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Abstract frequently encounter the opposite problem: the original in
put space is almost linearly separable (often because of the
existence of handcrafted non-linear features), yet, #in-tr

ing set may be prohibitively large in size and very high di-
mensional. In such a case, there is no need to map the input
vectors into a higher dimensional feature space. Instead,
limited memory makes storing a kernel matrix infeasible.

Empirical evidence suggests that hashing is an
effective strategy for dimensionality reduction
and practical nonparametric estimation. In this
paper we provide exponential tail bounds for fea-
ture hashing and show that the interaction be-
tween random subspaces is negligible with high
probability. We demonstrate the feasibility of For this common scenario several authors have recently
this approach with experimental results for a new proposed an alternative, but highly complimentary vari-
use case — multitask learning with hundreds of ation of the kernel-trick, which we refer to as the
thousands of tasks. hashing-trick onehasheghe high dimensional input vec-
tors x into a lower dimensional feature spadg™ with
¢ : X — R™ (Langford et al., 2007; Shi et al., 2009). The
1. Introduction parameter vector of a classifier can therefore liveRifi
) ) instead of inR™ with kernel matrices oR? in the origi-
Kernel methods use inner products as fthe b_a3|c toql foRal input space, where: < n andm < d. Different
comparisons between objects.  That is, given objectgom random projections, the hashing-trick preserves-spar
a1,..., o, € X for some domair, they rely on sity and introduces no additional overhead to store projec-

k(o z;) = ($z1), $(;) (1y tionmatrices.
To our knowledge, we are the first to provide exponential
to compare the featuregz; ) of z; and¢(z;) of z; respec- (4| hounds on the canonical distortion of these hashed inne
tively. products. We also show that the hashing-trick can be partic-

Eq. (1) is often famously referred to as tkernel-trick It ularly powerful in multi-task learning scenarios where the
allows the use of inner products between very high dimenoriginal feature spaces are the cross-product of the lata,
sional feature vectorg(z;) and ¢(z;) implicitly through and the set_ of task&]. We show that one can use different
the definition of a positive semi-definite kernel mattix ~hash functions for each tagk., ..., ¢y to map the data
without ever having to compute a vectofz;) directly. ~ into one joint space with little interference.

This can be _pz_;\rticglarly powerful in_classification §etﬂ'ng While many potential applications exist for the hashing-

where the original input representation has a non-linear deyjck, as a particular case study we focus on collaborative

cision boundary. Often, linear separability can be actdeve gmaj| spam filtering. In this scenario, hundreds of thou-

in a high dimensional feature spagér; ). sands of users collectively label emails s;amor not-

In practice, for example in text classification, researsher SPam and each user expects a personalized classifier that
reflects their particular preferences. Here, the set oftask
U, is the number of email users (this can be very large for

Preliminary work. Under review by the International Coefece open systems such &&hoo MailMor GmaiITM), and the

on Machine Learning (ICML). Do not distribute. feature space spans the union of vocabularies in multitudes
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of languages. present paper continues where (Shi et al., 2009) falls short

. . oo we prove exponential tail bounds. These bounds hold for

This paper makes four main contributions: 1. In sec- .

. . - . . . general hash kernels, which we later apply to show how

tion 2 we introduce specialized hash functions with unbi- . . .
hashing enables us to do large-scale multitask learning ef-

ased inner-products that are directly applicable to a Iarg‘ﬁciently. We start with a simple lemma about the bias and

variety of kernel-methods. 2. In section 3 we provide ex- - :
: : . variance of the hash kernel. The proof of this lemma ap-
ponential tail bounds that help explain why hashed fea- : :
ears in appendix A.

ture vectors have repeatedly lead to, at times surpris,ingl)}O

strong empirical results. 3. Also in section 3 we show thatl_emma 2> The hash kemel is unbiased. that is

the interference between independently hashed subspacEs / / - :
) gy e - . = . Moreover, the variance is
is negligible with high probability, which allows largeae sl >¢]1 .2} ) v vatl I
multi-task learning in a very compressed space. 4. In sec?a.r = (Z#J— w7 + Iifféxjiv}), and thus, for

tion 5 we introduce collaborative email-spam filtering as |||, = ||2/||, = 1, 02.,=0 (L)
. . . . k] m
novel application for hash representations and provide ex-

perimental results on large-scale real-world spam dasa setthjs suggests that typical values of the hash kernel should
be concentrated Withiﬁ)(\/%) of the target value. We use
2. Hash Functions Chebyshev’s inequality to show that half of all observagion
. . are within a range of/20. This, together with an indirect
We introduce a variant on the hash kernel proposed by (S'prlication of Talagrand’s convex distance inequality via

e_t al., 20(.)9)' This scheme is modified through the intr(_)QUcihe result of (Liberty et al., 2008), enables us to construct
tion of asignedsum of hashed features whereas the Or'g'nabxponential tail bounds

hash kernels use amsignedsum. This modification leads
to an unbiased estimate, which we demonstrate and l‘urth%r1 Concentration of Measure Bounds
utilize in the following section. -

