
Discovering Options from Example Trajectories

Peng Zang PENGZANG@CC.GATECH.EDU
Peng Zhou PZHOU6@CC.GATECH.EDU
David Minnen DMINN@CC.GATECH.EDU
Charles Isbell ISBELL@CC.GATECH.EDU

College of Computing, Georgia Institute of Technology, 801 Atlantic Dr, Atlanta GA, 30308

Abstract
We present a novel technique for automated
problem decomposition to address the problem
of scalability in reinforcement learning. Our
technique makes use of a set of near-optimal
trajectories to discover options and incorporates
them into the learning process, dramatically re-
ducing the time it takes to solve the underlying
problem. We run a series of experiments in two
different domains and show that our method of-
fers up to 30 fold speedup over the baseline.

1. Introduction
Reinforcement learning (RL) is a widely-studied area of
machine learning dealing with sequential decision pro-
cesses such as Markov Decision Processes (MDPs). Past
successes include pole-balancing, maze solving, and heli-
copter control (Sutton & Barto, 1998). One major chal-
lenge in RL is scalability. Traditional algorithms such as
value iteration (VI) scale with the number of states which
grows exponentially with the number of state variables. As
a result, such approaches quickly become intractable, and
unfortunately, even simple problems such as basic naviga-
tion tasks can have many state variables (e.g., location, ori-
entation, fuel, terrain, etc.)

One promising line of work to address this issue is problem
decomposition. It has several advantages: (1) it is usually
much easier to solve several smaller subproblems than one
larger one, (2) decomposition enables us to avoid solving a
subproblem multiple times, (3) decomposed subproblems
and their solutions provide transfer learning opportunities,
and (4) subproblems can often take advantage of state and
action abstractions not available to the global problem by
taking advantage of its reduced scope.

Appearing in Proceedings of the 26th International Conference on
Machine Learning, Montreal, Canada, 2009. Copyright 2009 by
the author(s)/owner(s).

Automatic problem decomposition thus arises as a crucial
goal. The problem is non-trivial because the set of possible
subproblems is exponential in the size of the state space,
and it is typically difficult to predict the speedup effects of
factoring out any particular subproblem. Further, one must
balance the cost of finding and solving subproblems with
their benefits.

In this paper, we adopt the options framework for prob-
lem decomposition (Sutton et al., 1999) and address the
problem of automatic option discovery and incorporation.
Our contributions are: (1) a method for discovering options
with motif-discovery over near-optimal trajectories using a
novel heuristic, (2) a technique for estimating the useful-
ness of a proposed option and (3) a way to compute the
transition and reward model of learned options so that they
may be injected directly into an MDP as an additional ac-
tion, enabling fast model based solvers.

In the next section we provide additional background and
introduce some notation. We then describe our approach
and algorithms. This is followed by analysis and empirical
evaluations.

2. Preliminaries
We model the reinforcement learning problem as a
Semi Markov Decision Process (SMDP). A SMDP M =
(S,A,P,R,γ) is defined by a set of states S, a set of ac-
tions A, the transition function P, reward function R and
discount factor γ. The transition function P(s,a,s′) =
∑

∞
t=1 Pr(s′, t|s,a)γt describes the likelihood of ending in

state s′ upon taking action a in state s over all possible du-
rations t, appropriately discounted. The reward function
R(s,a) specifies the expected, discounted reward accumu-
lated over the duration of taking action a in state s. To sim-
plify discussion we will assume, without loss of generality,
that rewards are negative.

A policy, π, is a mapping from states to actions that pre-
scribes what action an agent should take in a particular
state. The utility or value of a state, V π(s), is the expected,

Discovering Options from Example Trajectories

long-term discounted reward an agent receives assuming
it follows policy π from state s. V ∗(s) refers to the value
when following an optimal policy, i.e., one that maximizes
the expected long-term discounted reward.

