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Abstract

Empirical evidence suggests that hashing is an
effective strategy for dimensionality reduction
and practical nonparametric estimation. In this
paper we provide exponential tail bounds for fea-
ture hashing and show that the interaction be-
tween random subspaces is negligible with high
probability. We demonstrate the feasibility of
this approach with experimental results for a new
use case — multitask learning with hundreds of
thousands of tasks.

1. Introduction

Kernel methods use inner products as the basic tool for
comparisons between objects. That is, given objects
x1, . . . , xn ∈ X for some domainX, they rely on

k(xi, xj) := 〈φ(xi), φ(xj)〉 (1)

to compare the featuresφ(xi) of xi andφ(xj) of xj respec-
tively.

Eq. (1) is often famously referred to as thekernel-trick. It
allows the use of inner products between very high dimen-
sional feature vectorsφ(xi) andφ(xj) implicitly through
the definition of a positive semi-definite kernel matrixk
without ever having to compute a vectorφ(xi) directly.
This can be particularly powerful in classification settings
where the original input representation has a non-linear de-
cision boundary. Often, linear separability can be achieved
in a high dimensional feature spaceφ(xi).

In practice, for example in text classification, researchers
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frequently encounter the opposite problem: the original in-
put space is almost linearly separable (often because of the
existence of handcrafted non-linear features), yet, the train-
ing set may be prohibitively large in size and very high di-
mensional. In such a case, there is no need to map the input
vectors into a higher dimensional feature space. Instead,
limited memory makes storing a kernel matrix infeasible.

For this common scenario several authors have recently
proposed an alternative, but highly complimentary vari-
ation of the kernel-trick, which we refer to as the
hashing-trick: onehashesthe high dimensional input vec-
tors x into a lower dimensional feature spaceRm with
φ : X → R

m (Langford et al., 2007; Shi et al., 2009). The
parameter vector of a classifier can therefore live inR

m

instead of inRn with kernel matrices orRd in the origi-
nal input space, wherem ≪ n andm ≪ d. Different
from random projections, the hashing-trick preserves spar-
sity and introduces no additional overhead to store projec-
tion matrices.

To our knowledge, we are the first to provide exponential
tail bounds on the canonical distortion of these hashed inner
products. We also show that the hashing-trick can be partic-
ularly powerful in multi-task learning scenarios where the
original feature spaces are the cross-product of the data,X,
and the set of tasks,U . We show that one can use different
hash functions for each taskφ1, . . . , φ|U| to map the data
into one joint space with little interference.

While many potential applications exist for the hashing-
trick, as a particular case study we focus on collaborative
email spam filtering. In this scenario, hundreds of thou-
sands of users collectively label emails asspamor not-
spam, and each user expects a personalized classifier that
reflects their particular preferences. Here, the set of tasks,
U , is the number of email users (this can be very large for
open systems such asYahoo MailTMor GmailTM), and the
feature space spans the union of vocabularies in multitudes
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of languages.

This paper makes four main contributions: 1. In sec-
tion 2 we introduce specialized hash functions with unbi-
ased inner-products that are directly applicable to a large
variety of kernel-methods. 2. In section 3 we provide ex-
ponential tail bounds that help explain why hashed fea-
ture vectors have repeatedly lead to, at times surprisingly,
strong empirical results. 3. Also in section 3 we show that
the interference between independently hashed subspaces
is negligible with high probability, which allows large-scale
multi-task learning in a very compressed space. 4. In sec-
tion 5 we introduce collaborative email-spam filtering as a
novel application for hash representations and provide ex-
perimental results on large-scale real-world spam data sets.

2. Hash Functions

We introduce a variant on the hash kernel proposed by (Shi
et al., 2009). This scheme is modified through the introduc-
tion of asignedsum of hashed features whereas the original
hash kernels use anunsignedsum. This modification leads
to an unbiased estimate, which we demonstrate and further
utilize in the following section.

Definition 1 Denote byh a hash functionh : N →
{1, . . . ,m}. Moreover, denote byξ a hash functionξ :
N → {±1}. Then for vectorsx, x′ ∈ ℓ2 we define the
hashed feature mapφ and the corresponding inner product
as

φ
(h,ξ)
i (x) =

∑

j:h(j)=i

ξ(i)xi (2)

and 〈x, x′〉φ :=
〈

φ(h,ξ)(x), φ(h,ξ)(x′)
〉

. (3)

Although the hash functions in definition 1 are defined over
the natural numbersN, in practice we often consider hash
functions over arbitrary strings. These are equivalent, since
each finite-length string can be represented by a unique nat-
ural number.