In this subsection we show that under a hashed feature-map
Definition 1 Denote byh a hash functionh : N —  thelength of each vector is preserved with high probability
{1,...,m}. Moreover, denote by a hash functiort :  Talagrand’s inequality (Ledoux, 2001) is a key tool for the

N — {+1}. Then for vectors,s” € (, we define the proof of the following theorem (detailed in the appendix B).
hashed feature mapand the corresponding inner product

as Theorem 3 Lete < 1 be a fixed constant andbe a given
(h&) (o _ N 2 instance such thatz|z = 1. If m > 72log(1/§)/e* and
% (@) _ Z §(2)x1 @ [2]loo < < , we have that
Jih(j)=i 184/1og(1/6) log(m/5)

and (z,a'), = (6" (a), 6" (). (3) Prllle] — 1] > d < 26. @)

INote that an analogous result would also hold for the orig-
inal hash kernel of (Shi et al., 2009), the only modifica-
tion being the associated bias terms. The above result can
a?JSO be utilized to show a concentration bound on the inner
product between two general vectarandz’.

Although the hash functions in definition 1 are defined ove
the natural numberd, in practice we often consider hash
functions over arbitrary strings. These are equivalentesi
each finite-length string can be represented by a unique n
ural number.

Usually, we abbreviate the notatigi¢)(-) by just¢(-). Corollary 4 For two vectorse andz’, let us define
Two hash functions and¢’ are different whem = ¢(-€)

and¢’ = ¢("'¢") such that eitheh’ # hor & # ¢. The 0 :=max(0z,0, 00’ 2/, Oa—a’,o—a')
purpose of the binary haghis to remove the bias inherent o lz[loo |2'loo |2 — 2|0
in the hash kernel of (Shi et al., 2009). TENE 2l 2 e =2 )

In a multi-task setting, we obtain instances in combinationA
with tasks,(z,u) € X x U. We can naturally extend our Q0
definition 1 to hash pairs, and will writg, () = ¢(x, u).

Iso let A = || + |2/|]> + ||z —2/|>. W m >
(% log(1/6)) andn = O(i5z07s7)» then we have that

3. Analysis Pr[| (@ 4'),— (@, 2') | > et /2] <5

The following section is dedicated to theoretical analysisThe proof for this corollary can be found in appendix C. We
of hash kernels and their applications. In this sense, thean also extend the bound in Theorem 3 for the maximal
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canonical distortion over large sets of distances betweehash-feature space we want to ensure that there is little in-

vectors as follows: teraction between the different parameter vectorslLbe

a set of differenttasks, € U being a specific one. Let be
Corollary5 If m > Q(&log(n/d)) and 7 =  acombination of the parameter vectors of taskis in{u}.
Oiozim7ay)- Denote byX = {z1,...,z,} asetofvectors Wwe show that for any observationfor tasku, the inter-
which satisfyl|z; — x;|| . <7 lz; — x;||, forall pairsi, j.  action ofw with z in the hashed feature space is minimal.
In this case with probability — 6 we have for alk, j For eachr, let the image ofc under the hash feature-map

for tasku be denoted ag, (z) = ¢ ((z,u)).

2 2
i =y = [l — 2515 |

[ Theorem 7 Letw € R™ be a parameter vector for tasks
in U \ {u}. In this case the value of the inner product
This means that the number of observatieanfr corre-  (w, ¢, ()) is bounded by
spondingly the size of the un-hashed kernel matrix) only

i i i i _ e2/2
enterdogarithmicallyin the analysis. Pr{|(w, du(z))] > €} < 2¢ T TETEFT AR T= TS

Proof We apply the bound of Theorem 3 to each distance
individually. Note that each vector; — z; satisfies the
conditions of the theorem, and hence for each vector
xj, we preserve the distance upto a factof bt ) with
probability 1 — #‘2 Taking the union bound over all pairs
gives us the result. |

