Here, we are con-
sidering only the cost of the learned system, in terms
of time required to produce an accurate response; we
are not explicitly considering the cost of the learning
process.

Many others have considered this challenge of learn-
ing a system that must be both efficient and accurate:
Greiner et al. (2002) defines an “active classifier”
as a process that can sequentially acquire information
about an instance before rendering a decision (e.g.,
performing some sequence of tests on a patient before
declaring that patient to be healthy or sick); an op-
timal such active classifier will minimize the expected
cost of collecting this information plus the expected
penalty for misclassification. They observe an active
classifier corresponds to an “action policy” (given the
results of the previous tests, take some specific ac-
tion; here this corresponds to a decision tree), and
then consider (PAC)learning the optimal such policy
in various settings. By contrast, our system is only
thinking about an instance, and is not making deci-
sions about what extra information to collect (infor-
mation collection happens independently); moreover,
we are not learning the optimal action policy, but in-
stead considering the optimal “stopping policy”, wrt a
fixed action policy. (We note that our approach nat-
urally extends to this case and also to the case when
information collection has a price.) Moreover, their

Learning When to Stop Thinking

model requires knowing a model of the actions in ad-
vance; our approach does not. Finally, while their ap-
proach is basically a “batch learner”, our system can
continuously improve based on observations.

Optimal stopping has been extensively investigated
in the statistics and economics literature (Shiryaev,
2007). Using their terminology, we are exploring a
Bayesian optimal stopping problem, where the prior
distribution is over the instances (the distribution of
envelopes). However, the focus in this literature is the
existence of optimal stopping rules (often by reducing
the problem to a MDP), or obtaining closed form so-
lutions in specific problems. By contrast, here we are
trying to use a set of instances to learn a good (not
necessarily optimal) stopping policy.

Finally, we note that Viola and Jones (2001) were also
interested in producing an efficient face detection sys-
tem by applying a sequence of successively more ex-
pensive classifiers. That system used only a single sim-
ple type of base classifier (linear separator), and had a
one-sided stopping critera (stop as soon as any base-
classifier says “no”); by contrast, we consider general
classifiers, and allow termination on either “yes” or
“no” decisions.

2. Formal Definition of the Problem

Let X7, X5, ... be an independent and identically dis-
tributed (iid) sequence — e.g., corresponding to the
series of envelopes mentioned in the previous section.
On the ™ step, when first dealing with the instance
X, we start a “thinking process” that can involve at
most K stages. In each stage k (1 < k < K), we com-
pute information about X;, denoted Yy, €)i, which is
the result of the thinking at stage k with respect to X;.
We let 7,,, denote the time used in thinking at stage k.
We make the Markov assumption, that the new knowl-
edge Y}y, is independent of Y 1,...,Y; 2 given Yy 1
and X;. This is not a restrictive assumption since the
domain of Y; , and Y;; could be different for k # j.
In particular, Y; may simply include Y; p—1,..., Y 1.

Let gqr be the stochastic policy that determines
whether we terminate the thinking process at stage k.
More precisely, at state k, after seeing Y, ¢ continues
thinking at X; with probability gx(0|Y;x), or quits with
probability ¢i (1Y) = 1 — qr(0|Yzx). By convention,
g will terminate by the K" stage if we have not ter-
minated earlier; i.e., ¢x(1|Y;x) = 1 for all Vi € Vk.
Let L; € {1,..., K} denote when we quit for instance
X, and let Ty = Zétzl 7, be the total thinking time
required to deal with Xj;.

Let pg : Y — A be a fixed mapping from the result

of the k*" information stage to the action space, deter-
mining what action we would take if we quit at stage k;
hence Ay = pr,(Y:1,) is the action taken on instance
X:. (This corresponds to sending the envelope to the
destination determined by A;.) Figure 1 summarizes
the whole process.