Usually, we abbreviate the notationφ(h,ξ)(·) by justφ(·).
Two hash functionsφ andφ′ are different whenφ = φ(h,ξ)

andφ′ = φ(h′,ξ′) such that eitherh′ 6= h or ξ 6= ξ′. The
purpose of the binary hashξ is to remove the bias inherent
in the hash kernel of (Shi et al., 2009).

In a multi-task setting, we obtain instances in combination
with tasks,(x, u) ∈ X × U . We can naturally extend our
definition 1 to hash pairs, and will writeφu(x) = φ(x, u).

3. Analysis

The following section is dedicated to theoretical analysis
of hash kernels and their applications. In this sense, the

present paper continues where (Shi et al., 2009) falls short:
we prove exponential tail bounds. These bounds hold for
general hash kernels, which we later apply to show how
hashing enables us to do large-scale multitask learning ef-
ficiently. We start with a simple lemma about the bias and
variance of the hash kernel. The proof of this lemma ap-
pears in appendix A.

Lemma 2 The hash kernel is unbiased, that is
Eφ[〈x, x′〉φ] = 〈x, x′〉. Moreover, the variance is

σ2
x,x′ = 1

m

(

∑

i6=j x
2
i x

′
j
2
+ xix

′
ixjx

′
j

)

, and thus, for

‖x‖2 = ‖x′‖2 = 1, σ2
x,x′ = O

(

1
m

)

.

This suggests that typical values of the hash kernel should
be concentrated withinO( 1√

m
) of the target value. We use

Chebyshev’s inequality to show that half of all observations
are within a range of

√
2σ. This, together with an indirect

application of Talagrand’s convex distance inequality via
the result of (Liberty et al., 2008), enables us to construct
exponential tail bounds.

3.1. Concentration of Measure Bounds

In this subsection we show that under a hashed feature-map
the length of each vector is preserved with high probability.
Talagrand’s inequality (Ledoux, 2001) is a key tool for the
proof of the following theorem (detailed in the appendix B).

Theorem 3 Let ǫ < 1 be a fixed constant andx be a given
instance such that‖x‖2 = 1. If m ≥ 72 log(1/δ)/ǫ2 and
‖x‖∞ ≤ ǫ

18
√

log(1/δ) log(m/δ)
, we have that

Pr[|‖x‖2φ − 1| ≥ ǫ] ≤ 2δ. (4)

Note that an analogous result would also hold for the orig-
inal hash kernel of (Shi et al., 2009), the only modifica-
tion being the associated bias terms. The above result can
also be utilized to show a concentration bound on the inner
product between two general vectorsx andx′.

Corollary 4 For two vectorsx andx′, let us define

σ := max(σx,x, σx′,x′ , σx−x′,x−x′)

η := max

(‖x‖∞
‖x‖2

,
‖x′‖∞
‖x′‖2

,
‖x− x′‖∞
‖x− x′‖2

)

.

Also let ∆ = ‖x‖2 + ‖x′‖2 + ‖x− x′‖2. If m ≥
Ω( 1

ǫ2 log(1/δ)) andη = O( ǫ
log(m/δ) ), then we have that

Pr
[

| 〈x, x′〉φ−〈x, x′〉 |>ǫ∆/2
]

<δ.

The proof for this corollary can be found in appendix C. We
can also extend the bound in Theorem 3 for the maximal
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canonical distortion over large sets of distances between
vectors as follows:

Corollary 5 If m ≥ Ω( 1
ǫ2 log(n/δ)) and η =

O( ǫ
log(m/δ) ). Denote byX = {x1, . . . , xn} a set of vectors

which satisfy‖xi − xj‖∞ ≤ η ‖xi − xj‖2 for all pairs i, j.
In this case with probability1− δ we have for alli, j

| ‖xi − xj‖2φ − ‖xi − xj‖22 |
‖xi − xj‖22

≤ ǫ.

This means that the number of observationsn (or corre-
spondingly the size of the un-hashed kernel matrix) only
enterslogarithmicallyin the analysis.

Proof We apply the bound of Theorem 3 to each distance
individually. Note that each vectorxi − xj satisfies the
conditions of the theorem, and hence for each vectorxi −
xj , we preserve the distance upto a factor of(1 ± ǫ) with
probability1 − δ

n2 . Taking the union bound over all pairs
gives us the result.

3.2. Multiple Hashing

Note that the tightness of the union bound in Corollary 5
depends crucially on the magnitude ofη. In other words,
for large values ofη, that is, whenever some terms inx
are very large, even a single collision can already lead to
significant distortions of the embedding. This issue can
be amended by trading off sparsity with variance. A vec-
tor of unit length may be written as(1, 0, 0, 0, . . .), or

as
(

1√
2
, 1√

2
, 0, . . .

