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Abstract

We present a practical and statistically con-
sistent scheme for actively learning binary
classifiers under general loss functions. Our
algorithm uses importance weighting to cor-
rect sampling bias, and by controlling the
variance, we are able to give rigorous label
complexity bounds for the learning process.

1. Introduction

An active learner interactively chooses which data
points to label, while a passive learner obtains all the
labels at once. The great hope of active learning is that
interaction can substantially reduce the number of la-
bels required, making learning more practical. This
hope is known to be valid in certain special cases,
where the number of label queries has been shown to
be logarithmic in the usual sample complexity of pas-
sive learning; such cases include thresholds on a line,
and linear separators with a spherically uniform unla-
beled data distribution (Dasgupta et al., 2005).

Many earlier active learning algorithms, such as (Cohn
et al., 1994; Dasgupta et al., 2005), are not consistent
when data is not perfectly separable under the given
hypothesis class: even with an infinite labeling budget,
they might not converge to an optimal predictor (see
Dasgupta and Hsu (2008) for a discussion).

This problem has recently been addressed in two
threads of research. One approach (Balcan et al.,
2006; Dasgupta et al., 2008; Hanneke, 2007) constructs
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learning algorithms that explicitly use sample com-
plexity bounds to assess which hypotheses are still “in
the running,” and thereby assess the relative value of
different unlabeled points (in terms of whether they
help distinguish between the remaining hypotheses).
These algorithms have the usual PAC-style conver-
gence guarantees, but also have rigorous label com-
plexity bounds that are in many cases significantly bet-
ter than the bounds for passive learning. The second
approach to active learning uses importance weights to
correct sampling bias (Bach, 2007; Sugiyama, 2006).

The PAC-guarantee active learning algorithms have
yet to see practical use for several reasons. First,
they are built explicitly for 0–1 loss and are not easily
adapted to most other loss functions. This is problem-
atic because in many applications, other loss functions
are more appropriate for describing the problem, or
make learning more tractable (as with convex proxy
losses on linear representations). Second, these algo-
rithms make internal use of generalization bounds that
are often loose in practice, and they can thus end up
requiring far more labels than are really necessary. Fi-
nally, they typically require an explicit enumeration
over the hypothesis class (or an ε-cover thereof), which
is generally computationally intractable.

Importance weighted approaches have only been ana-
lyzed in limited settings. For example, Bach (2007)
considers linear models and provides an analysis of
consistency in cases where either (i) the model class
fits the data perfectly, or (ii) the sampling strategy is
non-adaptive (that is, a query doesn’t depend on the
sequence of previous queries). Also, the analysis in
these works is asymptotic rather than yielding finite
label bounds. Label complexity is of paramount im-
portance in active learning, because otherwise simpler
passive learning approaches can be used. Furthermore,
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a poor choice of importance weights can result in high
label complexity.

We address the problems above with a new active
learning scheme that provably yields PAC-style label
complexity guarantees. When presented with an un-
labeled point xt, this scheme queries its label with a
carefully chosen probability pt, taking into account the
identity of the point and the history of labels seen so
far. The points that end up getting labeled are then
weighted according to the reciprocals of these prob-
abilities (that is, 1/pt), in order to remove sampling
bias. We show (theorem 1) that this simple method
guarantees statistical consistency: for any distribution
and any hypothesis class, active learning eventually
converges to the optimal hypothesis in the class.

As in any importance sampling scenario, the biggest
challenge is controlling the variance of the process.
This depends crucially on how the sampling proba-
bility pt is chosen. Roughly, our strategy is to make it
proportional to the spread of values h(xt), as h ranges
over the remaining candidate hypotheses. For this set-
ting of pt, which we call loss-weighting, we have two
results: a fallback guarantee that the label complexity
is never much worse than that of supervised learning
(theorem 2), and a rigorous label complexity bound
(theorem 11). Previously, label complexity bounds for
active learning were only known for 0–1 loss, and were
based on the disagreement coefficient of the learning
problem (Hanneke, 2007). We generalize this notion
to general loss functions, and analyze label complex-
ity in terms of it. We consider settings in which these
bounds turn out to be roughly the square root of the
sample complexity of supervised learning.

In addition to these upper bounds, we show a general
lower bound on the label complexity of active learn-
ing (theorem 12) that significantly improves the best
previous such result (Kääriäinen, 2006).