Proof We use Bernstein’s inequality (Bernstein, 1946),
which states that for independent random variablgs
with E [X,] = 0, if C' > 0is such thatX ;| < C, then

S £2/2
P X:i>t| < — . 5
3.2. Multiple Hashing i= :
Note that the tightness of the union bound in Corollary S\We have to compute the concentration property of
depends crucially on the magnitudef In other words, (w0, 6u(2)) = 3 2,6 wny. LetX; = 60wy,
- B k) u - .' J 7" j = j E
for large values ofy, that is, whenever some terms in By the definitionjofh andé, X, are independent. Also,

are very large, even a single collision can already lead tQor eachj, sincew depends only on the hash-functions for
significant distortions of the embedding. This issue cal

; R : "7 \ {u}, wy(j) is independent of(j). Thus,E[X;] =
be amended by trading off sparsity with variance. A vec—E(E.’h) [:cjg(j)wh(j)} — 0. For eacty, we also havex ;| <

tor of unit length may be written agl,0,0,0,...), or |z 0] =: C. Finally, >, E[X2] is given by
as (%, \/%, 0,.. ) or more generally as a vector with

nonzero terms of magnitudﬂ%. This is relevant, for in- ) )
stance whenever the magnitudescdbllow a known pat-  E Z(ij(j)wh(j))Q = % Z«’C?w? = % (5 llwll
tern, e.g. when representing documents as bags of words | J 3¢

since we may simply hash frequent words several times. ) . )

The following corollary gives an intuition as to how the 1he claim follows by plugging both terms adinto the

confidence bounds scale in terms of the replications: Bernstein inequality (5). u

Lemma 6 Ifwe leta’ = —=(a,..., x) then: . .
Theorem 7 bounds the influence of unrelated tasks with any

particular instance. In section 5 we demonstrate the real-

1. Itis norm preserving||z||, = [|2']|, - R o
P gillly = llal; world applicability with empirical results on a large-seal

2. It reduces component magnitudegy: ”‘z‘“x. multi-task learning problem.
3. Variance increases 02, ,, =202 , +<=12|jz||;. 4. Applications

Applying Lemma 6 to Theorem 3, a large magnitude canT_h,e advantage of feature.hashlng is that it allows for Sig-
be decreased at the cost of an increased variance. nificant storage compression for parameter vectors: gforin
w in the raw feature space naively requit@gl) numbers,

whenw € RY. By hashing, we are able to reduce this to
O(m) numbers while avoiding costly matrix-vector multi-
For multitask learning, we must learn a different parameteplications common in Locally Sensitive Hashing. In addi-
vector for each related task. When mapped into the samion, the sparsity of the resulting vector is preserved.

3.3. Approximate Orthogonality
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The benefits of the hashing-trick leads to applications ine;. More precisely:

almost all areas of machine learning and beyond. In par-

ticular, feature hashing is extremely useful wheneverdarg  (¢o(®) + ¢u(z), wp) = (v, wo +wu) + €4+ €. (7)

numbers of parameters with redundancies need to be stored

within bounded memory capacity. The interference error consists of all collisions between
¢o(x) or ¢, (x) with hash functions of other users,

Personalization One powerful application of feature
hashing is found in multitask learning. Theorem 7 allows “— Z (@0(@), do(wo)) + Z (Pu(2), $u(ws)).  (8)
us to hash multiple classifiers for different tasks into one velv#0 velv7u

feature space Wifch little interaction. To iIIust_rc_';\te, We X To show thate; is small with high probability we can
plore this setting in the context of spam-classifier perlsonaapp|y Theorem 7 twice, once for each term of (8).

Ization. We consider each user’s classification to be a separate

Suppose we have thousands of ugérand want to per- task, and sincg_, ., ., w, is independent of the hash-
form related but not identical classification tasks for eachfunction, the conditions of Theorem 7 apply with =

of the them. Users provide labeled data by marking emails_ . w» and we can employ it to bound the second term,
as spamor not-spam Ideally, for each user. € U, we X ,cr,020 (Pu(2), du(wy)). The second application is
want to learn a predictQDu based on the data of that user identical except that all SUbSCfiptS “0” are substitutethwi
solely. However, webmail users are notoriously lazy in la-‘U". For lack of space we do not derive the exact bounds.
beling emails and even those that do not contribute 0 thge gistortion error occurs because each hash function that
training data expect a W(_)r_klng spam fllter._ Therefore, weg tilized by usen: can self-collide:

also need to learn an additional global predietgito allow

data sharing amongst all users. g = Z | (o (), do(wy)) — (z,wp) |. 9)