)

, or more generally as a vector withc

nonzero terms of magnitudec−
1
2 . This is relevant, for in-

stance whenever the magnitudes ofx follow a known pat-
tern, e.g. when representing documents as bags of words
since we may simply hash frequent words several times.
The following corollary gives an intuition as to how the
confidence bounds scale in terms of the replications:

Lemma 6 If we letx′ = 1√
c
(x, . . . , x) then:

1. It is norm preserving:‖x‖2 = ‖x′‖2 .

2. It reduces component magnitude by1√
c
=

‖x′‖
∞

‖x‖∞
.

3. Variance increases toσ2
x′,x′ = 1

cσ
2
x,x+

c−1
c 2 ‖x‖42 .

Applying Lemma 6 to Theorem 3, a large magnitude can
be decreased at the cost of an increased variance.

3.3. Approximate Orthogonality

For multitask learning, we must learn a different parameter
vector for each related task. When mapped into the same

hash-feature space we want to ensure that there is little in-
teraction between the different parameter vectors. LetU be
a set of different tasks,u ∈ U being a specific one. Letw be
a combination of the parameter vectors of tasks inU \ {u}.
We show that for any observationx for tasku, the inter-
action ofw with x in the hashed feature space is minimal.
For eachx, let the image ofx under the hash feature-map
for tasku be denoted asφu(x) = φ(ξ,h)((x, u)).

Theorem 7 Let w ∈ R
m be a parameter vector for tasks

in U \ {u}. In this case the value of the inner product
〈w, φu(x)〉 is bounded by

Pr {|〈w, φu(x)〉| > ǫ} ≤ 2e
− ǫ2/2

m−1‖w‖2
2
‖x‖2

2
+ǫ‖w‖∞‖x‖∞/3

Proof We use Bernstein’s inequality (Bernstein, 1946),
which states that for independent random variablesXj ,
with E [Xj ] = 0, if C > 0 is such that|Xj| ≤ C, then

Pr





n
∑

j=1

Xj>t



≤exp

(

− t2/2
∑n

j=1 E
[

X2
j

]

+ Ct/3

)

. (5)

We have to compute the concentration property of
〈w, φu(x)〉 =

∑

j xjξ(j)wh(j). Let Xj = xjξ(j)wh(j).
By the definition ofh andξ, Xj are independent. Also,
for eachj, sincew depends only on the hash-functions for
U \ {u}, wh(j) is independent ofξ(j). Thus,E[Xj] =
E(ξ,h)

[

xjξ(j)wh(j)

]

= 0. For eachj, we also have|Xj | <
‖x‖∞ ‖w‖∞ =: C. Finally,

∑

j E[X2
j ] is given by

E





∑

j

(xjξ(j)wh(j))
2



 = 1
m

∑

j,ℓ

x2
jw

2
ℓ = 1

m ‖x‖22 ‖w‖
2
2

The claim follows by plugging both terms andC into the
Bernstein inequality (5).

Theorem 7 bounds the influence of unrelated tasks with any
particular instance. In section 5 we demonstrate the real-
world applicability with empirical results on a large-scale
multi-task learning problem.

4. Applications

The advantage of feature hashing is that it allows for sig-
nificant storage compression for parameter vectors: storing
w in the raw feature space naively requiresO(d) numbers,
whenw ∈ R

d. By hashing, we are able to reduce this to
O(m) numbers while avoiding costly matrix-vector multi-
plications common in Locally Sensitive Hashing. In addi-
tion, the sparsity of the resulting vector is preserved.
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The benefits of the hashing-trick leads to applications in
almost all areas of machine learning and beyond. In par-
ticular, feature hashing is extremely useful whenever large
numbers of parameters with redundancies need to be stored
within bounded memory capacity.

Personalization One powerful application of feature
hashing is found in multitask learning. Theorem 7 allows
us to hash multiple classifiers for different tasks into one
feature space with little interaction. To illustrate, we ex-
plore this setting in the context of spam-classifier personal-
ization.

Suppose we have thousands of usersU and want to per-
form related but not identical classification tasks for each
of the them. Users provide labeled data by marking emails
as spamor not-spam. Ideally, for each useru ∈ U , we
want to learn a predictorwu based on the data of that user
solely. However, webmail users are notoriously lazy in la-
beling emails and even those that do not contribute to the
training data expect a working spam filter. Therefore, we
also need to learn an additional global predictorw0 to allow
data sharing amongst all users.

