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Abstract

The kernel Perceptron is an appealing online
learning algorithm that has a drawback: when-
ever it makes an error it must increase its sup-
port set, which slows training and testing if the
number of errors is large. The Forgetron and
the Randomized Budget Perceptron algorithms
overcome this problem by restricting the num-
ber of support vectors the Perceptron is allowed
to have. These algorithms have regret bounds
whose proofs are dissimilar. In this paper we
propose a unified analysis of both of these algo-
rithms by observing that the way in which they
remove support vectors can be seen as types of
L2-regularization. By casting these algorithms
as instances of online convex optimization prob-
lems and applying a variant of Zinkevich’s the-
orem for noisy and incorrect gradient, we can
bound the regret of these algorithms more eas-
ily than before. Our bounds are similar to the
existing ones, but the proofs are less technical.

1. Introduction
Traditional batch learning algorithms update their parame-
ters after processing every datapoint in the training set. In
contrast, online learning algorithms update their parame-
ters based on small batches of training examples. When
the training set is large enough, batch algorithms will learn
more slowly than online algorithms (e.g., (Bottou & Bous-
quet, 2008; Shalev-Shwartz & Srebro, 2008)). For exam-
ple, if the training set is redundant, online learning algo-
rithms can finish learning before completing their first pass
over the training set, which is not possible with batch algo-
rithms.
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1.1. Perceptrons

The Perceptron (Rosenblatt, 1958) is the oldest and one of
the most widespread online learning algorithms. It clas-
sifies n-dimensional real vectors into one of two possible
classes (which are 1 and −1), and stores its knowledge in
the form of an n-dimensional weight vector w. It predicts
the class p = sign(w>x) for the input vector x, and updates
its parameters by the equation

wi+1 = wi + xi · (yi − pi)/2 (1)

where yi ∈ {1,−1} is the label of the example xi, and pi =
sign(w>i xi) is the Perceptron’s prediction on the example
xi. This update is nonzero only when the Perceptron makes
a mistake.

There are several variants on the Perceptron learning al-
gorithm (e.g., (Shalev-Shwartz & Singer, 2005; Shalev-
Shwartz et al., 2007; Crammer et al., 2006; Littlestone &
Warmuth, 1989); see references in (Cesa-Bianchi & Lu-
gosi, 2006)). They are similar as algorithms and have for-
mal performance guarantees. The oldest guarantee of this
kind is Novikoff’s theorem (Novikoff, 1963), which states
that the number of errors that the Perceptron makes is at
most 1/γ2, where γ is the margin of a set of weights w∗

that makes no errors on the data (in this setting, the mar-
gin is the distance between the hyperplane defined by this
Perceptron and the point closest to it; the theorem assumes
that ‖x‖ ≤ 1).1

1.2. Kernels

Despite its simplicity and appeal, the Perceptron can repre-
sent a fairly limited set of hypotheses, and there are many
practical problems for which the Perceptron simply cannot
obtain low training error. This difficulty was first over-
came by the Support Vector Machine (SVM) (Cortes &
Vapnik, 1995), which is a nonlinear Perceptron that works
very well in practice. The strength of the SVM comes from
two main sources. First, it uses the kernel trick (Scholkopf
& Smola, 2002), which is a way of dramatically enhanc-
ing the set of hypothesis representable by the Perceptron.
Consider mapping a training example x to an expanded

1In this paper, all norms are L2.
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set of features φ(x); for example, φ((x1, . . . , xn)) =(∏
j∈S xj

)
S⊆{1,...,n}

(a 2n-dimensional vector). If, in-

stead of classifying x, we classify φ(x) with a Perceptron,
we could represent a much richer set of hypotheses (simply
because Perceptrons that classify φ(x) have 2n parameters
while Perceptrons that classify x have only n). Using φ(x)
directly is obviously infeasible due to its size; however, the
inner product 〈φ(x), φ(y)〉 =

∏n
i=1(1+xi ·yi) is efficiently

computable, and the kernel trick makes essential use of this
efficiency: notice that if we run the Perceptron on examples
of the form φ(x), then

w =
M∑
i=1

φ(xi)αi (2)

where αi ∈ ±1, M is the number of errors, and xi are the
errors themselves. When w has this form, we can compute
the Perceptron’s predictions by the equation

sign 〈w, φ(x)〉 = sign
M∑
i=1

〈φ(xi), φ(x)〉αi (3)

which is a dramatically more efficient than working with
the φ(x)’s directly. The inner product 〈φ(xi), φ(x)〉 is rep-
resented by the kernel function k(x, y). Following (Dekel
et al., 2008), we call {x1, . . . , xM} the active set of w.