Problem decomposition for (S)MDPs has been treated un-
der several frameworks (Dietterich, 1998) (Parr & Russell,
1997). In this paper we adopt the options framework (Sut-
ton et al., 1999). An option (I,π,β) consists of three com-
ponents. The initiation set, I ⊆ S, indicates the set of states
where the option is available. The policy, π : S → A, dic-
tates the actions to be followed while the option is active.
Finally, β : S→ [0,1] denotes the probability of terminating
in any particular state.

We assume states are represented by a set of features
f1 . . . fn, and thus S = f1× f2× . . .× fn. A state abstraction
F ⊆ {1 . . .n} is a set of indices. S[F] refers to the state sub-
space induced by the cross product of the features whose
indices are in F and is called the abstract state space of F .

Given state abstraction F̃ and F where F̃ ⊆ F , we call a
function g : S[F]→ S[F̃] the down projection function. The
function h : S[F̃]→ 2S[F] is the inverse function mapping a
state from the space of F̃ to a corresponding set of states
in S[F] and is called the up projection function. Sometimes
we want an up projection with respect to some state s ∈
S[F]. We will overload the function name h and define this
up projection as h(s̃;s) = x where xi is s̃i if i ∈ F̃ and si
otherwise. We call this the up projection of s̃ with context
s.

We define a subproblem (M,F,A,ω) as a four tuple con-
sisting of a base SMDP M, state abstraction F , action set
A, and a goal ω ∈ S[F]. F and A must be subsets of the fea-
ture space and action space of M. A subproblem induces
an abstract SMDP via F and A, which, when solved, yields
a solution to the subproblem. We use the term “problem”
loosely to refer to both SMDPs and subproblems.

A trajectory T of length k is a sequence of steps t1, ..., tk.
Each step ti is a 5-tuple (s,a,s′,d,r) where s is the state
before the action is taken, a is the action taken, s′ is the
resulting next state, d is the duration of the action and r is
the (discounted) reward received over the duration of the
step. An optimal trajectory is one that follows an optimal
policy.

We will make use of the Taxi problem, a domain commonly
seen in the literature, as a running example. Briefly, the
Taxi domain is one in which an agent is a taxi whose ob-
jective is to move a passenger from a starting location to
a desired destination. The world is a 5× 5 grid. There
are 4 pickup/dropoff locations each residing in one of the
four corners of the grid: NW, NE, SW, and SE. The state
space is composed of three state features: taxiLocation,
dropoffLocation, and passengerLocation. The ac-

tions are North, South, East, West, Pickup and Dropoff.
The MDP terminates when passengerLocation equals
dropoffLocation. Reward is uniformly -1 except for in-
valid Pickup and Dropoff actions which yield -10.

3. Speeding up RL with Options Discovery
We are interested in automatically discovering subprob-
lems to speed up (S)MDP solvers and for the transfer op-
portunities they offer. Ideally, we want to: (1) find a sub-
problem that can be solved quickly, (2) solve it, forming
an option for performing the subproblem from its solution,
and (3) insert the option into the original SMDP to lower
its complexity.

The number of possible subproblems is prohibitively large
so we would like to prune the set we consider. The re-
duced set should be significantly smaller but still contain
most of the “good” subproblems. To ground our discus-
sion, we have put together some characteristics of “good”
subproblems. (1) Size: the subproblem should encapsulate
a significant chunk of the overall problem. If this were not
the case, learning the option would offer little overall sav-
ings. (2) Frequency: the more frequently a subproblem
arises, the more savings the decomposition of the subprob-
lem yields. (3) Abstraction: the greater the abstraction the
faster we can solve the subproblem.

Our method of pruning the space of subproblems rests upon
the following insight: the size and frequency character-
istics of “good” subproblems reveal themselves in trajec-
tories; namely, a subproblem of significant size and fre-
quency leaves long, common action sequences that act as
“signatures” which can be used to detect the subproblem.
By finding these sequences, we can bias our search to those
subproblems with significant size and frequency.