Storing all predictorsv; requiresO(d x (|U| + 1)) mem- ve{u,0}
ory. In a task like collaborative spam-filtering/|, the . . . .
nuymber of users can be in the hunpdreds of th%ij'sands ang) show thate, is small with h!gh probability, we apply
the size of the vocabulary is usually in the order of mil- orollary 4 once for each possible valuessof

lions. The naive way of dealing with this is to elimi- In section 5 we show experimental results for this set-
nate all infrequent tokens. However, spammers target thiting. The empirical results are stronger than the theaktic
memory-vulnerability by maliciously misspelling words bounds derived in this subsection—our technique outper-
and thereby creating highly infrequent but spam-typicalforms a single global classifier on hundreds thousands of
tokens that “fall under the radar” of conventional classi-users. We discuss an intuitive explanation in section 5.
fiers. Instead, if all words are hashed into a finite-sized

feature vector, infrequent but class-indicative tokensage Massively Multiclass Estimation We can also regard
chance to contribute to the classification outcome. Fu,rthermassive|y multi-class classification as a multitask profle
large scale spam-filters (e.grahoo MailMor GMail™)  and apply feature hashing in a way similar to the person-
typically have severe memory and time constraints, sinclization setting. Instead of using a different hash func-

they have to handle billions of emails per day. To guarantion for each user, we use a different hash function for each
tee a finite-size memory footprint we hash all weight vec-c|ass.

torswy, . . ., w)y| iNto ajoint, significantly smaller, feature
spaceR™ with different hash functiongy, . .., ¢;;7|. The
resulting hashed-weight vectay, € R™ can then be writ-
ten as:

(Shi et al., 2009) apply feature hashing to problems with
a high number of categories. They show empirically that
joint hashing of the feature vecto(z, y) can be efficiently
achieved for problems with millions of features and thou-
wp, = do(wo) + Z b (W) (6)  sands of classes.
uelU
Collaborative Filtering Assume that we are given a very
Note that in practice the weight vectoy, can be learned large sparse matri%/ where the entry\/;; indicates what
directly in the hashed space. All un-hashed weight vectoraction useri took on instancg. A common example for
never need to be computed. Given a new document/emadictions and instances is user-ratings of movies (Bennett &
x of useru € U, the prediction task now consists of calcu- Lanning, ). A successful method for finding common fac-
lating (oo () + ¢ (x),wy). Due to hashing we have two tors amongst users and instances for predicting unobserved
sources of error — distortiog; of the hashed inner prod- actions is to factorizé\/ into M = U'W. If we have
ucts and the interference with other hashed weight vectorsillions of users performing millions of actions, storibg
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Figure 1.The hashed personalization summarized in a schemati( 18 2 2 " 2%
layout. Each token is duplicated and one copy is individigali b bits in hash-table

(e.g. by concatenating each word with a unique user identifie
Then, the global hash function maps all tokens into a low dime

sional feature space where the document is classified. Figure 2.The decrease of uncaught spam over the baseline clas-

sifier averaged over all users. The classification threstals
chosen to keep the not-spam misclassification fixedl %t
The hashed global classifiggl¢bal-hashell converges relatively
soon, showing that the distortion errgrvanishes. The personal-
ized classifier results in an average improvement of ujté.

andW in memory quickly becomes infeasible. Instead, we
may choose to compress the matri€eandV using hash-
ing. ForU, W € R™*< denote byu, w € R™ vectors with

= > €. bUp andw; = > €. E)Wi

Jik:h(j,k)=1 Jik:h! (5,k)=1i

where (h,€) and (', ¢’) are independently chosen hash The data set was collected over a span of 14 days. We
functions. This allows us to approximate matrix elementsused the first 10 days for training and the remaining 4 days

M;; = [UTW],; via for testing. Asbaselingwe chose the purely global classi-
fier trained over all users and hashed i2t6 dimensional
qu — ZE (K, ) (K, 5)th (k) Wht (k.5 space. A2 far exceeds the total number of unique words

we can regard the baseline to be representative for the clas-

sification without hashing. All results are reported as the
This gives a compressed vector representation/ofhat  amount of spam that passed the filter undetected, relative
can be efficiently stored. to this baseline (eg. a value 60 indicates &20% reduc-

tion in spam for the uset)

5. Results Figure 2 displays the average amount of spam in users’ in-
boxes as a function of the number of hash keygelative

to the baseline above. In addition to the baseline, we eval-
uate two different settings.