In addition to the kernel trick, the SVM uses regulariza-
tion and minimizes the hinge loss, which prevents the SVM
from overfitting and causes it to find sparse solutions–
vectors w that can be expressed as a linear combination
of a small number of φ(xi)’s.

The hinge loss function L is defined by the equation

L(w; (x, y)) = max(0, 1− 〈w, x〉 y) (4)

and given a training set {(x1, y1), . . . , (xn, yn)}, the SVM
minimizes the cost function

n∑
i=1

L(w; (xi, yi)) + λ · ‖w‖2/2 (5)

An important property of the hinge loss is that if w does
not classify x correctly (i.e., sign 〈w, x〉 6= y), then
L(w; (x, y)) > 1, implying that the total hinge loss of the
training set upper bounds the number of errors in the train-
ing set (e.g., (Shalev-Shwartz, 2007)).

1.3. Budget

SVMs are usually trained with batch algorithms, but it is
tempting to apply the plain Perceptron to the vectors φ(x),
as described in the previous sections, in order to obtain an
online learning algorithm for the Kernel Perceptron. The

main computational challenge in doing so is computing the
inner products 〈w, φ(x)〉. To do so, we must store the ac-
tive set {x1, . . . , xM} and evaluate the kernel function M
times, so the time to compute 〈w, φ(x)〉 grows linearly with
the size of the active set. If the Perceptron makes a large
number of errors during training, the size of its active set
will become large (see eq. 2), which will significantly slow
both training and testing.

There have been a number of attempts to fix the problem of
large active sets in the online kernel Perceptron (Crammer
et al., 2004; Weston et al., 2005; Dekel et al., 2008; Caval-
lanti et al., 2007), the last two of which have formal perfor-
mance guarantees. These algorithms enforce a strict upper
bound B (the budget) on the active set, making sure that
these Perceptrons are efficient. They do so by removing a
vector from the active set whenever the active set becomes
too large.

We will now describe the two algorithms relevant to this
work. The Forgetron (Dekel et al., 2008) is the first budget
Perceptron that had a formal performance guarantee. It en-
forces a strict bound on the active set by removing vectors
as follows: first, it reduces the weight αi of every vector in
its active set; then, it discards the oldest vector in the active
set, which has the smallest weight. This is done only when
the size of the active set exceeds the budget B, so applying
this removal procedure on every error will ensure that the
size of the active set will not exceed the budget. Due to
the repeated weight reductions, the oldest vector will have
small weight, so removing it will not change the Perceptron
significantly. The factor by which the Forgetron reduces
weight is not constant and differs from error to error.

The Randomized Budget Perceptron (RBP) of (Cavallanti
et al., 2007) is considerably simpler than the Forgetron:
whenever the Perceptron makes an error and the size of the
active set exceeds the budget, RBP discards a random vec-
tor from its active set.

Both algorithms have regret bounds whose proofs are dif-
ferent and are somewhat nontrivial. In this paper, we
present a view that lets us reprove similar regret bounds for
the RBP and for a simplified Forgetron (one that reduces
the weights by the same factor on each error) with less ef-
fort using the same idea. The idea is that both algorithms
can be seen as doing online gradient descent on the hinge
loss with L2-regularization on their errors, where the RBP
algorithm adds a special kind of zero-mean noise to the gra-
dient and the Forgetron has a small deterministic error in
its gradient. Thus, we will view these algorithms as per-
forming online convex programming on the points where
the algorithms err, and apply a version of Zinkevich’s the-
orem (Zinkevich, 2003) that accounts for a changing target
and errors in the gradients, which we will prove in the next
section. This will let us bound the total number of errors
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with the hinge loss of the best slowly-changing sequence of
hypotheses. As a result, obtain similar proofs for a regret
bound of the RBP and the simplified Forgetron. The regret
bound that we prove for the RBP has a better dependence
on the budget size than (Cavallanti et al., 2007), but it is
competitive against hypotheses of a slightly smaller norm.

An unusual aspect of the regret bound of the RBP is that
it is shown to be competitive not against a fixed Percep-
tron, but against a sequence of slowly-changing Percep-
trons. Our bounds for both the Forgretron and the RBP
will also be able to cope with a sequence of slow-changing
Perceptrons, thanks to lemma 1 below.