The performance criterion for policy ¢ = (q1,...,qK)
is defined as the expected average reward per time
step:

Zizl T(Xw As)
‘T

s=1"85

p? = E [liminf

min Cw
where 7 : X x A — R is the reward function, which is
assumed to be uniformly bounded. Here, p?’s depen-
dence on ¢ is defined through A, and T, whose dis-
tributions are each determined by gq. We also assume
that T, is bounded away from zero with probability
one and is bounded from above with probability one
— i.e., there is a minimal and maximal thinking time.

Our challenge is to determine the ¢ that maximizes
p?. We consider a learning scenario where all quan-
tities involved (including the distribution of X; and
the transition kernels py and reward r) are unknown,
but where we can sample trajectories and observe the
rewards.

3. Learning Stopping Policies

In this section we derive two policy-gradient-based al-
gorithms. Since {X,} is iid, so are {Rs = r(X;, 4s)}

t
and {T } As Ei:lT(XsaAs) _ %Zszlr(Xs,As)
$301 T

et T
by the law of large numbers the numerator and the de-
nominator converge (respectively) to E[r(X7, 41)] and
E[T1]. This allows us to rewrite the performance cri-
terion as

)

pl = M’ (2)
E[T}]

which is much easier to optimize than the original av-
erage cost criterion (Equation 1). In particular, this
is the “trick” that allows us to obtain gradient es-
timates relatively quickly without resorting to value
functions or other variance reduction techniques. In
the next sections we propose two estimates of the gra-
dient of our criterion based on (2) assuming that the
parameters of ¢ are collected in the vector § — i.e.,
q = qp. That is, our goal now is to calculate the gra-
dient of the performance criterion p% with respect to
. Clearly, using the notation E[r1] = E[r(X1, 41)],

AE[r] = SE[r(X1, A1)}, AE[TY] = ZE[T1],
0 . _ 9 E[m _ E[NAE[m] - E[r]AE[T}]
20" OET] E[T,]? :

Learning When to Stop Thinking

reward: r(Xe,p1(Ye,1)) m(Xe,p2(Ye2)) r(Xe,u3(Ye,3)) (Xt pr—1(Ye, k—1)) r(Xt, pr (Ye,K))
action: pa(Yea) p2(Yi2) w3 (Ye,3) purc— (Ye, k1) prc (Ye i)
i i i
. Jak (1Y k) =1
observation: Yt’l q1(0|Y%,1) Yt’2 q2(0|Y%,2) Yt’?’ q3(0|Y%,3) n7K_]‘?K—1(O‘Yt,K—1) Yt’K

time: |<— T, 1 —>|<— Tt 2 — |«

Tt,3 —|

|+— Tt K1 ——>|<~— Ty

Figure 1. Summary of the Overall Process

Our gradient estimates will be based on this formula:
we estimate each quantity in this formula individually
and then combine the estimates.

3.1. Direct Gradient Ascent

We can estimate the expectation of both 77 and
r(X1, A1) by using the sample means based on n in-

stances:
n

Now to develop an estimate to the gradient of
E[r(X;,A1)] and E[T1], observe that E[r(Xy, A1)] is
just the reward obtained in an episodic problem (the
reward is received at the end of the episode). Hence,
one can use the method of likelihood ratios, also
known as the REINFORCE algorithm in the rein-
forcement learning literature, to calculate the deriva-
tive (Williams, 1992). To deal with E[T}], recall that
stage k of the thinking process costs 7. This is just the
expected value of the total cost in this finite horizon,
episodic problem, and hence we can use REINFORCE
again to estimate the derivative.

In detail, let (Qx)k=1,...1, be the decision at stage k
on instance t. For each t € {1,...,n}, we define the
trajectories V; = [Yto,YthQﬂ,Y}z,Qtz, Yk, Qukl,s
where Y;o = Xy, th = Qq if & < L;; otherwise, by
definition, th = 1. According to our notation, the
final reward at the end of the t*! trajectory is simply
R, = (X4, Ay), which (as a slight abuse of notation)
we will denote as 7(Y;). Note that r(Y;) depends only
on the first L; stages of the thinking process.