We conduct practical experiments with two IWAL al-
gorithms. The first is a specialization of IWAL with
loss-weighting to the case of linear classifiers with
convex loss functions; here, the algorithm becomes
tractable via convex programming (section 7). The
second uses a simple bootstrapping scheme that re-
duces active learning to passive learning without re-
quiring much additional computation (section 7.2). In
every case, these experiments yield substantial reduc-
tions in label complexity compared to passive learning,
without compromising predictive performance. They
suggest that IWAL is a practical scheme that can re-
duce the label complexity of active learning without
sacrificing the statistical guarantees (like consistency)
we take for granted in passive learning.

Boosting and bagging-based algorithms of Abe and
Mamitsuka (1998) are similar in spirit to our boot-
strapping IWAL scheme in section 7.2, but they are
not consistent in the presence of noise.

2. Preliminaries

Let X be the input space and Y the output space. We
consider active learning in the streaming setting where
at each step t, a learner observes an unlabeled point
xt ∈ X and has to decide whether to ask for the label
yt ∈ Y . The learner works with a hypothesis space
H = {h : X → Z}, where Z is a prediction space.

The algorithm is evaluated with respect to a given loss
function l : Z × Y → [0,∞). The most common loss
function is 0–1 loss, in which Y = Z = {−1, 1} and
l(z, y) = 1(y 6= z) = 1(yz < 0). The following exam-
ples address the binary case Y = {−1, 1} with Z ⊂ R:
l(z, y) = (1− yz)+ (hinge loss), l(z, y) = ln(1 + e−yz)
(logistic loss), l(z, y) = (y − z)2 = (1 − yz)2 (squared
loss), and l(z, y) = |y − z| = |1 − yz| (absolute loss).
Notice that all the loss functions mentioned here are
of the form l(z, y) = φ(yz) for some function φ on
the reals. We specifically highlight this subclass of
loss functions when proving label complexity bounds.
Since these functions are bounded (if Z is), we further
assume they are normalized to output a value in [0, 1].

3. The Importance Weighting Skeleton

Algorithm 1 describes the basic outline of importance-
weighted active learning (IWAL). Upon seeing xt, the
learner calls a subroutine rejection-threshold (instanti-
ated in later sections), which looks at xt and past his-
tory to return the probability pt of requesting yt. The
algorithm maintains a set of labeled examples seen so
far, each with an importance weight: if yt ends up
being queried, its weight is set to 1/pt.

Algorithm 1 IWAL (subroutine rejection-threshold)
Set S0 = ∅.
For t from 1, 2, ... until the data stream runs out:

1. Receive xt .
2. Set pt = rejection-threshold(xt, {xi, yi, pi, Qi :

1 ≤ i < t}).
3. Flip a coin Qt ∈ {0, 1} with E[Qt] = pt. If Qt = 1,

request yt and set St = St−1 ∪ {(xt, yt, 1/pt)}, else
St = St−1.

4. Let ht = arg minh∈H
∑

(x,y,c)∈St
c · l(h(x), y).

Examples are assumed to be drawn i.i.d. from the un-
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derlying probability distribution D. The expected loss
of h ∈ H on D is given by L(h) = E(x,y)∼D l(h(x), y).
The importance weighted estimate of the loss at time
T is

LT (h) =
1
T

T∑
t=1

Qt
pt
l(h(xt), yt),

where Qt is as defined in the algorithm. It is not hard
to see that E[LT (h)] = L(h), with the expectation
taken over all the random variables involved. The-
orem 2 gives large deviation bounds for LT (h), pro-
vided that the probabilities pt are chosen carefully.
Even though step 4 is stated as empirical risk min-
imization, any passive importance-weighted learning
algorithm can be used to learn ht based on St.

3.1. A safety guarantee for IWAL

A desirable property for a learning algorithm is con-
sistency : Given an infinite budget of unlabeled and
labeled examples, does the algorithm converge to the
best predictor? Some early active learning algo-
rithms (Cohn et al., 1994; Dasgupta et al., 2005) do
not satisfy this baseline guarantee if the points cannot
be classified perfectly by the given hypothesis class.
We prove that IWAL algorithms are consistent, as long
as pt is bounded away from 0.

Comparing this result to the usual sample complexity
bounds in supervised learning (for example, corollary
4.2 of (Langford, 2005)), we see that the label com-
plexity is at most 2/p2

min times that of a supervised
algorithm. For simplicity, the bound is given in terms
of ln |H| rather than the VC dimension of H. The
argument, which is a martingale modification of stan-
dard results, can be extended to VC spaces.