2. Online convex programming with errors in
the gradients

Online convex programming (OCP) is the setting where in
each round, a convex function f is chosen; we choose a
point x without knowing f and experience f(x) loss. Our
goal is to have a cumulative loss that is not much greater
than the cumulative loss of any fixed point x∗. Zinkevich’s
theorem states that this goal is attained with simple gradi-
ent descent. We will apply Zinkevich’s theorem, where the
function f is an L2-regularized hinge loss of an unknown
datapoint.

Our analysis requires a variant of Zinkevich’s theorem that
accounts both for tracking—i.e., is competitive against a
slowly-changing sequence of hypotheses—and for errors
in the gradient. A tracking version of Zinkevich’s theorem
is already known (Zinkevich, 2003); however, the existing
variants do not account for errors in the gradient. We also
need the result to hold for noisy gradients, but this is done
with the application of the idea of lemma 2 in (Flaxman
et al., 2005) (see subsection 3.1).

Lemma 1:

Let C be a closed convex set of diameter U .

Let f1, . . . , fT be a sequence of arbitrary convex functions
(in the analysis below, each fi will be an L2-regularized
hinge loss).

Let E1, . . . , ET be an arbitrary sequence of vectors (the
gradient errors), and let E =

∑T
i=1 ‖Ei‖.

Let η > 0 be the learning rate, and let w1 ∈ C be an
arbitrary initial point.

Define wi+1 = πC(wi − η · ∂i), where ∂i = f ′i(wi) + Ei,
and f ′i(wi) is any subgradient of fi at wi. The variable ∂i

is a gradient with error, and πC(x) is the closest point of C
to x.

Let G be such that ‖∂i‖ ≤ G holds for all i.

Let w′0, . . . , w
′
T ∈ C be an arbitrary sequence of compari-

son vectors, and let S =
∑T

i=1 ‖w′i−1 − w′i‖ be their total
shift.

Then

T∑
i=1

(fi(wi)− fi(w′i)) ≤
U2

2η
+

3 · US
2η

+
T · η ·G2

2
+U ·E

(6)

Note that if there is no shift (S = 0) and there are no errors
in the gradient (E = 0), then we get the original form of
Zinkevich’s theorem. The variable w′0 is introduced only
to make the proof shorter and can be eliminated by setting
w′0 = w′1, causing the shift to be S =

∑T−1
i=1 ‖w′i−w′i+1‖.

Note, also, that the ability to cope with a changing optimal
solution is inversely proportional to the learning rate: the
smaller the learning rate, the harder it is to keep track of
change, which makes intuitive sense.

Proof:

Our proof is standard and is very similar to (Zinkevich,
2003). It measures the speed with which we approach the
competing points.

For i = 1, . . . , T let Di = ‖wi−w′i−1‖2−‖wi+1−w′i‖2.
Then

Di = ‖wi − w′i−1‖2 − ‖wi+1 − w′i‖2

= ‖wi − w′i−1‖2 − ‖πC(wi − η · ∂i)− w′i‖2

≥1 ‖wi − w′i−1‖2 − ‖wi − η · ∂i − w′i‖2

= ‖wi − w′i−1‖2 −
‖(wi − w′i−1) + (w′i−1 − w′i)− η · ∂i‖2

= ‖wi − w′i−1‖2 − ‖wi − w′i−1‖2 −
‖w′i−1 − w′i‖2 − η2 · ‖∂i‖2 +

2η(f ′i(wi) + Ei)>(wi − w′i)−
2(wi − w′i−1)>(w′i−1 − w′i)

≥2 −‖w′i−1 − w′i‖2 − η2 ·G2 +
2η(fi(wi)− fi(w′i))−
2η‖Ei‖ · ‖wi − w′i‖ −
2‖wi − w′i−1‖ · ‖w′i−1 − w′i‖

≥3 −U · ‖w′i−1 − w′i‖ − η2 ·G2 +
2η(fi(wi)− fi(w′i))−
2η‖Ei‖ · U − 2 · U · ‖w′i−1 − w′i‖

The three inequalities are justified as follows:

• In ineq. 1 used ‖πC(a)− b‖ ≤ ‖a− b‖ for all b ∈ C
and all a, since C is convex.