Storing all predictorswi requiresO(d × (|U | + 1)) mem-
ory. In a task like collaborative spam-filtering,|U |, the
number of users can be in the hundreds of thousands and
the size of the vocabulary is usually in the order of mil-
lions. The naive way of dealing with this is to elimi-
nate all infrequent tokens. However, spammers target this
memory-vulnerability by maliciously misspelling words
and thereby creating highly infrequent but spam-typical
tokens that “fall under the radar” of conventional classi-
fiers. Instead, if all words are hashed into a finite-sized
feature vector, infrequent but class-indicative tokens get a
chance to contribute to the classification outcome. Further,
large scale spam-filters (e.g.Yahoo MailTMor GMailTM)
typically have severe memory and time constraints, since
they have to handle billions of emails per day. To guaran-
tee a finite-size memory footprint we hash all weight vec-
torsw0, . . . , w|U| into a joint, significantly smaller, feature
spaceRm with different hash functionsφ0, . . . , φ|U|. The
resulting hashed-weight vectorwh ∈ R

m can then be writ-
ten as:

wh = φ0(w0) +
∑

u∈U

φu(wu). (6)

Note that in practice the weight vectorwh can be learned
directly in the hashed space. All un-hashed weight vectors
never need to be computed. Given a new document/email
x of useru ∈ U , the prediction task now consists of calcu-
lating 〈φ0(x) + φu(x), wh〉. Due to hashing we have two
sources of error – distortionǫd of the hashed inner prod-
ucts and the interference with other hashed weight vectors

ǫi. More precisely:

〈φ0(x) + φu(x), wh〉 = 〈x,w0 + wu〉+ ǫd + ǫi. (7)

The interference error consists of all collisions between
φ0(x) or φu(x) with hash functions of other users,

ǫi=
∑

v∈U,v 6=0

〈φ0(x), φv(wv)〉+
∑

v∈U,v 6=u

〈φu(x), φv(wv)〉 . (8)

To show thatǫi is small with high probability we can
apply Theorem 7 twice, once for each term of (8).
We consider each user’s classification to be a separate
task, and since

∑

v∈U,v 6=0 wv is independent of the hash-
functionφ0, the conditions of Theorem 7 apply withw =
∑

v 6=0 wv and we can employ it to bound the second term,
∑

v∈U,v 6=0 〈φu(x), φu(wv)〉. The second application is
identical except that all subscripts “0” are substituted with
“u”. For lack of space we do not derive the exact bounds.

The distortion error occurs because each hash function that
is utilized by useru can self-collide:

ǫd =
∑

v∈{u,0}
| 〈φv(x), φv(wv)〉 − 〈x,wv〉 |. (9)

To show thatǫd is small with high probability, we apply
Corollary 4 once for each possible values ofv.

In section 5 we show experimental results for this set-
ting. The empirical results are stronger than the theoretical
bounds derived in this subsection—our technique outper-
forms a single global classifier on hundreds thousands of
users. We discuss an intuitive explanation in section 5.

Massively Multiclass Estimation We can also regard
massively multi-class classification as a multitask problem,
and apply feature hashing in a way similar to the person-
alization setting. Instead of using a different hash func-
tion for each user, we use a different hash function for each
class.

(Shi et al., 2009) apply feature hashing to problems with
a high number of categories. They show empirically that
joint hashing of the feature vectorφ(x, y) can be efficiently
achieved for problems with millions of features and thou-
sands of classes.

Collaborative Filtering Assume that we are given a very
large sparse matrixM where the entryMij indicates what
action useri took on instancej. A common example for
actions and instances is user-ratings of movies (Bennett &
Lanning, ). A successful method for finding common fac-
tors amongst users and instances for predicting unobserved
actions is to factorizeM into M = U⊤W . If we have
millions of users performing millions of actions, storingU
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Figure 1.The hashed personalization summarized in a schematic
layout. Each token is duplicated and one copy is individualized
(e.g. by concatenating each word with a unique user identifier).
Then, the global hash function maps all tokens into a low dimen-
sional feature space where the document is classified.

andW in memory quickly becomes infeasible. Instead, we
may choose to compress the matricesU andW using hash-
ing. ForU,W ∈ R

n×d denote byu,w ∈ R
m vectors with

ui =
∑

j,k:h(j,k)=i

ξ(j, k)Ujk andwi =
∑

j,k:h′(j,k)=i

ξ′(j, k)Wjk .

where (h, ξ) and (h′, ξ′) are independently chosen hash
functions. This allows us to approximate matrix elements
Mij = [U⊤W ]ij via

Mφ
ij :=

∑

k

ξ(k, i)ξ′(k, j)uh(k,i)wh′(k,j).

This gives a compressed vector representation ofM that
can be efficiently stored.

5. Results

We evaluated our algorithm in the setting of personaliza-
tion. As data set, we used a proprietary email spam-
classification task ofn = 3.2 million emails, properly
anonymized, collected from|U | = 433167 users. Each
email is labeled asspamor not-spamby one user inU . Af-
ter tokenization, the data set consists of40 million unique
words.