Theorem 1. For all distributions D, for all finite hy-
pothesis classes H, for any δ > 0, if there is a constant
pmin > 0 such that pt ≥ pmin for all 1 ≤ t ≤ T , then

P

max
h∈H
|LT (h)− L(h)| >

√
2

pmin

√
ln |H|+ ln 2

δ

T

 < δ.

Proof. Fix D. For a hypothesis h ∈ H, consider a
sequence of random variables U1, . . . , UT with Ut =
Qt

pt
l(h(xt), yt) − L(h). Since pt ≥ pmin, |Ut| ≤ 1/pmin.

The sequence Zt =
∑t
i=1 Ui is a martingale, letting

Z0 = 0. Indeed, for any 1 ≤ t ≤ T ,

E[Zt | Zt−1, ..., Z0] = E [Ut + Zt−1 | Zt−1, ..., Z0]
= E [ l(h(xt), yt)− L(h) + Zt−1 | Zt−1, ..., Z0 ] = Zt−1.

Observe that |Zt+1 − Zt| = |Ut+1| ≤ 1/pmin for all
0 ≤ t < T . Using ZT = T (LT (h)−L(h)) and applying

Azuma’s inequality (1967), we see that for any λ > 0,

P
[
|LT (h)− L(h)| > λ

pmin

√
T

]
< 2e−λ

2/2.

Setting λ =
√

2(ln |H|+ ln(2/δ)) and taking a union
bound over h ∈ H then yields the desired result.

4. Setting the rejection threshold

Algorithm 2 gives a particular instantiation of the re-
jection threshold subroutine in IWAL. The subroutine
maintains an effective hypothesis class Ht, which is
initially all of H and then gradually shrinks by setting
Ht+1 to the subset of Ht whose empirical loss isn’t too
much worse than L∗t , the smallest empirical loss in Ht:

Ht+1 = {h ∈ Ht : Lt(h) ≤ L∗t + ∆t}.

The allowed slack ∆t =
√

(8/t) ln(2t(t+ 1)|H|2/δ)
comes from a standard sample complexity bound.

We will show that, with high probability, any opti-
mal hypothesis h∗ is always in Ht, and thus all other
hypotheses can be discarded from consideration. For
each xt, the loss-weighting scheme looks at the range
of predictions on xt made by hypotheses in Ht and sets
the sampling probability pt to (roughly) the size of this
range: precisely, pt = maxf,g∈Ht

maxy l(f(xt), y) −
l(g(xt), y). Since the loss values are normalized to lie
in [0, 1], we can be sure that pt is also in this interval.

Algorithm 2 loss-weighting (x, {xi, yi, pi, Qi : i < t})
1. Initialize H0 = H.

2. Update L∗t−1 = min
h∈Ht−1

1
t− 1

t−1∑
i=1

Qi
pi
l(h(xi), yi)

Set Ht to

{h ∈ Ht−1 :

1
t− 1

t−1∑
i=1

Qi
pi
l(h(xi), yi) ≤ L∗t−1 + ∆t−1

}
3. Return pt = maxf,g∈Ht,y∈Y l(f(x), y)− l(g(x), y).

4.1. A generalization bound

We start with a large deviation bound for each ht out-
put by IWAL(loss-weighting). It is not a corollary of
theorem 1 because it does not require the sampling
probabilities be bounded below away from zero.

Theorem 2. Pick any learning problem D and hy-
pothesis class H, and let h∗ ∈ H be a minimizer of the
loss function with respect to D. For any δ > 0, with
probability at least 1− δ, for any T : (i) h∗ ∈ HT , and
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(ii) L(f) − L(g) ≤ 2∆T−1 for any f, g ∈ HT . In par-
ticular, if hT is the hypothesis output by IWAL(loss-
weighting), L(hT )− L(h∗) ≤ 2∆T−1.

We need the following lemma for the proof.
Lemma 3. For all learning problems D, for all hy-
pothesis classes H, for all δ > 0, with probability at
least 1 − δ, for all T and all f, g ∈ HT , |LT (f) −
LT (g)− L(f) + L(g)| ≤ ∆T .