• In ineq. 2 we used f ′i(wi)>(wi − w′i) ≥ fi(wi) −
fi(w′i) since fi is convex and f ′i(wi) is a subgradient;
we also applied Cauchy-Swartz twice.
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• In ineq. 3 we used the fact that all the points are in C
and that its diameter is U .

We can finish the proof by noticing that
∑T

i=1Di ≤ U2;
rearranging and dividing by 2η, we get the stated bound.

3. Bounding the regret
In this section we will explain the main idea of the unified
analysis.

Consider both the Forgetron and the RBP when the active
set of w already contains B vectors, and suppose that they
make an error on vector x. Then both algorithms will re-
move a vector from the active set, and add x to the active
set with an appropriate value for its weight α. In this sec-
tion, we will show that both algorithms follow the gradient
of an L2-regularized hinge loss with corrupted gradients.

Adding a vector to the active set according to the Per-
ceptron’s learning rule is equivalent to adding the gradi-
ent of the hinge loss to w on input x on which the Per-
ceptron errs. This means that if (x, y) is a datapoint and
p = sign 〈w, x〉 is an incorrect prediction (p 6= y), then
L′(w; (x, y)) = −(y − p)/2 · x.

Removing a vector from the active set can be seen as a
form of L2-regularization for both algorithms, where the
gradients are corrupted in different ways. Consider first
the Forgetron. Recall that it scales down all the weights
α’s by a constant on each error, which is L2-regularization
with some weight and some learning rate. However, in ad-
dition to the scaling, the Forgetron also removes the vec-
tor with the smallest weight. If the weight of the removed
vector is small, then the Forgetron can be seen as doing
L2-regularization with a small amount of error (where the
error removes the oldest point), so we can apply lemma 1.

Next, consider the RBP, which removes a random vector
from its active set. Let

w =
B∑

i=1

φ(xi)αi

I ∼ Unif(1, . . . , B)
s(w) = φ(xI)αI

Removing a random vector from the active set is equiv-
alent to replacing w with w − s(w). However, notice
that E[s(w)] = w/B; at the same time, replacing w with
w−w/B is what we get from following the gradient of an
L2-regularizer. Hence, replacing w with w − s(w) is no
different from performing L2-regularization where the gra-
dient is corrupted with a certain type of zero-mean noise
that depends on w.2

2We defined s(w) when w is represented as the sum of B

Algorithm 1 The modified Randomized Budget Percep-
tron.

Input: data {(x1, y1), . . . , (xT , yT )}, budget B, the
convex domain C, the learning rate η.
Initialize w1 ← 0.
for i = 1 to T do

Set pi ← sign(w>i φ(xi)) (the prediction)
if pi = yi; i.e., if wi predicts xi correctly then

Set wi+1 ← wi

else
Setwi+1 ← πC(wi +η ·(yi−pi)/2 ·φ(xi)−s(wi))

end if
end for

In what follows, we will cast the Forgetron and the RBP as
algorithms that perform online convex optimization with an
L2-regularized hinge loss, where the Forgetron has errors
in its gradients and the RBP is given noisy gradients. We
will run the online convex optimization only on the dat-
apoints on which the Perceptron makes a mistake, as in
(Shalev-Shwartz, 2007, ch. 2), which is straightforward
in the Forgetron’s case. However, it is less straightforward
in the case of the RBP, because the set of vectors on which
the Perceptron makes a mistake is random; nonetheless, we
will show that the idea of lemma 2 of (Flaxman et al., 2005)
still applies in the next subsection.

Both proofs have analogous structure; they differ in their
choice of the parameters U (the diameter of the set of vec-
tors we compete against), λ (the weight decay), η (the
learning rate), and the manner in which the gradient is cor-
rupted.

Finally, we will see that our algorithms use large learning
rates; however, because of that, we will get that both Per-
ceptrons are able to track a changing hypothesis (a direct
consequence of lemma 1)–which was known for the RBP
but not for the Forgetron.

We will assume that the vectors φ(xi) are distinct and that
‖φ(x)‖ ≤ 1 for all x, which implies the following fact.

Fact 1:

If we run Algorithms 1 and 2, then wt =
∑B

j=1 φ(xj)αj

where |αj | ≤ η for all j.

Thus, the weight of every vector never exceeds the learning
rate, which follows from the form of the gradient of the
hinge loss and from the fact that all the vectors are distinct.