In order to judge the usefulness of a candidate subproblem,
we need a way of estimating its benefit; that is, how much
faster can we solve the overall problem if we factor out this
particular piece, solve it, and then solve the rest of the prob-
lem. We perform this estimation by using the complexity
of VI; however, this estimate requires knowing the max-
imum solution length (in terms of the number of steps) of
the subproblem and the rest of the problem. Here, we again
make use of the trajectories as they provide samples of the
the subproblem and remaining problem length.

A high-level sketch of our technique is presented in Al-
gorithm 1. We require as inputs a set of trajectories and
the SMDP providing the transition and reward models. We
further assume that we have or can easily compute from the
model, the set of features an action needs (features that af-
fect or are affected by the action). For simplicity we use VI
as our baseline (S)MDP solver.

Discovering Options from Example Trajectories

Algorithm 1 Oplearn
Require: SMDP M, trajectories T

1: let subp, Tsub, Trem, score = bestSubproblem (M, T)
2: if score > 1 then
3: let Msub = SMDP induced by subp
4: let subsol = recursively solve (Msub, Tsub)
5: let o = create option (subp, subsol)
6: let Mrem = add option o into M
7: recursively solve (Mrem, Trem)
8: else
9: let F = union state abstraction of actions in T

10: let A = actions seen in T
11: let M′ = abstract SMDP(M, F , A)
12: let sol = valueIteration (M′)
13: end if
14: return sol

Oplearn finds and solves subproblems in a greedy, depth-
first manner. We only solve a (sub)problem directly when
we estimate further decompositions to be detrimental.

We refer to the SMDP first passed to the algorithm as the
original problem. In each (recursive) call of the algorithm,
the SMDP in the argument is called the base problem. If
a subproblem is identified and solved, the solution is made
into an option which is added into the base SMDP. This
produces a modified SMDP with reduced complexity. We
refer to this as the remaining problem. We refer to trajec-
tories similarly.

In our Taxi example, the original problem would be the
full Taxi problem. The first subproblem discovered may be
“pickup passenger”. If so, our first step is to make a re-
cursive call to solve this subproblem. In the recursive call,
“pickup passenger” becomes the base problem. A subprob-
lem discovered for it could be to “navigate” to a particular
pickup location. Suppose there are no further decomposi-
tions for “navigate” so that it is abstracted and solved di-
rectly. The algorithm would then add the “navigate” option
into the base SMDP. The remaining problem would be to
figure out how to “pickup passenger” with the enhanced
action set including the “navigate” option.

Several steps in the algorithm deserve further explanation.
We will describe each of these in turn in the following sec-
tions.

3.1. Finding the best subproblem

The method for finding the best subproblem is presented in
Algorithm 2. It works by generating many candidate sub-
problems, scoring them, and selecting the highest scoring
one. We will first explain how subproblems are formed.
The basic progression is to discover common actions se-

Algorithm 2 Finding the best subproblem
Require: SMDP M, trajectories T

1: let cas = common action sequence of T
2: let acc = []
3: for all seq ∈ cas do
4: let F = union state abstraction of all actions in seq
5: let g = goal search (seq, F)
6: let Tsub, Trem = decompose trajectories T
7: let A = union of all actions in Tsub
8: let subp = generate subproblem (M, F , A, g)
9: let score = score (subp, Tsub, Trem)

10: add (subp, Tsub, Trem, score) to acc
11: end for
12: return entry in acc with highest score

quences, which we then use as seeds to find the goals and
action sets that define the subproblems.

We generate common action sequences from the trajecto-
ries efficiently using suffix trees. Suffix trees are a tech-
nique commonly found in motif-discovery literature. They
require only linear time and space to construct (Ukkonen.,
1992). The tree is structured such that each path from root
to leaf represents a suffix, and thus each path from the root
to an internal node represents a subsequence. In addition,
the nodes correspond to maximal subsequences in the sense
that each edge represents the longest sequence of charac-
ters that always follows the prefix represented by the par-
ent node. Thus, by building a generalized suffix tree based
on observed action sequences and then traversing the tree
structure, we generate all maximal repeated action subse-
quences in linear time.