Proof. Pick any T and f, g ∈ HT , and define Zt =
Qt

pt

(
l(f(xt), yt)− l(g(xt), yt)

)
− (L(f)− L(g)). Then

E [Zt | Z1, · · · , Zt−1] = E xt,yt
[ l(f(xt), yt)−

l(g(xt), yt) | Z1, · · · , Zt−1]− (L(f)− L(g)) = 0.

Thus Z1, Z2, . . . is a martingale difference sequence.
We can use Azuma’s inequality to show that its sum is
tightly concentrated, if the individual Zt are bounded.

To check boundedness, observe that since f, g are in
HT , they must also be in H1, H2, . . . ,HT−1. Thus for
all t ≤ T , pt ≥ |l(f(xt), yt) − l(g(xt), yt)|, whereupon
|Zt| ≤ 1

pt
|l(f(xt), yt)− l(g(xt), yt)|+ |L(f)−L(g)| ≤ 2.

We allow failure probability δ/2T (T + 1) at time T .
Applying Azuma’s inequality, we have

P[|LT (f)− LT (g)− L(f) + L(g)| ≥ ∆T ]

= P

[∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ T∆T

]
≤ 2e−T∆2

T /8 =
δ

T (T + 1)|H|2
.

Since HT is a random subset of H, it suffices to take
a union bound over all f, g ∈ H. A union bound over
T finishes the proof.

Proof of theorem 2. Start by assuming that the 1− δ
probability event of lemma 3 holds. We first show
by induction that h∗ = arg minh∈H L(h) is in HT for
all T . It holds at T = 1, since H1 = H0 = H. Now
suppose it holds at T , and show that it is true at T+1.
Let hT minimize LT over HT . By lemma 3, LT (h∗)−
LT (hT ) ≤ L(h∗)−L(hT ) + ∆T ≤ ∆T . Thus LT (h∗) ≤
L∗T + ∆T and hence h∗ ∈ HT+1.

Next, we show that for any f, g ∈ HT we have
L(f)−L(g) ≤ 2∆T−1. By lemma 3, since HT ⊆ HT−1,
L(f)− L(g) ≤ LT−1(f)− LT−1(g) + ∆T−1 ≤ L∗T−1 +
∆T−1 − L∗T−1 + ∆T−1 = 2∆T−1. Since hT , h∗ ∈ HT ,
we have L(hT ) ≤ L(h∗) + 2∆T−1.

5. Label Complexity

We showed that the loss of the classifier output by
IWAL(loss-weighting) is similar to the loss of the clas-
sifier chosen passively after seeing all T labels. How
many of those T labels does the active learner request?

Dasgupta et al. (2008) studied this question for an
active learning scheme under 0–1 loss. For learning
problems with bounded disagreement coefficient (Han-
neke, 2007), the number of queries was found to be
O(ηT + d log2 T ), where d is the VC dimension of the
function class, and η is the best error rate achievable
on the underlying distribution by that function class.
We will soon see (section 6) that the term ηT is in-
evitable for any active learning scheme; the remaining
term has just a polylogarithmic dependence on T .

We generalize the disagreement coefficient to arbitrary
loss functions and show that, under conditions sim-
ilar to the earlier result, the number of queries is
O
(
ηT +

√
dT log2 T

)
, where η is now the best achiev-

able loss. The inevitable ηT is still there, and the sec-
ond term is still sublinear.

5.1. Label Complexity: Main Issues

Suppose the loss function is minimized by h∗ ∈ H,
with L∗ = L(h∗). Theorem 2 shows that at time t,
the remaining hypotheses Ht include h∗ and all have
losses in the range [L∗, L∗+2∆t−1]. We now prove that
under suitable conditions, the sampling probability pt
has expected value ≈ L∗ + ∆t−1. Thus the expected
total number of labels queried upto time T is roughly
L∗T +

∑T
t=1 ∆t−1 ≈ L∗T +

√
T ln |H|.

To motivate the proof, consider a loss function
l(z, y) = φ(yz); all our examples are of this form. Say
φ is differentiable with 0 < C0 ≤ |φ′| ≤ C1. Then the
sampling probability for xt is

pt = max
f,g∈Ht

max
y

l(f(xt), y)− l(g(xt), y)

= max
f,g∈Ht

max
y

φ(yf(xt))− φ(yg(xt))

≤ C1 max
f,g∈Ht

max
y
|yf(xt)− yg(xt)|

= C1 max
f,g∈Ht

|f(xt)− g(xt)|

≤ 2C1 max
h∈Ht

|h(xt)− h∗(xt)|.