3.1. The Randomized Budget Perceptron

terms. Ifw is represented as the sum of less thanB terms, then we
will add zero terms to make sure that w is represented as the sum
of B terms. For example, if w = φ(x1) + φ(x2), then s(w) = 0
with probability 1− 2/B.
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We will now cast the RBP as an instance of online con-
vex programming. The modified RBP (Algorithm 1) dif-
fers from the original RBP in order to be more compatible
with lemma 1 in two ways. First, it prevents the weight
vector from being too large (using the projection πC); and
second, it will occasionally trim the active set even when
its size is smaller than B, because s(w) is subtracted even
when the active set is smaller than B. However, when the
active set is small, then s(w) is likely to be zero.

Here is the setup. We are given B, the budget; we will de-
termine λ, η, and U as the proof goes on. We are also given
an arbitrary sequence of points (x1, y1), . . . , (xT , yT ) that
satisfy ‖φ(xi)‖ ≤ 1 for every i.

First, the convex domain C is {w : ‖w‖ ≤ U/2}, so the
diameter of C is U .

Second, the functions to be minimized are fi(w) =
L(w; (φ(xi), yi)) + λ · ‖w‖2/2. We will write Li(w) for
L(w; (φ(xi), yi)).

Consider Algorithm 1. Once we choose λ, the choice of the
learning rate η is constrained. Indeed, we wish to replace
updates of the form

∆i = −η · f ′i(wi) = −η · L′i(w)− λη · w

with the random update

∆′i = −η · L′i(w)− s(w)

In order for ∆′i to satisfy E[∆′i] = ∆i, we must have

1/B = λη (7)

since E[s(w)] = w/B.

We will now show how to apply an idea of (Flaxman et al.,
2005) to our setting in a way that will consider only a subset
of the training points.

Consider a sequence of noise variables n1, . . . , nT that are
defined as the noise in our gradients. Specifically, as we
run the modified RBP on the a-priori known sequence of
training points,3 we will have noise in our gradients when-
ever we make an error. If the algorithm makes a mistake on
example xi, then let ni = −∆′i/η+∆i/η be the noise; that
is, ni is exactly the amount of noise we add to the gradients
f ′i(wi) in order to obtain noisy gradient −∆′i/η (note that
−∆i/η = f ′i(wi)). If the algorithm makes no error, let
ni = 0. As a result, ni satisfies E[ni|n<i] = 0, and hence
E[ni] = En<i [E[ni|n<i]] = 0.

LetM be the number of errors an and letm(1), . . . ,m(M)
be the indicies where the modified RBP made its errors.
The variables M , m(j) and wi are random.

3It is known only for the purposes of the analysis, but not to
the algorithm.

For each i, define the function hi(w) = fi(w) + (w −
wi)>ni. Then hi(wi) = fi(wi) and E[hi(w)] = fi(w) for
all w; the functions hi are convex and h′i(w) = f ′i(w)+ni.
Running the modified RBP is equivalent to running on-
line gradient descent with projections πC on the functions
hm(j) that correspond to the examples on which the RBP
made an error, so lemma 1 applies to hm(j) for 1 ≤ j ≤M
with the vectors wm(j).

Using the fact that the hinge loss ≥ 1 whenever the algo-
rithm makes an error, as well as applying lemma 1, we get

M ≤
M∑

j=1

fm(j)(wm(j))

=
M∑

j=1

hm(j)(wm(j))

≤
M∑

j=1

hm(j)(w′m(j)) +
U2

2η
+

3 · USM

2η
+

M · η ·G2

2
+ U · E

where the second inequality is due lemma 1, SM is the
shift of the vectors {w′m(j)}

M
j=1 and G is greater than

‖h′m(j)(wm(j))‖ for all j. But we know that hi(w) =
Li(w)+λ·‖w‖2/2+(w−wi)>ni, that ‖w‖2 ≤ U2/4, and
that E = 0. Using this knowledge, we can upper bound the
number of errors by

M ≤
T∑

i=1

Li(w′i) +
M∑

j=1

(w′m(j) − wm(j))>nm(j) +

M · λ · U
2

8
+
U2

2η
+

3 · US
2η

+
M · η ·G2

2

where we added the hinge losses of the comparison se-
quence at all of the points (which are always nonnegative).
Here S is the shift of all the comparison vectors w′i; we
used SM ≤ S, which holds by the triangle inequality. Fi-
nally, by averaging the inequality, we get

E[M ] ≤
T∑

i=1

Li(w′i) + E[M ] · λ · U
2

8
+ (8)