Every common action sequence produced by the suffix tree
is a seed for finding a candidate subproblem. The process
from seed to scored subproblem has several steps. First, the
seed is used to determine what state variables are needed by
the subproblem, i.e., its state abstraction. This is a simple
process of taking the union of the state features needed by
each action in the seed.

Next, goal search is performed. A goal that appears fre-
quently is desirable because it means the resulting sub-
problem will also be frequent. A goal on an abstraction
boundary, that is, when the state abstraction required by
the actions suddenly changes, is also desirable because it
maximizes the benefits of any afforded abstraction and is
a natural breaking point. Because abstraction buys us the
most speedup, we give it priority. We perform goal search
by taking every occurrence of a seed in the trajectories, and
extending the sequence until the abstraction “breaks”, i.e.,
when one or more extra state features are suddenly needed.
The last state before the abstraction is “broken” becomes a
goal candidate. The most frequent goal candidate is chosen

Discovering Options from Example Trajectories

as the goal.

Finally, we find the action set by decomposing the trajecto-
ries into those that are a part of the subproblem, Tsub, and
those that are a part of the remaining problem, Trem. The
union of all actions in Tsub forms the action set. Tsub con-
sists of just those sequences in which the subproblem could
have been used. Such a sequence ends in a state, which
when abstracted, matches the goal state and starts from the
earliest state that does not “break” the abstraction. Trem
consists of the remaining sequences with one addition: in
place of each portion removed, a single step is added rep-
resenting the option that solves the subproblem.

Returning to our taxi example for a moment, suppose the
trajectory is “ENNNPWWWWD”. The suffix tree might
generate “NN” as a common action sequence. This would
become our seed. To find the subproblem goal, we ex-
tend “NN” to “NNN” and finally to “NNNP” at which
point the Pickup action breaks our state abstraction of just
taxiLocation. The goal would then be the state im-
mediately prior to the Pickup action: taxiLocation=NE.
To decompose the trajectories, we look for all states in
which taxiLocation=NE. For each such state, we extend
backwards in time until a step breaks our state abstrac-
tion. In our example, this yields “ENNN”, which be-
comes our Tsub. If the option corresponding to our sub-
problem is named “0”, then the remaining trajectory would
be “0PWWWWD”.

Once we find the subproblems, they are added to acc along
with their score. We score a subproblem by C/(C′ +Cp)
where C is the computational cost of solving the base
SMDP, Cp is the cost of solving a subproblem p, and C′ is
the cost of solving the remaining problem. Each iteration of
VI has complexity |S|2|A|. It requires min(L,H) iterations
where L is the maximum optimal path length and H is the
horizon induced by the discount factor γ and precision pa-
rameter ε. Assuming H is sufficiently large, we estimate
C = N2AL, Cp = N2

pApLp and C′ = N′2A′(L− LpFp + 1)
where N, A and L refer to the number of states, actions, and
maximum optimal path length in the base SMDP. Np, Ap,
Lp, N′, A′ and L′ are defined similarly but for the sub and
remaining problems. The sizes of various state spaces and
action spaces are computed directly from the state and ac-
tion abstraction of the base, sub and remaining problems.
We estimate length from the maximum observed in the var-
ious trajectories. Similarly, we estimate frequency, Fp, as
the average frequency of the subproblem in the remaining
trajectories.

3.2. Option creation

Once a subproblem is found, we must solve it and generate
an option. Given base SMDP M = (S[F],A,P,D,R,γ) de-
fined over state abstraction F , and subproblem (M, F̃ , Ã,ω)

where F̃ ⊆ F , Ã⊆ A and ω ∈ S[F̃], the subproblem induces
a sub SMDP Msub = (S̃, Ã, P̃, D̃, R̃,γ).