E[T‘(Xl,Al ~

3\'—‘

Letting fp(g) denote the density function of trajec-
tory ¢, and r(g) the corresponding reward, we have

E[r(Xe, A)] = [7(9)fo(g)dyg. (When the space of
trajectories is countable, fg(7) should be understood
as the probability of seeing § under ¢g.)

Under mild regularity conditions,

B A0 = 5 [@@
~ [)55 (o) £o(3) <

4§ = E[r(¥i) 5 In fo(T)]

We can use the Markov property along the trajectory

g = (y07 Y1, (217 s Yk—1, (jk—la yk) to derive
£()
nfo(5) = Infolyo)+ Y pr(yelys—1) +
k=1
£(y)—1
+ Z ¢’ (0lyx) +n ¢’ (1ye(y),
k=1

where fy is the density underlying Yo = Xy, px
is the Markov kernel underlying the k*" transition
and ((y) = min{k>0: ¢, =1} is the index of
the stage in § when ¢g quits. Thus, a%ln fg(f’t) =

fi 11 2 g’ (0Yer) + 2 Ing®(1]Yy1,), leading to the
unbiased estimate of 80]E[T(X1, Ayl

Im oy o
IS
n
t=1
where s(f’t) = ﬁ’;ll % lnqe((~)|Ytk)+% lnq9(1|YtLt).
Similarly Ap = L3 T,s(Y;) is an unbiased esti-
mate of %E[Tl]. Putting the pieces together, we see

that the gradient of the performance criterion can be
estimated with

L I (r(Yy) T
oo - (PR

t=1

Li—1 o
x (o5 I’ OYa) + 55 1nq"<1|mt>>,

k=1

where T' = IS Zﬁ;o 7, is the empirical average
thinking time, and 7 = 1 "7 7(Y;) is the empirical
average reward. We will refer to this algorithm as
Direct Gradient Ascent (DGA).

This algorithm proceeds as follows: given a parameter
6, it first simulates the policy ¢? on a batch of n sam-
ples, then it calculates the estimated gradient of the
parameters and updates them using Opey, := 0+)\én,
for some learning rate A > 0 (the learning rate may
change over time). It then collects another batch of n
samples and iterates.

Learning When to Stop Thinking

3.2. The Quality of the Estimated Gradient

The previous section derived the DGA estimation
of the gradient. This section estimates how far this
estimated gradient is from the true gradient. Fix 6
and let G denote the true gradient. Observe that

o A, 7 Agp o _ AE[n] Efn] AE[T]
1 T T E[n] E[N] E[T]
Let || - || be an arbitrary vector norm. We can use Ho-

effding’s Inequality (1963) to bound the chance that
our empirical estimates will be far from their true
means: for every § € [0, 1] and every n, there exist e,
€ry EAT, Ear such that P(|E[T] — T| <er)>1-4,
P(E[r] - 7 < &) > 1 -5, P(IAE[R] - Ag|| <
enr) > 1 =06 and P(||AE[r] — Al <ea,) > 1-4,
where er,ep,ear,ea, = O(y/log(1/§)/n). Using
these quantities and applying the triangle inequality,
we can bound the deviation between the true gradient
G and its empirical estimation G
E[Tl ‘ +

E[Ty

r> AE[T}]
7 (Ar AE[T]
T\ T E[n])|

GGl < H(

A, AE[r]

I
]

T7) E[T]

T E[T]

With some more tedious calculations (using the trian-
gle inequality several times and (1 —z)~! < 1+ 2x for
x < 1/2), we arrive at the following result:

Proposition 1. Assume that n > 2log(1/6)/7¢,
where 19 is an almost sure lower bound on Ty. Then
with probability 1 — 6,

GGl < e/ B, D)

where c1, co are constants that depend only on the
range of the rewards, thinking times and their gradi-
ents.