For all experiments in this paper, we used the Vowpal Wab-
bit implementation1 of stochastic gradient descent on a
square-loss. In the mail-spam literature the misclassifica-
tion of not-spamis considered to be much more harmful
than misclassification ofspam. We therefore follow the
convention to set the classification threshold during test
time such that exactly1% of thenot − spam test data is
classified asspam Our implementation of the personalized
hash functions is illustrated in Figure 1. To obtain a person-
alized hash functionφu for useru, we concatenate a unique
user-id to each word in the email and then hash the newly
generated tokens with the same global hash function.

1http://hunch.net/∼vw/

Figure 2.The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification thresholdwas
chosen to keep the not-spam misclassification fixed at1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion errorǫd vanishes. The personal-
ized classifier results in an average improvement of up to30%.

The data set was collected over a span of 14 days. We
used the first 10 days for training and the remaining 4 days
for testing. Asbaseline, we chose the purely global classi-
fier trained over all users and hashed into226 dimensional
space. As226 far exceeds the total number of unique words
we can regard the baseline to be representative for the clas-
sification without hashing. All results are reported as the
amount of spam that passed the filter undetected, relative
to this baseline (eg. a value of0.80 indicates a20% reduc-
tion in spam for the user)2.

Figure 2 displays the average amount of spam in users’ in-
boxes as a function of the number of hash keysm, relative
to the baseline above. In addition to the baseline, we eval-
uate two different settings.

The global-hashed curve represents the relative
spam catch-rate of the global classifier after hashing
〈φ0(w0), φ0(x)〉. At m = 226 this is identical to the
baseline. Early convergence atm = 222 suggests that at
this point hash collisions have no impact on the classifi-
cation error and thebaselineis indeed equivalent to that
obtainable without hashing.

In thepersonalizedsetting each useru ∈ U gets her own
classifierφu(wu) as well as the global classifierφ0(w0).
Without hashing the feature space explodes, as the cross
product ofu = 400K users andn = 40M tokens results
in 16 trillion possible unique personalized features. Fig-
ure 2 shows that despite aggressive hashing, personaliza-
tion results in a30% spam reduction once the hash table is
indexed by22 bits.

2As part of our data sharing agreement, we agreed not to in-
clude absolute classification error-rates.
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Figure 3.Results for users clustered by training emails. For ex-
ample, the bucket[8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost20% spam-reduction.

User clustering One hypothesis for the strong results in
Figure 2 might originate from the non-uniform distribution
of user votes — it is possible that using personalization and
feature hashing we benefit a small number of users who
have labeled many emails, degrading the performance of
most users (who have labeled few or no emails) in the pro-
cess. In fact, in real life, a large fraction of email users do
not contribute at all to the training corpus and only interact
with the classifier during test time. The personalized ver-
sion of the test emailΦu(xu) is then hashed into buckets
of other tokens and only adds interference noiseǫi to the
classification.

In order to show that we improve the performance of most
users, it is therefore important that we not only report av-
eraged results over all emails, but explicitly examine the
effects of the personalized classifier for users depending
on their contribution to the training set. To this end, we
place users into exponentially growing buckets based on
their number of training emails and compute the relative
reduction of uncaught spam for each bucket individually.
Figure 3 shows the results on a per-bucket basis. We do not
compare against apurely local approach, with no global
component, since for a large fraction of users—those with-
out training data—this approach cannot outperform ran-
dom guessing.

It might appear rather surprising that users in the bucket
with none or very little training emails (the line of bucket
[0] is identical to bucket[1]) also benefit from personal-
ization. After all, their personalized classifier was never
trained and can only add noise at test-time. The classifier
improvement of this bucket can be explained by the sub-
jective definition ofspamandnot-spam. In the personal-
ized setting the individual component of user labeling is
absorbed by the local classifiers and the global classifier

represents thecommondefinition of spam and not-spam.
In other words, the global part of the personalized classi-
fier obtains better generalization properties, benefiting all
users.

6. Related Work

A number of researchers have tackled related, albeit differ-
ent problems.

(Rahimi & Recht, 2008)use Bochner’s theorem and sam-
pling to obtain approximate inner products for Radial Ba-
sis Function kernels. (Rahimi & Recht, 2009) extend this
to sparse approximation of weighted combinations of ba-
sis functions. This is computationally efficient for many
function spaces. Note that the representation isdense.