So pt is determined by the range of predictions on xt by
hypotheses in Ht. Can we bound the size of this range,
given that any h ∈ Ht has loss at most L∗ + 2∆t−1?

2∆t−1 ≥ L(h)− L∗

≥ Ex,y|l(h(x), y)− l(h∗(x), y)| − 2L∗

≥ Ex,yC0|y(h(x)− h∗(x))| − 2L∗

= C0Ex|h(x)− h∗(x)| − 2L∗.

So we can upperbound maxh∈Ht
Ex|h(x) − h∗(x)| (in

terms of L∗ and ∆t−1), whereas we want to upper-
bound the expected value of pt, which is proportional
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to Ex maxh∈Ht
|h(x)−h∗(x)|. The ratio between these

two quantities is related to a fundamental parameter
of the learning problem, a generalization of the dis-
agreement coefficient (Hanneke, 2007).

We flesh out this intuition in the remainder of this sec-
tion. First we describe a broader class of loss functions
than those considered above (including 0–1 loss, which
is not differentiable); a distance metric on hypotheses,
and a generalized disagreement coefficient. We then
prove that for this broader class, active learning per-
forms better than passive learning when the general-
ized disagreement coefficient is small.

5.2. A subclass of loss functions

We give label complexity upper bounds for a class of
loss functions that includes 0–1 loss and logistic loss
but not hinge loss. Specifically, we require that the loss
function has bounded slope asymmetry, defined below.

Recall earlier notation: response space Z, classifier
space H = {h : X → Z}, and loss function l : Z×Y →
[0,∞). Henceforth, the label space is Y = {−1,+1}.
Definition 4. The slope asymmetry of a loss function
l : Z × Y → [0,∞) is

Kl = sup
z,z′∈Z

maxy∈Y |l(z, y)− l(z′, y)|
miny∈Y |l(z, y)− l(z′, y)|

.

The slope asymmetry is 1 for 0–1 loss, and∞ for hinge
loss. For differentiable loss functions l(z, y) = φ(yz),
it is easily related to bounds on the derivative.
Lemma 5. Let lφ(z, y) = φ(zy), where φ is a differ-
entiable function defined on Z = (−B,B) ⊂ R. Sup-
pose C0 ≤ |φ′(z)| ≤ C1 for all z ∈ Z. Then for any
z, z′ ∈ Z, and any y ∈ {−1,+1},

C0|z − z′| ≤ |lφ(z, y)− lφ(z′, y)| ≤ C1|z − z′|.

Thus lφ has slope asymmetry ≤ C1/C0.

Proof. By the mean value theorem, there is some ξ ∈
Z such that lφ(z, y) − lφ(z′, y) = φ(yz) − φ(yz′) =
φ′(ξ)(yz−yz′). Thus |lφ(z, y)−lφ(z′, y)| = |φ′(ξ)| · |z−
z′|, and the rest follows from the bounds on φ′.

For instance, this immediately applies to logistic loss.
Corollary 6. Logistic loss l(z, y) = ln(1 + e−yz), de-
fined on label space Y = {−1,+1} and response space
[−B,B], has slope asymmetry at most 1 + eB.

5.3. Topologizing the space of classifiers

We introduce a simple distance function on the space
of classifiers.

Definition 7. For any f, g ∈ H and distribution D
define ρ(f, g) = Ex∼D maxy |l(f(x), y) − l(g(x), y)|.
For any r ≥ 0, let B(f, r) = {g ∈ H : ρ(f, g) ≤ r}.

Suppose L∗ = minh∈H L(h) is realized at h∗. We know
that at time t, the remaining hypotheses have loss at
most L∗ + 2∆t−1. Does this mean they are close to
h∗ in ρ-distance? The ratio between the two can be
expressed in terms of the slope asymmetry of the loss.

Lemma 8. For any distribution D and any loss func-
tion with slope asymmetry Kl, we have ρ(h, h∗) ≤
Kl(L(h) + L∗) for all h ∈ H.

Proof. For any h ∈ H,

ρ(h, h∗) = Ex maxy |l(h(x), y)− l(h∗(x), y)|
≤ Kl Ex,y|l(h(x), y)− l(h∗(x), y)|
≤ Kl (Ex,y[l(h(x), y)] + Ex,y[l(h∗(x), y)])
= Kl (L(h) + L(h∗)).