3.3. A Stopping Rule for Preventing Slow
Convergence Near Optima

The previous section proved that, with probability
>1-96,||G—Gnll < ¢(5,n), where ¢(-,-) can be calcu-
lated exactly, knowing the range of the rewards and the
thinking times, independent of 8. We can use this to
calculate a bound on n that ensures that G and G’n are
sufficiently close to each other. However, knowing this
is not enough for the purposes of gradient ascent: If we
fix any € > 0, we may have |G| is O(e); here knowing
that |G — G,|| < e does not guarantee that following
G, moves the parameters in the direction of the gradi-
ent. The idea here is to let € change depending on the
length of G. In particular, if |G — G, || < 1||G|| then

the angle between G and G, must be smaller than 90°
—ie, GLG > 0.

Since we do not know ||G||, we must estimate it
from the sample. With probability > 1 — 4, both
max (0, |Gy — c¢(6,n)) < |G| and [|G' = Gy || < ¢(6,n)
hold. Hence, when

L max(0, |Gl — c(Bm)) . (3)

c(o,n) < 5

we also have |G — G|l < L||G|. This proves the
following result:

Theorem 2. Fiz 0 < § < 1 and let n = n(d) be the
first (random) time when Equation (3) holds. Then
GT G > 0 with probability > 1 — 4.

Further, it is possible to the bound the expected num-
ber of samples required to achieve this bound. Another
possible improvement is to use an empirical Bernstein
bound (taking into account the variances) instead of
relying on Hoeffding’s inequality, as in Mnih et al.
(2008). Although these modifications might improve
the efficiency, they are outside of the scope of the
present work and are not explored here any further.

3.4. A Toy Problem

Our experiments are based on the situation mentioned
above, where we want to sort a sequence of envelopes
based on their respective zipcodes. For each envelope
X, we will apply a fixed sequence of (up to K = 4)
subroutines (Aj,..., Ak), where each Ay requires a
fixed amount of time 7,, and returns a response Y,
i.e., , an interpretation of the zip code digits and some
estimate of how certain this decision is. At each stage
k of processing each envelope X;, our stopping pol-
icy q decides whether to continue onto the next stage
(running Ag41 on this X;), or to “quit”, which means
it will follow the action A; = ug(Yy,k), which provides
reward r(X¢, A¢), then go on to consider the next en-
velope Xi41.

We simulate this problem as follows: we characterize
the difficulty of an envelope by h ~ Beta(1, 1), where
h = 1 means very easy and h = 0 means very diffi-
cult. At stage k, let p, be the probability that y; j is
the correct zip code; here we initialize pg = h, which
improves as pr4+1 = min{px + 0.1, 1} (Hence, at stage
k, pr, = min{h 4+ 0.1 x k, 1}). Reward r(Xy, pr (Ye k))
equals to 1 with probability f(px) where f(-) is an un-
known function; we use f(p) = /p in our experiments.

In each stage Y by assumption contains pg. The deci-
sion to quit or not will then depend on py, as well as the
index k. We discretize the 2D space [0,1] x {1,2,3,4}
into M grid cells and introduce the corresponding

Learning When to Stop Thinking

200(
150}
>
g
9%100*
TR
50t
——BG
LB AG
0 J
0 8

Performance

Figure 2. The performance histogram of a set of param-
eters before (BG) and after (AG) applying the DGA
method.

#(-,+) € {0,1}M feature vector, where ¢;(py, k) = 1
if and only if (pg, k) belongs to the i** grid cell, and
otherwise ¢;(pi, k) = 0, Vj # i. In our experiments
we used M = 25 grid cells. The stopping policy is
¢’ (Olpr k) = g(0" ¢(pk, k), where g(x) = 1/(1+e7")
is the sigmoid function. The gradient of this func-
tion has a simple form: % Inq¢?(x|pr, k) = (1 — x —
¢ (Olpi. k) S(pi. k) for x € {0.1}.