(Li et al., 2007)take a complementary approach: for sparse
feature vectors,φ(x), they devise a scheme of reducing the
number of nonzero terms even further. While this is in prin-
ciple desirable, it does not resolve the problem ofφ(x) be-
ing high dimensional. More succinctly, it is necessary to
express the function in the dual representation rather than
expressingf as a linear function, wherew is unlikely to be
compactly represented:f(x) = 〈φ(x), w〉.
(Achlioptas, 2003)provides computationally efficient ran-
domization schemes for dimensionality reduction. Instead
of performing a densed·m dimensional matrix vector mul-
tiplication to reduce the dimensionality for a vector of di-
mensionalityd to one of dimensionalitym, as is required
by the algorithm of (Gionis et al., 1999), he only requires1

3
of that computation by designing a matrix consisting only
of entries{−1, 0, 1}. Pioneered by(Ailon & Chazelle,
2006), there has been a line of work (Ailon & Liberty,
2008; Matousek, 2008) on improving the complexity of
random projection by using various code-matrices in or-
der to preprocess the input vectors. Some of our theoretical
bounds are derivable from that of(Liberty et al., 2008).

A related construction is the CountMin sketch of(Cor-
mode & Muthukrishnan, 2004) which stores counts in
a number of replicates of a hash table. This leads to good
concentration inequalities for range and point queries.

(Shi et al., 2009)propose a hash kernel to deal with the is-
sue of computational efficiency by a very simple algorithm:
high-dimensional vectors are compressed by adding up all
coordinates which have the same hash value — one only
needs to perform as many calculations as there are nonzero
terms in the vector. This is a significant computational sav-
ing over locality sensitive hashing (Achlioptas, 2003; Gio-
nis et al., 1999).

Several additional works provide motivation for the investi-
gation of hashing representations. For example,(Ganchev
& Dredze, 2008)provide empirical evidence that the hash-
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ing trick can be used to effectively reduce the memory
footprint on many sparse learning problems by an order of
magnitude via removal of the dictionary. Our experimen-
tal results validate this, and show that much more radical
compression levels are achievable. In addition,(Langford
et al., 2007)released the Vowpal Wabbit fast online learn-
ing software which uses a hash representation similar to
that discussed here.

7. Conclusion

In this paper we analyze the hashing-trick for dimensional-
ity reduction theoretically and empirically. As part of our
theoretical analysis we introduce unbiased hash functions
and provide exponential tail bounds for hash kernels. These
give further inside into hash-spaces and explain previously
made empirical observations. We also derive that random
subspaces of the hashed space are likely to not interact,
which makes multitask learning with many tasks possible.

Our empirical results validate this on a real-world applica-
tion within the context of spam filtering. Here we demon-
strate that even with a very large number of tasks and
features, all mapped into a joint lower dimensional hash-
space, one can obtain impressive classification results with
finite memory guarantee.
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A. Mean and Variance

Proof [Lemma 2] To compute the expectation we expand

〈x, x′〉φ =
∑

i,j

ξ(i)ξ(j)xix
′
jδh(i),h(j). (10)

SinceEφ[〈x, x′〉φ] = Eh[Eξ[〈x, x′〉φ]], taking expecta-
tions overξ we see that only the termsi = j have nonzero
value, which shows the first claim. For the variance we
computeEφ[〈x, x′〉2φ]. Expanding this, we get:

〈x, x′〉2φ =
∑

i,j,k,l

ξ(i)ξ(j)ξ(k)ξ(l)xix
′
jxkx

′
lδh(i),h(j)δh(k),h(l).

This expression can be simplified by noting that:

Eξ [ξ(i)ξ(j)ξ(k)ξ(l)] = δijδkl + [1− δijkl ](δikδjl + δilδjk).

Passing the expectation overξ through the sum, this allows
us to break down the expansion of the variance into two
terms.

Eφ[〈x, x′〉2φ] =
∑

i,k

xix
′
ixkx

′
k +

∑

i6=j

x2
ix

′
j
2
Eh

[

δh(i),h(j)
]

+
∑

i6=j

xix
′
ixjx

′
jEh

[

δh(i),h(j)
]

= 〈x, x′〉2 + 1

m





∑

i6=j

x2
ix

′
j
2
+
∑

i6=j

xix
′
ixjx

′
j





by noting thatEh

[

δh(i),h(j)
]

= 1
m for i 6= j. Using the fact

thatσ2 = Eφ[〈x, x′〉2φ]−Eφ[〈x, x′〉φ]2 proves the claim.

B. Concentration of Measure

We use the concentration result derived by Liberty, Ailon
and Singer in (Liberty et al., 2008). Liberty et al. cre-
ate a Johnson-Lindenstrauss random projection matrix by
combining a carefully constructed deterministic matrixA
with random diagonal matrices. For completeness we
restate the relevant lemma. Leti range over the hash-
buckets. Letm = c log(1/δ)/ǫ2 for a large enough con-
stantc. For a given vectorx, define the diagonal matrix
Dx as(Dx)jj = xj . For any matrixA ∈ ℜm×d, define
‖x‖A ≡ maxy:‖y‖2=1 ‖ADxy‖2.