We evaluated our algorithm in the setting of personallza
tion. As data set, we used a proprietary email spam-=
classification task o, = 3.2 million emails, properly

anonymized, collected froffU| = 433167 users. Each The global-hashed curve represents the relative

email is labeled aspamor not-spanby one user ifV. Af-  spam catch-rate of the global classifier after hashing
ter tokenization, the data set consistsiOfmillion unique (¢ (wy), ¢o(x)). At m = 226 this is identical to the
words. baseline. Early convergencemat = 222 suggests that at

For all experiments in this paper, we used the Vowpal Wwabthis point hash collisions have no impact on the classifi-
cation error and thdaselineis indeed equivalent to that

bit implementatiofh of stochastic gradient descent on a ] ‘ -

square-loss. In the mail-spam literature the misclassifica®Ptainable without hashing.

tion of not-spamis considered to be much more harmful |n the personalizedsetting each user € U gets her own
than misclassification ofpam We therefore follow the  classifier¢, (w,) as well as the global classifier, (wg).
convention to set the classification threshold during testyithout hashing the feature space explodes, as the cross
time such that exactly% of the not — spam test data is  product ofu = 400K users andr = 40M tokens results
classified aspam Our implementation of the personalized in 16 trillion possible unique personalized features. Fig-
hash functions s illustrated in Figure 1. To obtain a pefsonyre 2 shows that despite aggressive hashing, personaliza-

alized hash function,, for useru, we concatenate a unique tjon results in 80% spam reduction once the hash table is
user-id to each word in the email and then hash the newlyjhdexed by22 bits.

generated tokens with the same global hash function. -
2As part of our data sharing agreement, we agreed not to in-

http://hunch.netbvw/ clude absolute classification error-rates.
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relative spam miss-rate by hash-table size represents theommondefinition of spam and not-spam.

14 [0 In other words, the global part of the personalized classi-
# 12 [ fier obtains better generalization properties, benefitihg a
4 1 23] users.
E 0.8 14,71
§ 0.6 [8,15]
£ o0a [16,31] 6. Related Work
% o [32,63]

0 [64,) A number of researchers have tackled related, albeit differ

18 20 2 2 26 —baseline ent problems.

Pits ofhashzble (Rahimi & Recht, 2008) use Bochner’s theorem and sam-

pling to obtain approximate inner products for Radial Ba-
Figure 3Results for users clustered by training emails. For ex-gjs Function kernels. (Rahimi & Recht, 2009) extend this
ample, the buckefB, 15] consists of all users with eight to fifteen 4 gnarse approximation of weighted combinations of ba-
training emails. Although users in buckets with large amouf sis functions. This is computationally efficient for many

training data do benefit more from the personalized clas$ifie . S
to 65% reduction in spam), even users that did not contribute tofunctlon spaces. Note that the representatiafeisse

the training corpus at all obtain alma1% spam-reduction. (Li etal., 2007)take a complementary approach: for sparse
feature vectorsyp(x), they devise a scheme of reducing the
number of nonzero terms even further. While this is in prin-

User clustering One hypothesis for the strong resuits in CIP1€ desirable, it does not resolve the problemyof) be-

Figure 2 might originate from the non-uniform distribution "9 Nigh dimensional. More succinctly, it is necessary to
of user votes — it is possible that using personalization an@XPress the function in the dual representation rather than
feature hashing we benefit a small number of users wh&XPressing as alinear Tunctlon, where is unlikely to be
have labeled many emails, degrading the performance grompactly representediiz) = (¢(z), w).

most users (who have labeled few or no emails) in the pro¢Achlioptas, 2003)provides computationally efficient ran-
cess. In fact, in real life, a large fraction of email users dodomization schemes for dimensionality reduction. Instead
not contribute at all to the training corpus and only intérac of performing a densé- m dimensional matrix vector mul-
with the classifier during test time. The personalized ver+iplication to reduce the dimensionality for a vector of di-
sion of the test emaib, () is then hashed into buckets mensionalityd to one of dimensionalityn, as is required

of other tokens and only adds interference neisto the  py the algorithm of (Gionis et al., 1999), he only requites
classification. of that computation by designing a matrix consisting only

In order to show that we improve the performance of mosff €ntries{—1,0,1}. Pioneered byAilon & Chazelle,
users, it is therefore important that we not only report av-2006) there has been a l'n? of wqu (Ailon & L'b‘?”y'
eraged results over all emails, but explicitly examine the?008; Mato_use_k, 2008) on improving the com_pIeX|_ty of
effects of the personalized classifier for users depending"]lndom projection by_ using various code-matrices in or-
on their contribution to the training set. To this end, we 4€" 10 preprocess the input vectors. Some of our theoretical
place users into exponentially growing buckets based offounds are derivable from that ¢Eiberty et al., 2008).