We have to wait for 79 = 0.1 time unit before observing
each X;. The thinking time for each subsequent stage
k is 0.002 + 0.2495 x k; note that the thinking time at
stage k =4 is 1.

First, we generated 1,000,000 random parameter vec-
tors. Each vector represents a policy. We ran each
policy on 100 samples (e.g., envelopes) and computed
the average payoff of the policy over these samples.
The highest, lowest and average performances of these
policies were 6.85, 0.34 and 1.60, respectively. Next,
we generated 1000 initial parameters randomly and
evaluated them. The performance histogram of these
parameters is denoted by BG (Before Gradient) in Fig-
ure 2. For each of these parameter values, we ran our
simulator for 1,000 timesteps. In each timestep, the
DGA algorithm uses n =10 trajectories to approxi-
mate its gradient. (We decrease the learning rate ac-
cording to A\; = 5/t for each run). Finally, after apply-
ing 1,000 gradient steps, we evaluated the parameters.
The performance histogram of the resulting param-
eters is denoted by AG (After Gradient) in Figure 2.
This figure shows that DGA improves the policies con-
siderably.

3.5. Face Detection

In this section we demonstrate how our approach can
be used in face detection applications. We ran our ex-
periments on the face database (Viola & Jones, 2001),
which contains 4916 pieces of facial and 7872 pieces of
non-facial gray scale images of size 24 x 24. We also
used the 22-stage hierarchical face classifier of Lien-
hart et al. (2003), which is an implementation of
the AdaBoost algorithm (Viola & Jones, 2001), down-
loaded from Bradski and Kaehler (2008); we call this
classification algorithm VJ. Here, each stage can clas-
sify images, and while the higher level classifiers per-
form better, they have higher complexity and are more
costly (this is because the higher level stages require
more feature evaluations). In the original version of
VJ, this 22-stage classifier contained 22 parameters
(o € R, k =1,...,22). If ayp is smaller than the
response of stage k (which is the weighted sum of the
features on stage k), then the algorithm proceeds to
stage k + 1, where it runs a more complex classifier;
otherwise it classifies the picture as non-face. If the
algorithm reaches stage 22, and the response of this
stage > aao, then the picture is classified as a face.

Each stage gets its input from the previous stage, and
the parameter «y is set to the value where the actual
classifier recognizes 99.5% of faces, and rejects about
30% of the non-faces.

The problem with this approach is that the algorithm
is not able to classify an image as a face before reaching
stage 22, not allowing the process to quit earlier with
a positive result. Also, the fixed 0.995 true positive
rate (TPR) on each stage seems to be ad-hoc, too,
and as we will see, we can optimize these parameters
to achieve better results.

To handle these problems we made the following mod-
ifications. On each stage, we introduced 2 parameters
ap < OBk to help define the stopping and classification
policy. Let Y, denote the response of stage k on the ¢
instance. If Y3 < aj on stage k, then we quit think-
ing, and decide that the object is not a face. If oy <
Yir < Bk, then we keep thinking and proceed on stage
k + 1. Finally, if 8y < Yi, then we quit thinking, and
classify the object as a face. In practice, however, we
used the soft versions of these hard decision functions:
here using ¢x(0|Yi) = 1/(1 + exp(—c(Yi — ax))) X
1/(1 + exp(—c(Br — Yzx))) transition functions with
¢ = 50, and a similar function for computing p. The
algorithm was forced to quit on stage 22; here the
classification was based on parameter ass. While our
method is similar to Wald’s sequential probability ra-
tio test (1948), note that we tune the parameters ay
and Ok, we do not know the exact likelihood functions,

Learning When to Stop Thinking

and we apply soft decisions only.