Lemma 2 (Liberty et al., 2008). For any column-
normalized matrixA, vector x with ‖x‖2 = 1 and an
i.i.d. random±1 diagonal matrixDs, the following holds:
∀x, if ‖x‖A ≤ ǫ

6
√

log(1/δ)
then,Pr[|‖ADsx‖2−1| > ǫ] ≤

δ.

We also need the following form of a weighted balls and
bins inequality – the statement of the Lemma, as well as

the proof follows that of Lemma 6 (Dasgupta et al., 2010).
We still outline the proof because of some parameter values
being different.

Lemma 8 Letm be the size of the hash function range and
let η = 1

2
√

m log(m/δ)
. If x is such that‖x‖2 = 1 and

‖x‖∞ ≤ η, then defineσ2
∗ = maxi

∑d
j=1 x

2
jδih(j) wherei

ranges over all hash-buckets. We have that with probability
1− δ,

σ2
∗ ≤ 2

m

Proof We outline the proof-steps. Since the buck-
ets have identical distribution, we look only at the1st

bucket, i.e. ati = 1 and bound
∑

j:h(j)=1 x
2
j . De-

fine Xj = x2
j

(

δ1h(j) − 1
m

)

. Then Eh[Xj ] = 0 and

Eh[X
2
j ] = x4

j

(

1
m − 1

m2

)

≤ x4
j

m ≤ x2
jη

2

m using‖x‖∞ ≤
η. Thus,

∑

j Eh[X
2
j ] ≤ η2

m . Also note that
∑

j Xj =
∑

j:h(j)=1 x
2
j − 1

m . Plugging this into the Bernstein’s in-
equality, equation 5, we have that

Pr[
∑

j

Xj >
1

m
] ≤ exp

(

− 1/2m2

η2/m+ η2/3m

)

= exp(− 3

8mη2
) ≤ exp(− log(m/δ)) ≤ δ/m

By taking union bound over all them buckets, we get the
above result.

Proof [Theorem 3] Given the functionφ = (h, r), define
the matrixA asAij = δih(j) andDs as(Ds)jj = rj . Let
x be as specified, i.e.‖x‖2 = 1 and‖x‖∞ ≤ η. Note that
‖x‖φ = ‖ADsx‖2. Let y ∈ ℜd be such that‖y‖2 = 1.
Thus

‖ADxy‖22 =

m
∑

i=1





d
∑

j=1

yjδih(j)xj





2

≤
m
∑

i=1

(

d
∑

j=1

y2j δih(j))(

d
∑

j=1

x2
jδih(j))

≤
m
∑

i=1

(

d
∑

j=1

y2j δih(j))σ
2
∗ ≤ σ2

∗ .

by applying the Cauchy-Schwartz inequality, and using the
definition ofσ∗. Thus,‖x‖A = maxy:‖y‖2=1 ‖ADxy‖2 ≤
σ∗ ≤

√
2m−1/2. If m ≥ 72

ǫ2 log(1/δ), we have that
‖x‖A ≤ ǫ

6
√

log(1/δ)
, which satisfies the conditions of

Lemma 2 from (Liberty et al., 2008). Thus applying the
above result from Lemma 2 (Liberty et al., 2008) tox, and
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using Lemma 8, we have thatPr[|‖ADsx‖2 − 1| ≥ ǫ] ≤ δ
and hence

Pr[|‖x‖2φ − 1| ≥ ǫ] ≤ δ

by taking union over the two error probabilities of Lemma
2 and Lemma 8, we have the result.

C. Inner Product

Proof [Corollary 4] We have that2 〈x, x′〉φ = ‖x‖2φ +

‖x′‖2φ−‖x− x′‖2φ. Taking expectations, we have the stan-
dard inner product inequality. Thus,

|2 〈x, x′〉φ − 2 〈x, x′〉 | ≤ | ‖x‖2φ − ‖x‖2 |
+ | ‖x′‖2φ − ‖x′‖2 |+ | ‖x− x′‖2φ − ‖x− x′‖2 |

Using union bound, with probability1 − 3δ, each of the
terms above is bounded using Theorem 3. Thus, putting
the bounds together, we have that, with probability1− 3δ,

|2 〈φu(x), φu(x)〉 − 2 〈x, x〉 | ≤ ǫ(‖x‖2 + ‖x′‖2 + ‖x− x′‖2)

D. Refutation of the Previous Incorrect Proof

There were a few bugs in the previous version of the pa-
per (Weinberger et al., 2009). We now detail each of them
and illustrate why it was an error. The current result shows
that the using hashing we can create a projection matrix
that can preserve distances to a factor of(1± ǫ) for vectors
with a bounded‖x‖∞/‖x‖2 ratio. The constraint on input
vectors can be circumvented by multiple hashing, as out-
lined in Section 3.2, but that would require hashingO( 1

ǫ2 )
times. Recent work (Dasgupta et al., 2010) suggests that
better theoretical bounds can be shown for this construc-
tion. We thank Tamas Sarlos and Ravi Kumar for the fol-
lowing writeup on the errors and for suggestion the new
proof in Appendix B.