5.4. A generalized disagreement coefficient

When analyzing the A2 algorithm (Balcan et al., 2006)
for active learning under 0–1 loss, (Hanneke, 2007)
found that its label complexity could be characterized
in terms of what he called the disagreement coefficient
of the learning problem. We now generalize this notion
to arbitrary loss functions.

Definition 9. The disagreement coefficient is the in-
fimum value of θ such that for all r,

Ex∼D suph∈B(h∗,r) supy |l(h(x), y)−l(h∗(x), y)| ≤ θr.

Here is a simple example for linear separators.

Lemma 10. Suppose H consists of linear classifiers
{u ∈ Rd : ‖u‖ ≤ B} and the data distribution D is uni-
form over the surface of the unit sphere in Rd. Suppose
the loss function is l(z, y) = φ(yz) for differentiable φ
with C0 ≤ |φ′| ≤ C1. Then the disagreement coeffi-
cient is at most (2C1/C0)

√
d.

Proof. Let h∗ be the optimal classifier, and h
any other classifier with ρ(h, h∗) ≤ r. Let
u∗, u be the corresponding vectors in Rd. Using
lemma 5, r ≥ Ex∼D supy |l(h(x), y) − l(h∗(x), y)| ≥
C0 Ex∼D|h(x) − h∗(x)| = C0 Ex∼D|(u − u∗) · x| ≥
C0 ‖u − u∗‖/(2

√
d). Thus for any h ∈ B(h∗, r),

we have that the corresponding vectors satisfy ‖u −
u∗‖ ≤ 2r

√
d/C0. We can now bound the disagree-

ment coefficient. Ex∼D suph∈B(h∗,r) supy |l(h(x), y) −
l(h∗(x), y)| ≤ C1 Ex∼D suph∈B(h∗,r) |h(x) − h∗(x)| ≤
C1 Ex sup{|(u − u∗) · x| : ‖u − u∗‖ ≤ 2r

√
d/C0} ≤

C1 · 2r
√
d/C0.
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5.5. Upper Bound on Label Complexity

Finally, we give a bound on label complexity for learn-
ing problems with bounded disagreement coefficient
and loss functions with bounded slope asymmetry.

Theorem 11. For all learning problems D and hy-
pothesis spaces H, if the loss function has slope asym-
metry Kl, and the learning problem has disagreement
coefficient θ, then for all δ > 0, with probability at
least 1−δ over the choice of data, the expected number
of labels requested by IWAL(loss-weighting) during the
first T iterations is at most

4θ ·Kl · (L∗T +O(
√
T ln(|H|T/δ))),

where L∗ is the minimum loss achievable on D by H,
and the expectation is over the randomness in the se-
lective sampling.

Proof. Suppose h∗ ∈ H achieves loss L∗. Pick any
time t. By theorem 2, Ht ⊂ {h ∈ H : L(h) ≤
L∗ + 2∆t−1} and by lemma 8, Ht ⊂ B(h∗, r)
for r = Kl(2L∗ + 2∆t−1). Thus, the expected
value of pt (over the choice of x at time t) is at
most Ex∼D supf,g∈Ht

supy |l(f(x), y) − l(g(x), y)| ≤
2 Ex∼D suph∈Ht

supy |l(h(x), y) − l(h∗(x), y)| ≤
2 Ex∼D suph∈B(h∗,r) supy |l(h(x), y) − l(h∗(x), y)| ≤
2θr = 4θ·Kl ·(L∗ + ∆t−1) . Summing over t = 1, . . . , T ,
we get the lemma, using

∑T
t=1(1/

√
t) = O(

√
T ).

6. A lower bound on label complexity

Kääriäinen (2006) showed that for any hypothesis class
H and any η > ε > 0, there is a data distribution
such that (a) the optimal error rate achievable by H
is η; and (b) any active learner that finds h ∈ H with
error rate at most η+ ε (with probability greater than
1/2) must make η2/ε2 queries. We now strengthen this
lower bound to dη2/ε2, where d is the VC dimension
of H.

Let’s see how this relates to the label complexity rates
of the previous section. It is well-known that if a su-
pervised learner sees T examples (for any T > d/η),
its final hypothesis has error at most η+

√
dη/T (De-

vroye et al., 1996) with high probability. Think of this
as η+ ε for ε =

√
dη/T . Our lower bound now implies

that an active learner must make at least dη2/ε2 = ηT
queries. This explains the ηT leading term in all the
label complexity bounds we have discussed.