U2

2η
+

3 · US
2η

+
E[M ] · η ·G2

2

which is a deterministic bound on the average number of
errors. The nm(i) terms disappear since wi is determined
by n<i and E[ni|n<i] = 0. This can be made clearer by
defining an indicator variable Erri which is 1 if the algo-
rithm errs on example i and 0 otherwise. Using Erri, we
get

M∑
j=1

(w′m(j) − wm(j))>nm(j) =
T∑

i=1

(w′i − wi)>ni · Erri
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Now, consider E[(w′i−wi)>ni ·Erri|n<i]. Given n<i, wi

is fixed and Erri is known, and E[ni|n<i] = 0; this shows
that each term in the above sum is zero in expectation.4

This bound is meaningful only when multiplicative fac-
tor of E[M ] on the RHS of eq. 8 is less than 1, which is
λ · U2/8 + G2η/2. This constrains the choice of the pa-
rameters.

Before we find the parameters, we observe that G2 ≤ 4,
which can be seen by noticing that the gradient h′i(wi) has
the form ±φ(xj) ± cφ(xk) for some j and k and some
c ≤ 1, which follows from fact 1; since φ(x) ≤ 1, the
norm ‖h′i(wi)‖ ≤ 2, and hence G2 ≤ 4.

Finding a set of reasonable parameters is straightfor-
ward. By recalling that 1/(λB) = η and choosing λ =
1/U2, B = 16U2, η = 1/16 makes sure that the multi-
plicative factor of E[M ] on the RHS of eq. 8 is 1/4, yield-
ing the following:

Theorem 1: For all sequences of points satisfying
‖φ(xi)‖ ≤ 1, and for all sequences of comparison vec-
tors w′i satisfying ‖w′i‖ ≤

√
B/8, the expected number of

mistakes Algorithm 1 makes is bounded by

3
4

E[M ] ≤
T∑

i=1

Li(w′i) +
B

2
+ 6 · S ·

√
B (9)

where S =
∑T

i=2 ‖w′i − w′i−1‖, and Algorithm 1 uses η =
1/16, the domain C = {w : ‖w‖ ≤

√
B/8}, and the

budget B.

As in (Cavallanti et al., 2007), it is possible to select other
constants that can increase the multiplicative constant of
E[M ] (which is 3/4) closer to 1 at the expense of being
competitive with vectors of smaller norms.

3.2. The simplified Forgetron

We perform an analogous analysis of the simplified For-
getron (Algorithm 2), which turns out to be simpler than
that of Algorithm 1 because lemma 1 applies directly.

Let the datapoints (xi, yi) and the functions fi be exactly as
in the previous section: fi(w) = Li(w) +λ‖w‖2/2, where
Li(w) = L(w; (φ(xi), yi)).

We will run online convex programming on the functions
fi with errors in the gradient, where the errors make sure
that the update

wi+1 ← πC(wi − η · L′i(wi)− λη · wi − η · Ei) (10)

removes the oldest member of the active set, when the
active set has B members. This is arranged by setting

4We cannot simply use E[ni] = 0 because wi is also random,
so there might be correlations causing E[n>i wi] to be nonzero.

Algorithm 2 The simplified Forgetron.
Input: data {(x1, y1), . . . , (xT , yT )}, budget B, the
convex domain C, the learning rate η, and the weight
decay λ.
Initialize w1 ← 0.
for i = 1 to T do

Set pi ← sign(w>i φ(xi)) (the prediction)
if pi = yi; i.e., if wi predicts xi correctly then

Set wi+1 ← wi

else
Set wi+1 ← wi

If wi+1’s active set is equal to B, then remove the
vector with the smallest weight from wi+1’s active
set.
Setwi+1 ← wi+1+η ·(yi−pi)/2·φ(xi)−λη ·wi+1

Set wi+1 ← πC(wi+1)
end if

end for

Ei = ciφ(xold(i)) where ci/η is the weight of the old-
est example in wi multiplied by (1−λη). The need for this
multiplication is from eq. 10, which first scales the oldest
vector in the active set by 1 − λη before removing it with
−η · Ei.