1. The statement of the main theorem in Weinberger et
al. (Weinberger et al., 2009, Theorem 3) is false as
it contradicts the lower bound of Alon (Alon, 2003).
The flaw lies in the probability of error in (Weinberger
et al., 2009, Theorem 3), which was claimed to be
exp(−

√
ǫ

4η ). This error can be made arbitrarily small
without increasing the embedding dimensionalitym

but by decreasingη = ||x||∞
||x||2 , which in turn can be

achieved by preprocessing the input vectorsx. How-
ever, this contradicts Alon’s lower bound on the em-

bedding dimensionality. The details of this contra-
diction are best presented through (Weinberger et al.,
2009, Corollary 5) as follows.

Set m = 128 and δ = 1/2 and consider the ver-
tices of then-simplex inℜn+1, i.e.,x1 = (1, 0, ..., 0),
x2 = (0, 1, 0, ..., 0), . . . . LetP ∈ ℜ(n+1)c×(n+1)

be the naive, replication based preconditioner, with
replication parameterc = 512 log2 n as defined in
Section 2 of our submission or (Weinberger et al.,
2009, Section 3.2). Therefore for all pairsi 6= j
we have that||Pxi − Pxj ||∞ = 1/

√
c and that

||Pxi − Pxj ||2 =
√
2. Hence we can apply (Wein-

berger et al., 2009, Corollary 5) to the set of vec-
torsPxi with η = 1/

√
2c = 1/(32 logn); then the

claimed approximation error is
√

2
m+64η2 log2 n

2δ =
1
8+

1
16 ≤ 1

4 . If Corollary 5 were true, then it would fol-
low that with probability at least1/2, the linear trans-
formationA = φ · P : ℜn+1 → ℜm distorts the pair-
wise distances of the aboven + 1 vectors by at most
a 1 ± 1/4 multiplicative factor. On the other hand,
the lower bound of Alon shows that any such transfor-
mationA must map toΩ(log n) dimensions; see the
remarks following Theorem 9.3 in (Alon, 2003) and
setǫ = 1/4 there. This clearly contradictsm = 128
above.

2. The proof of the Theorem 3 contained a fatal, un-
fixable error. Recall thatδij denotes the usual Kro-
necker symbol, andh andh′ are hash functions. Wein-
berger et al. make the following observation after
equation (13) of their proof on page 8 in Appendix
B.

“First note that
∑

i

∑

j δh(j)i + δh′(j)i is at
most2t, wheret = |{j : h(j) 6= h′(j)}|.”

The quoted observation is false. Letd denote the di-
mension of the input. Then,

∑

i

∑

j δh(j)i + δh′(j)i =
∑

j(
∑

i δh(j)i + δh′(j)i) =
∑

j 2 = 2d, independent
of the choice of the hash function. Note thatt played
a crucial role in the proof of (Weinberger et al., 2009)
relating the Euclidean approximation error of the di-
mensionality reduction to Talagrand’s convex distance
defined over the set of hash functions. Albeit the error
is elementary, we do not see how to rectify its conse-
quences in (Weinberger et al., 2009) even if the claim
were of the right form.

3. The proof of Theorem 3 in (Weinberger et al., 2009)
also contains a minor and fixable error. To see this,
consider the sentence towards the end of the proof
Theorem 3 in (Weinberger et al., 2009) where0 <
ǫ < 1 andβ = β(x) ≥ 1.

“Noting that s2 = (
√

β2 + ǫ −
β)/4||x||∞ ≥ √

ǫ/4||x||∞, ...”
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Here the authors wrongly assume that
√

β2 + ǫ−β ≥√
ǫ holds, whereas the truth is

√

β2 + ǫ − β ≤ √
ǫ

always.

Observe that this glitch is easy to fix locally, however
this change is minor and the modified claim would
still be false. Since for all0 ≤ y ≤ 1 we have
that

√
1 + y ≥ 1 + y/3, from β ≥ 1 it follows

that
√

β2 + ǫ − β ≥ ǫ/3. Plugging the latter esti-
mate into the “proof” of Theorem 3 would result in a
modified claim where the original probability of error,
exp(−

√
ǫ

4η ), is replaced withexp(− ǫ
12η ). Updating

the numeric constants in the first section of this note
would show that the new claim still contradicts Alon’s
lower bound. To justify observe that counter example
is based on a constantǫ and the modified claim would
still lack the necessaryΩ(logn) dependency in its tar-
get dimensionality.