Theorem 12. For any η, ε > 0 such that 2ε ≤ η ≤
1/4, for any input space X and hypothesis class H
(of functions mapping X into Y = {+1,−1}) of VC
dimension 1 < d < ∞, there is a distribution over
X × Y such that (a) the best error rate achievable by

H is η; (b) any active learner seeking a classifier of
error at most η + ε must make Ω(dη2/ε2) queries to
succeed with probability at least 1/2.

Proof. Pick a set of d points xo, x1, x2, . . . , xd−1 shat-
tered by H. Here is a distribution over X × Y : point
xo has probability 1 − β, while each of the remaining
xi has probability β/(d− 1), where β = 2(η + 2ε). At
xo, the response is always y = 1. At xi, i ≥ 1, the
response is y = 1 with probability 1/2 + γbi, where bi
is either +1 or −1, and γ = 2ε/β = ε/(η + 2ε) < 1/4.

Nature starts by picking b1, . . . , bd−1 uniformly at ran-
dom. This defines the target hypothesis h∗: h∗(xo) =
1 and h∗(xi) = bi. Its error rate is β · (1/2− γ) = η.

Any learner outputs a hypothesis in H and thus im-
plicitly makes guesses at the underlying hidden bits bi.
Unless it correctly determines bi for at least 3/4 of the
points x1, . . . , xd−1, the error of its hypothesis will be
at least η + (1/4) · β · (2γ) = η + ε.

Now, suppose the active learner makes at most c(d −
1)/γ2 queries, where c is a small constant (c ≤ 1/125
suffices). We’ll show that it fails (outputs a hypothesis
with error at least η+ ε) with probability at least 1/2.

We’ll say xi is heavily queried if the active learner
queries it at least 4c/γ2 times. At most 1/4 of the xi’s
are heavily queried; without loss of generality, these
are x1, . . . , xk, for some k ≤ (d − 1)/4. The remain-
ing xi get so few queries that the learner guesses each
corresponding bit bi with probability less than 2/3;
this can be derived from Slud’s lemma (below), which
relates the tails of a binomial to that of a normal.

Let Fi denote the event that the learner gets bi wrong;
so EFi ≥ 1/3 for i > k. Since k ≤ (d − 1)/4, the
probability that the learner fails is given by P[F1+· · ·+
Fd−1 ≥ (d−1)/4] ≥ P[Fk+1+· · ·+Fd−1 ≥ (d−1)/4] ≥
P[B ≥ (d − 1)/4] ≥ P[Z ≥ 0] = 1/2, where B is a
binomial((3/4)(d − 1), 1/3) random variable, Z is a
standard normal, and the last inequality follows from
Slud’s lemma. Thus the active learner must make at
least c(d− 1)/γ2 = Ω(dη2/ε2) queries to succeed with
probability at least 1/2.

Lemma 13 (Slud (1977)). Let B be a Binomial (n, p)
random variable with p ≤ 1/2, and let Z be a standard
normal. For any k ∈ [np, n(1 − p)], P[B ≥ k] ≥
P[Z ≥ (k − np)/

√
np(1− p)].

Theorem 12 uses the same example that is used for
lower bounds on supervised sample complexity (sec-
tion 14.4 of (Devroye et al., 1996)), although in that
case the lower bound is dη/ε2. The bound for active
learning is smaller by a factor of η because the ac-
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tive learner can avoid making repeated queries to the
“heavy” point xo, whose label is immediately obvious.

7. Implementing IWAL

IWAL(loss-weighting) can be efficiently implemented
in the case where H is the class of bounded-length
linear separators {u ∈ Rd : ‖u‖2 ≤ B} and the loss
function is convex: l(z, y) = φ(yz) for convex φ.

Each iteration of Algorithm 2 involves solving two op-
timization problems over a restricted hypothesis set

Ht =
⋂
t′<t

{
h ∈ H : 1

t′

t′∑
i=1

Qi

pi
l(h(xi), yi) ≤ L∗t′ + ∆t′

}
.

Replacing each h by its corresponding vector u, this
is
⋂
t′<t{u ∈ Rd : 1

t′

∑t′

i=1
Qi

pi
φ(u · (yixi)) ≤ L∗t′ +

∆t′ , ‖u‖2 ≤ B}, an intersection of convex constraints.

The first optimization in Algorithm 2 is L∗T =
minu∈HT

∑T
i=1

Qi

pi
φ(u · (yixi)), a convex program.