their number of training emails and compute the relativea related construction is the CountMin sketch (or-
reduction of uncaught spam for each bucket individually.mode & Muthukrishnan, 2004) which stores counts in
Figure 3 shows the results on a per-bucket basis. We do n@t number of replicates of a hash table. This leads to good

compare against purely local approach, with no global concentration inequalities for range and point queries.

component, since for a large fraction of users—those with- . . )
out training data—this approach cannot outperform ran{Shi etal., 2009propose a hash kernel to deal with the is-
dom guessing. sue of computational efficiency by a very simple algorithm:

high-dimensional vectors are compressed by adding up all
It might appear rather surprising that users in the buckegtoordinates which have the same hash value — one only
with none or very little training emails (the line of bucket needs to perform as many calculations as there are nonzero
0] is identical to buckefl]) also benefit from personal- terms in the vector. This is a significant computational sav-

ization. After all, their personalized classifier was nevering over locality sensitive hashing (Achlioptas, 2003; Gio
trained and can only add noise at test-time. The classifiefiis et al., 1999).

improvement of this bucket can be explained by the sub- . . N .-
jective definition ofspamandnot-spam In the personal- Several additional works provide motivation for the invest

ized setting the individual component of user labeling is9&tion of hashing representations. For exami@ianchev
absorbed by the local classifiers and the global classifief Predze, 2008)provide empirical evidence that the hash-
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ing trick can be used to effectively reduce the memoryDasgupta, A., Sarlos, T., & Kumar, R. (2010). A Sparse
footprint on many sparse learning problems by an order of Johnson Lindenstrauss TransforBubmitted
magnitude via removal of the dictionary. Our experimen-
tal results validate this, and show that much more radicatanchev, K., & Dredze, M. (2008). Small statistical mod-
compression levels are achievable. In additiangford els by random feature mixingVorkshop on Mobile Lan-
etal., 2007)released the Vowpal Wabbit fast online learn-  guage Processing, Annual Meeting of the Association for
ing software which uses a hash representation similar to Computational Linguistics
that discussed here.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity
7. Conclusion search in high dimensions via hashingroceedings of

the 25th VLDB Conferencgp. 518-529). Edinburgh,
In this paper we analyze the hashing-trick for dimensional- - scotland: Morgan Kaufmann.

ity reduction theoretically and empirically. As part of our

theoretical analysis we introduce unbiased hash function§angford, J., Li, L, & Strehl, A. (2007). Vow-
and provide exponential tail bounds for hash kernels. These pal wabbit online learning projectTechnical Report).
give further inside into hash-spaces and explain prewousl p: /1 hunch. net / ?p=3009.

made empirical observations. We also derive that random

subspaces of the hashed space are likely to not interaclhedoux M. (2001). The concentration of measure phe-
which makes multitask learning with many tasks possible. noménon Providence. RI: AMS

Our empirical results validate this on a real-world applica

tion within the context of spam filtering. Here we demon- Li, P., Church, K., & Hastie, T. (2007). Conditional random
strate that even with a very large number of tasks and sampling: A sketch-based sampling technique for sparse
features, all mapped into a joint lower dimensional hash- data. In B. Scholkopf, J. Platt and T. Hoffman (Eds.),
space, one can obtain impressive classification resulks wit Advances in neural information processing systems 19
finite memory guarantee. 873-880. Cambridge, MA: MIT Press.
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A. Mean and Variance the proof follows that of Lemma 6 (Dasgupta et al., 2010).

We still outline the proof because of some parameter values
Proof [Lemma 2] To compute the expectation we expand being different.

(x, 2 ¢_Z§ J)wix) LOn(i),h(j) (10)

Lemma 8 Letm be the size of the hash function range and
letn = 1 If 2 is such that|z|s = 1 and

2\/mlog(m/8)"
|lz|lc < m,then definer? = max; Z;l:l 30,1,y Wherei
ranges over all hash-buckets. We have that with probability