The reward after each decision was determined by an
R € R?*? reward matrix. In the following experiment,
we set Ri1 = Ros = 100, R12 = Ro; = 0, correspond-
ing respectively to true positive, true negative, false
positive and false negative results.

To reduce the chance of being trapped in a local
minima, we combined the gradient descent approach
with the Cross-Entropy (CE) method (Rubinstein &
Kroese, 2004): We generated 100 random initial pa-
rameters from some N (fy,©g) normal distribution.
We evaluated the performances of these parameters
and selected the best 10 results — i.e., the “elite”
samples. From these elite samples we move into the
direction of the respective gradients with a fixed step-
size. After calculating the empirical mean and vari-
ance of these new improved samples (denoted 6y,)
we update the internal parameters of the CE-method
— 01 = My + (1 -)\)§O7 01 = \O¢g + (1 —)\)(:)0 —
then repeat the whole CE process from the beginning:
again generating 100 new samples from distribution
N(61,01) and so on. Here we used 25 CE iterations,
and set A to 0.9. As this method combines CE with
local search in the directions of the gradients, we call
it CE-DGA.

We assumed a fixed 7y minimal thinking time for each
instance. We tested our method using several R re-
ward matrix and 7y minimal thinking time, and found
empirically that our method always performed better
than the purely randomly selected parameters. How-
ever, when 7y is set to a large value (40,000 in our
experiments), then we found that the actual think-
ing time is not important, as our algorithm has to
maximize only its expected reward, which is TPR+4(1-
FPR), where FPR is the false positive rate. Here we
can compare our performance with VJ. The following
results show that our proposed algorithm actually out-
performs VJ here, even when the thinking time is not
crucial.

For the experiments, we selected the first 1,000 facial
and 1,000 non-facial images from the VJ database.
Table 1 shows the empirical average reward, the aver-
age number of stages needed for classification, as well
as the TPR and FPR values for the VJ algorithm,
and for the parameters optimized by the proposed
CE-DGA algorithm. It also shows the average per-
formance values of 100 randomly selected parameters.
It is interesting that CE-DGA could achieve higher
expected reward, higher TPR, and smaller FPR than
the VJ parameters, while using many fewer classifica-
tion stages (6.1 instead of 13.17 on average)! Figure 3
shows the performances of several randomly selected

Table 1. Expected reward, Expected stage numbers, True
Positive Rate (TPR), False Positive Rate (FPR) for the
Viola-Jones parameters (VJ), random parameters, and our
method, respectively.

[[VJ [Ranpom [CE-DGA |
E[R] 96.95 76.80 97.70
E[STAGE] 13.17 1.25 6.1
TPR 96.70% | 99.20% 97.00%
FPR 2.80% 45.60% 1.60%

parameters, as well as the performances of the VJ and
the CE-DGA methods, on the “ROC domain” — i.e.,
the True Positive Rate x False Positive Rate coordi-
nate system.

One could use CE only, i.e., without local search in ev-
ery iteration. Nonetheless, in Figure 4 we demonstrate
that using the gradients, too, we can achieve better
performance in the first few CE iterations. Later, as
the iterations proceed, however, the objective becomes
flat, and the gradient can not help anymore. To have a
fair comparison between CE and CE-DGA we allowed
the CE method to sample in each iteration as many
samples as the CE-DGA evaluated in that iteration.

l,
o 0997
=
‘g 0.98}
g
© 0.97
E %r random
0.961 + VI
>k CE-DGA
0.95 - : : :
0.2 0.4 0.6 0.8

False positive

Figure 3. The ROC domain. The performances of ran-
domly drawn parameters, Viola-Jones parameters (VJ),
and parameters optimized by the CE-DGA method, re-
spectively, shown in the True Positive Rate x False Posi-
tive Rate coordinate system.