The second optimization is maxu,v∈HT
φ(y(u · x)) −

φ(y(v · x)), y ∈ {+1,−1} (where u, v correspond to
functions f, g). If φ is nonincreasing (as it is for 0–
1, hinge, or logistic loss), then the solution of this
problem is max{φ(A(x)) − φ(−A(−x)), φ(A(−x)) −
φ(−A(x))}, where A(x) is the solution of a convex
program: A(x) ≡ minu∈HT

u · x. The two cases inside
the max correspond to the choices y = 1 and y = −1.

Thus Algorithm 2 can be efficiently implemented for
nonincreasing convex loss functions and bounded-
length linear separators. In our experiments, we use
a simpler implementation. For the first problem (de-
termining L∗T ), we minimize over H rather than HT ;
for the second (determining A(x)), instead of defining
HT by T −1 convex constraints, we simply enforce the
last of these constraints (corresponding to time T −1).
This may lead to an overly conservative choice of pt,
but by theorem 1, the consistency of hT is assured.

7.1. Experiments

Recent consistent active learning algorithms (Balcan
et al., 2006; Dasgupta et al., 2008) have suffered from
computational intractability. This section shows that
importance weighted active learning is practical.

We implemented IWAL with loss-weighting for linear
separators under logistic loss. As outlined above, the
algorithm involves two convex optimizations as sub-
routines. These were coded using log-barrier meth-
ods (section 11.2 of (Boyd & Vandenberghe, 2004)).
We tried out the algorithm on the MNIST data set
of handwritten digits by picking out the 3’s and 5’s

as two classes, and choosing 1000 exemplars of each
for training and another 1000 of each for testing. We
used PCA to reduce the dimension from 784 to 25.
The algorithm uses a generalization bound ∆t of the
form

√
d/t; since this is believed to often be loose in

high dimensions, we also tried a more optimistic bound
of 1/

√
t. In either case, active learning achieved very

similar performance (in terms of test error or test logis-
tic loss) to a supervised learner that saw all the labels.
The active learner asked for less than 1/3 of the labels.
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Figure 1. Top: Test logistic loss as number of points seen
grows from 0 to 2000. Bottom: Number of queries versus
number of points seen.

7.2. Bootstrap instantiation of IWAL

This section reports another practical implementation
of IWAL, using a simple bootstrapping scheme: Query
an initial set of points, and use the resulting labeled
examples to train a set of predictors H. Given a
new unlabeled example x, the sampling probability
is set to pmin + (1− pmin)

[
maxy;hi,hj∈H L(hi(x), y)−

L(hj(x), y)
]
, where pmin is a lower bound on the sam-

pling probability.

We implemented this scheme for binary and multiclass
classification loss, using 10 decision trees trained on
the initial 1/10th of the training set, setting pmin =
0.1. For simplicity, we did’t retrain the predictors
for each new queried point, i.e., the predictors were
trained once on the initial sample. The final predic-
tor is trained on the collected importance-weighted
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training set, and tested on the test set. The Costing
technique (Zadrozny et al., 2003) was used to remove
the importance weights using rejection sampling. (The
same technique can be applied to any loss function.)
The resulting unweighted classification problem was
then solved using a decision tree learner (J48). On
the same MNIST dataset as in section 7.1, the scheme
performed at least as well as passive learning, using
only 65.6% of the labels (Beygelzimer et al., 2008).

8. Conclusion

The IWAL algorithms and analysis presented here re-
move many reasonable objections to the deployment of
active learning. IWAL satisfies the same convergence
guarantee as common supervised learning algorithms,
it can take advantage of standard algorithms (section
7.2), it can deal with very flexible losses, and in theory
and practice it can yield substantial label complexity
improvements.

Empirically, in every experiment we have tried, IWAL
has substantially reduced the label complexity com-
pared to supervised learning, with no sacrifice in per-
formance on the same number of unlabeled exam-
ples. Additional experimental results on benchmark
datasets are reported in the full version of the pa-
per (Beygelzimer et al., 2008).

Since IWAL explicitly accounts for sample selection
bias, we can be sure that these experiments are valid
for use in constructing new datasets. This implies an-
other subtle advantage: because the sampling bias is
known, it is possible to hypothesize and check the per-
formance of IWAL algorithms on datasets drawn by
IWAL. This potential for self-tuning off-policy evalua-
tion is extremely useful when labels are expensive.
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