Since Ey[(z,2") 4] = En[E¢[(z,2"),]], taking expecta-
tions over¢ we see that only the termis= j have nonzero
value, which shows the first claim. For the variance we

computeE,[(x, x')i]. Expanding this, we get: 1-4,
2
. . 2 J—
(@,a)y =Y €@EG)EREDTT,xriOn(i).n()On (k) (1) .
5.k,
This expression can be simplified by noting that: Proof We outline the proof-steps. Since the buck-

ets have identical distribution, we look only at th¢
E¢ [§(1)€(7)E(k)E(D)] = 050k + [1 = diju] (901 + ddjn)- bucket, ie. ati = 1 and bound) ., ;3. De-

i 1 —
Passing the expectation ovethrough the sum, this allows fine X; = j (51h )__)' Then E,[X;] = 0 and

4 2, 2
us to break down the expansion of the variance into two, [X?] = 2 (£ — ) < 22 < 2 using|[z[|e <
terms. n. Thus, Y. By[X?] < 2. Also note thaty", X; =
szx e, + Zx z Eh [6neiy.n ()] Zj:hﬁj):l :z:? —_%. Plugging this into the Bernstein’s in-
ity equality, equation 5, we have that

+ xix;x-x’-Eh On(i).hii 1 1/2m?

; 525 B [0y n()] Pr[z X; > —] < exp <_ _ / m2 )

J - m n?/m+n?/3m
= (x, + — D a2+ wiwaya) = exp(— > 5) < exp(—log(m/8)) < §/m
mmn

i#] i#]
By taking union bound over all thexs buckets, we get the

by noting thatE, [8,5),(j)] = = fori # j. Using the fact above result. m

thato? = By[(z,2');] —Ey[(z, 2') ,]? proves the claimil

Proof [Theorem 3] Given the functiop = (h,r), define
the matrixA asA;; = 0;,(;) and D, as(Dy);; = r;. Let
x be as specified, i.d|z||s = 1 and||z||~ < n. Note that
We use the concentration result derived by Liberty, Ailon||z]l¢ = [[AD.z|2. Lety € R? be such thafly[, = 1.
and Singer in (Liberty et al., 2008). Liberty et al. cre- Thus

B. Concentration of Measure

ate a Johnson-Lindenstrauss random projection matrix by ., 2
> AN . m
cqmblnmg a ca_refully constr_ucted deterministic mat#ix 1AD,y|2 = Z Zy .
with random diagonal matrices. For completeness we TIN2 ™ £ Ji%in(G) "
restate the relevant lemma. Letrange over the hash- ==t
buckets. Letn = clog(1/§)/e? for a large enough con- m
stantc. For a given vector;, define the diagonal matrix < Z Z% in(j)) ZI din(j))
D, as(D,);; = z;. For any matrixA € R™*9, define =1 5=1

[ADy|l2-

[[#]]4 = maxy.y|,=1|

<) ny&-h(j))af <ol
Lemma 2 (Liberty et al., 2008). For any column- i=1 j=1
normalized matrixA, vectorz with ||z|; = 1 and an

by applying the Cauchy-Schwartz inequality, and using the
i.i.d. random+1 diagonal matrixDy, the following holds: y applying y a Y g

Ve if - ; then. Prlll AD . p definition ofo,.. Thus,||z]|4 = max,.,|,=1 [[ADyll2 <
z, if lolla < gopsmmss then Pr{l[ADszlle=1 > < " a1 s 72 Jog(1/5), we have that

J. |zlla < m which satisfies the conditions of
og
We also need the following form of a weighted balls andLemma 2 from (Liberty et al., 2008). Thus applying the

bins inequality — the statement of the Lemma, as well asbove result from Lemma 2 (Liberty et al., 2008tcand
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using Lemma 8, we have thBt|[|[|ADx||? — 1| > €] < §
and hence

Prffz][§ — 1] > ] <8

by taking union over the two error probabilities of Lemma

2 and Lemma 8, we have the result. [ |

C. Inner Product
Proof [Corollary 4] We have tha® (z, '), = ||x||§, +

Hx’Hi — ||z — x’||i. Taking expectations, we have the stan-

dard inner product inequality. Thus,
2 2
2(z,2")y — 2(z, ") | < ||zl — =" |
2 2 2 2
+ 2l = 12171+ e = 2l = lle = 2|17 |

Using union bound, with probability — 36, each of the

terms above is bounded using Theorem 3. Thus, putting

the bounds together, we have that, with probability 34,

12 (pu(@), du(2)) — 2z, 2) | < e(|lzl® + [|2'[|* + |z — 2||)

D. Refutation of the Previous Incorrect Proof

There were a few bugs in the previous version of the pa-
per (Weinberger et al., 2009). We now detail each of them
and illustrate why it was an error. The current result shows
that the using hashing we can create a projection matrix

that can preserve distances to a factoflof ¢) for vectors

with a bounded|z ||~ /||x||2 ratio. The constraint on input
vectors can be circumvented by multiple hashing, as out-

lined in Section 3.2, but that would require hashing )

times. Recent work (Dasgupta et al., 2010) suggests that
better theoretical bounds can be shown for this construc-
tion. We thank Tamas Sarlos and Ravi Kumar for the fol-
lowing writeup on the errors and for suggestion the new

proof in Appendix B.