We know that the weight of each example is reduced by
a factor of (1 − λη) on each error, and if an example
is removed from the active set then its weight was re-
moved B times, so |ci| ≤ (1 − λη)B . Furthermore, since
‖φ(xold(i))‖ ≤ 1, we have ‖Ei‖ ≤ ci. Note that when the
active set is sufficiently small, we do not need to remove
the oldest vector, in which case ‖Ei‖ = 0 ≤ (1− λη)B

As in the previous section, we can apply lemma 1 on the er-
rors of the simplified Forgetron; this is considerably more
straightforward than for the RBP since the algorithm is de-
terministic. At once, lemma 1 gives the bound

M ≤
M∑

j=1

fm(j)(wm(j))

≤
M∑

j=1

fm(j)(w′m(j)) +
U2

2η
+

3 · USM

2η
+

M · η ·G2

2
+ U · E

≤
M∑

j=1

Lm(j)(w′m(j)) +M · λ · U
2

8
+
U2

2η
+

3 · USM

2η
+
M · η ·G2

2
+ U ·M · (1− λη)B

≤
T∑

i=1

Li(w′i) +M · λ · U
2

8
+
U2

2η
+

3 · US
2η

+
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M · η ·G2

2
+ U ·M · (1− λη)B

where SM is the shift of the vectors w′m(j). We used

E =
∑M

j=1Em(j) ≤ M · (1 − λη)B and that fi(w′i) =
Li(w′i) + λ · ‖w′i‖2/2 ≤ Li(w′i) + λU2/8 in the third in-
equality, and the non-negativity of the hinge loss in the last
inequality. We also used the fact that SM ≤ S as in the
previous section.

Before we choose the parameters to make sure that the mul-
tiplicative factor of M on the RHS is less than 1, we need
to bound G. We know that the gradient has the form of
±φ(xi)− λw − Ei, whose norm can be bounded with the
triangle inequality by 2 + Uλ since ‖φ(xi)‖ and ‖Ei‖ are
both ≤ 1, so G2 ≤ (2 + Uλ)2. If we choose λ = 1/U2

and ensure that U ≥ 1, we will get that G2 ≤ 9.

As before, we need to choose the parameters to make sure
that the multiplicative factor of M on the RHS is small. It
will be sufficient for the parameters to satisfy

λ · U2

8
+
η ·G2

2
+ U · (1− λη)B ≤ 1

2
(11)

We begin by choosing λ = 1/U2, which causes the first
term to be 1/8. By choosing η = 1/32 and using G2 ≤
9 ≤ 16, we get that the second term ≤ 1/4. Finally, we
need to choose B so that U(1− 1/(32U2))B ≤ 1/8. Since
we enforce U ≥ 1, we have (1 − 1/(32U2))32U2 ≤ 1/2.
So the third term ≤ 1/8 if B ≥ 32U2 log2(8U), which is
satisfied if

U2 =
B

32 log2 8B
(12)

Note that if B ≥ 500, then U ≥ 1.

Combining the above, we get the following:

Theorem 2: Given a budget B ≥ 500, let η = 1/32, U
be as above, and λ = 1/U2. Consider Algorithm 2 with
C = {w : ‖w‖ ≤ U/2}. If we run Algorithm 2 on an
arbitrary sequence of points satisfying ‖φ(xi)‖ ≤ 1, then
the number of errors made by the simplified Forgetron is
less than

1
2
M ≤

T∑
i=1

Li(w′i) + 16 · U2 + 48 · U · S (13)

where w′i is any sequence of comparison vectors satisfying
‖w′i‖ ≤ U/2, and S is the shift of w′i.

As the original Forgetron regret bound, this bound does not
apply against comparison vectors whose norm is of order
Θ(
√
B).

4. Conclusions and Discussions
In this paper we bounded the regret of two budget Percep-
tron algorithms using the observation that both algorithms
can be seen as performing a type of L2-regularization.

We can analyze the original RBP (recall that it differs from
the modified RBP in that it does not remove any vector
from the active set if there are fewer than B of them) by
making sure that first B cost functions are the hinge loss
without L2-regularization. While reasonably straightfor-
ward, this analysis is slightly more cumbersome to de-
scribe. It is also straightforward to keep track of ‖w‖2 =∑

1≤i,j≤B = αiαjk(xi, xj) efficiently, which is needed to
implement the projection πC . It may even be possible to
remove the need for the projection πC altogether using the
lazy-projection variant of Zinkevich’s theorem (Zinkevich,
2004).

Finally, the assumption that the vectors are all distinct is
not strong since we can easily introduce tiny perturbations
which will not change the algorithm to a noticeable extent
yet will make sure that no two vectors are equal.
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