4. Discussion and Conclusion

This article considered only the trade-off between the
accuracy of a performance system versus its compu-
tational time cost. It is straightforward to generalize
the approach when other costs are also incurred (e.g.,
material costs in a physical process) while processing
the instances. We considered learning the best param-
eters 6* only for the stopping policy ¢° = (¢?,...,q%),
which governs the time allowed to process the input
instance. This was only to simplify the presentation
of the task: the techniques developed here can also be

Learning When to Stop Thinking

CE iterations

Figure 4. CE vs CE-DGA. With the combination of gradi-
ent ascent and CE (CE-DGA), in the first few iterations we
can achieve higher performance than using CE only. The
curves are averaged for 10 experiments. The error bars
indicate the standard deviations.

used to optimize the “action policy” — to determine
both the final decision policy u? = (u1,...,ur) and
the parameters of the actual sequence of “subroutines”
(A;) being followed.

Contributions: This article investigates when to
stop thinking about specific tasks, when we have to
consider both the quality of our solution to the task
and also the cost of thinking. We proposed an algo-
rithm for this problem. To reduce the chance of be-
ing caught in local minima, we extended the gradient
ascent method with Cross-Entropy optimization. We
theoretically examined how far the estimated gradient
can be from the true gradient, and provided experi-
ments on a real-world face detection task. We found
that in this task our proposed CE-DGA method could
achieve higher true positive rate and smaller false pos-
itive rate than the VJ with its standard weights, while
using many fewer classification stages.

We also note that our gradient estimates can be biased
and hence can indeed point into the “wrong” direction.
We therefore provide a stopping rule (Theorem 2) that
guarantees (with high probability) that the estimated
gradient does not point into the wrong direction.

Acknowledgements

The motivation for this paper comes from a discus-
sion with Matt Ginsberg. We gratefully acknowledge
support from the Alberta Ingenuity Centre for Ma-
chine Learning, the Alberta Ingenuity Fund, iCORE
and NSERC. Csaba Szepesvéri is on leave from MTA
SZTAKI, Bp. Hungary.

References

Baxter, J., & Bartlett, P. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial In-
telligence Research, 15, 319-350.

Bradski, G., & Kaehler, A. (2008). Learning OpenCV:
Computer vision with the OpenCYV library. O’Reilly
Press.

Greensmith, E., Bartlett, P., & Baxter, J. (2004). Vari-
ance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learn-
ing Research, 5, 1471-1530.

Greiner, R., Grove, A., & Roth, D. (2002). Learn-
ing cost-sensitive active classifiers. Artificial Intelli-
gence, 159, 137-174.

Hoeffding, W. (1963). Probability inequalities for sums
of bounded random variables. Journal of the Amer-
ican Statistical Association, 58, 13-30.

Lienhart, R., Kuranov, A., & Pisarevsky, V. (2003).
Empirical analysis of detection cascades of boosted
classifiers for rapid object detection. DAGM’03,
25th Pattern Recognition Symposium (pp. 297-304).

Mnih, V., Szepesvari, C.; & Audibert, J.-Y. (2008).
Empirical Bernstein stopping. International Con-
ference on Machine learning (pp. 672-679).

Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-
entropy method. Information Science and Statistics.
Springer.

Russell, S., & Subramanian, D. (1995). Provably
bounded-optimal agents. Journal of Artificial In-
telligence Research, 2, 575—609.

Shiryaev, A. (2007). Optimal stopping rules. Springer.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. MIT Press.

Turney, P. (2000). Types of cost in inductive concept
learning. Workshop on Cost-Sensitive Learning (In-
ternational Conference on Machine Learning).

Viola, P., & Jones, M. (2001). Rapid object detection
using a boosted cascade of simple features. Com-
puter Vision and Pattern Recognition (pp. 511-518).

Wald, A., & Wolfowitz, J. (1948). Optimum character
of the sequential probability ratio test. Annals of
Mathematical Statistics, 19, 326-339.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8, 229-256.

Zilberstein, S. (1996). Using anytime algorithms in
intelligent systems. Al magazine, 17, 73-83.