1. The statement of the main theorem in Weinberger et
al. (Weinberger et al., 2009, Theorem 3) is false as
it contradicts the lower bound of Alon (Alon, 2003).
The flaw lies in the probability of error in (Weinberger
et al., 2009, Theorem 3), which was claimed to be
exp(—zl/—ng). This error can be made arbitrarily small

without increasing the embedding dimensionatity
but by decreasing = lizll “\which in turn can be

[zl

achieved by preprocessing the input vectargHow-

ever, this contradicts Alon’s lower bound on the em-

bedding dimensionality. The details of this contra-
diction are best presented through (Weinberger et al.,
2009, Corollary 5) as follows.

Setm = 128 andé = 1/2 and consider the ver-
tices of then-simplex inR"*1, i.e.,z; = (1,0, ...,0),

zy = (0,1,0,...,0), .... LetP e RFhex(ntl)

be the naive, replication based preconditioner, with
replication parametet = 512log”n as defined in
Section 2 of our submission or (Weinberger et al.,
2009, Section 3.2). Therefore for all pairs# j
we have that||Pz; — Pzjllc = 1/4/c and that
||Px; — Pxj||ls = /2. Hence we can apply (Wein-
berger et al., 2009, Corollary 5) to the set of vec-
tors Pz; with n = 1/v/2¢ = 1/(32logn); then the
claimed approximation error ig/%jL 6472 log? 25 =
%Jr%ﬁ < %. If Corollary 5 were true, then it would fol-
low that with probability at least/2, the linear trans-
formationA = ¢ - P : R* Tt — R™ distorts the pair-
wise distances of the above+ 1 vectors by at most
al + 1/4 multiplicative factor. On the other hand,
the lower bound of Alon shows that any such transfor-
mation A must map td2(log n) dimensions; see the
remarks following Theorem 9.3 in (Alon, 2003) and
sete = 1/4 there. This clearly contradicia = 128
above.

. The proof of the Theorem 3 contained a fatal, un-

fixable error. Recall that;; denotes the usual Kro-
necker symbol, ant and?’ are hash functions. Wein-
berger et al. make the following observation after
equation (13) of their proof on page 8 in Appendix

“First note that) . ZJ. On(s)i + On(j)i IS at
most2t, wheret = |{j : h(j) # W' (j)}|.

The quoted observation is false. Létlenote the di-
mension of the input. Then_; >= . 0n(jyi + ()i =

>0 (02 On(jyi + Onr(yi) = >-;2 = 2d, independent
of the choice of the hash function. Note thailayed

a crucial role in the proof of (Weinberger et al., 2009)
relating the Euclidean approximation error of the di-
mensionality reduction to Talagrand’s convex distance
defined over the set of hash functions. Albeit the error
is elementary, we do not see how to rectify its conse-
guences in (Weinberger et al., 2009) even if the claim
were of the right form.

. The proof of Theorem 3 in (Weinberger et al., 2009)

also contains a minor and fixable error. To see this,
consider the sentence towards the end of the proof
Theorem 3 in (Weinberger et al., 2009) whére<
e<landg=pg(z) > 1.

“Noting that s*> =
B)/ 412l loe = Ve/4|2]loos ...

VT -
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Here the authors wrongly assume tQé;_BQ +e—p>
Ve holds, whereas the truth ig/2 +¢ — 8 < /e

always.

Observe that this glitch is easy to fix locally, however
this change is minor and the modified claim would
still be false. Since for alb < y < 1 we have
that /T+y > 1+ y/3, from 3 > 1 it follows
that /82 +¢ — 8 > ¢/3. Plugging the latter esti-
mate into the “proof” of Theorem 3 would resultin a
modified claim where the original probability of error,
exp(—zl/—ng), is replaced Withexp(—ﬁ). Updating
the numeric constants in the first section of this note
would show that the new claim still contradicts Alon’s
lower bound. To justify observe that counter example
is based on a constanaind the modified claim would
still lack the necessa)(log n) dependency in its tar-
get dimensionality.