The state space of Msub is simply the abstract state space
S̃ = S[F̃]. The action space is defined by the subproblem,
Ã. The transition function P̃(s̃,a, s̃′) is defined by P(s,a,s′)
and the reward function, similarly, R̃(s̃,a, s̃′) = R(s,a,s′),
where s ∈ h(s̃) and s′ ∈ h(s̃′;s). In other words, the transi-
tion and reward between states in the abstract state space is
the same as the transition and reward between correspond-
ing states in the base state space. The sole exception is
when the abstract state matches the abstract goal state. In
that event, the transition is simply a self-loop of unit time
and zero reward.

We solve Msub directly with VI. With the resulting π̃ : S̃ →
A, we can define an option for the subproblem O = (I,π,β).
The policy π(s) = π̃(g(s)) is simply derived from querying
the solution of Msub. The initial set is the set of states that
can reach the (abstracted) goal. The terminal function β

is simply 1 for all states which, when projected into S[F̃],
match the goal state, and 0 otherwise.

3.3. Option insertion

Given a solved subproblem and the corresponding option,
we must insert the option as an action into the base SMDP.
This poses some difficulty. While the transition, duration
and reward functions of the base SMDP are well defined
over all primitive actions, the same is not true for learned
options. In order to insert the option as an action into the
base SMDP, we must learn the model of the option. That
is, how the option transitions and the reward accumulates
when it is executed as an action in the SMDP.

Fortunately, we can efficiently derive the model for the
option. When solving Msub, we not only solve for the
value of each state V (s), but also the expected time it
takes to reach the goal state. This can be done by de-
riving a Bellman equivalent for time, or rather discount:
T (s) = Es′,t [T (s′)γt], for the greedy policy. Similar to the
Bellman equation for value, this equation says the expected
time (in terms of discount) to reach the goal from state s is
equal to the expectation, over next states s′ and time t, of
the discount it takes to get to s′ times the expected discount
of reaching the goal from s′.

Because the value of the goal state is zero, V (s) models
the reward of the option. T (s) models the duration of the
option and, together with the initial and terminal set of the
option, allows us to produce the transition function describ-
ing the option. Taken together, we can now define a SMDP
Mrem augmented with the option. Mrem = (S, Â, P̂, D̂, R̂,γ)
has the same state space and discount factor as the base
SMDP; however the other elements change. The action
set, Â = A

S
{o}, now contains the option o. The transi-

Discovering Options from Example Trajectories

tion function when option o is invoked in state s leads de-
terministically to the goal state of the option, h(ω;s), with
probability 1 and discount T (s). It accumulates discounted
reward V (g(s)). This, of course, assumes s is in the initial
set of o. Invoking o outside of its initial set results in a self
loop of unit time with worst possible reward, rmin.

4. Analysis
Oplearn assumes that the model is given. Often, the model
is either available or can be learned. A more restrictive re-
quirement is the need for near optimal trajectories. Note
that this does not mean we need to have a good solution
before solving the problem. The algorithm uses a few ex-
ample trajectories over a handful of states to generalize a
policy defined over all states. As our results will show, (1)
just a few trajectories are sufficient and (2) the optimality
requirement is loose. These factors combine to make many
sources of trajectories feasible (e.g., demonstration, single
source planning, etc.). When trajectories are not available
for a particular problem, a smaller or relaxed version of the
problem can often be used.

We use a heuristic based on length, frequency and afforded
abstraction to discover options. Domains such as flying
through a 3D maze, where the actions are thrust and rotate,
is a good example of when this heuristic works well. Mov-
ing from one point to another (or even hovering) without
stalling, spinning out, or otherwise crashing is a nontriv-
ial control problem that must be solved repeatedly. More
importantly, this subproblem only needs a subset of the
full feature space: features like goal locations, refueling
points, etc. are not required. Factoring out basic naviga-
tion into a subproblem yields considerable advantage be-
cause the state space of the subproblem is significantly re-
duced, requiring far less computation to solve. Each time
the subproblem is used, Oplearn will extract savings pro-
portional to the length of the subproblem. Conversely, in
a domain such as pole balancing, where there are few sub-
problems being solved repeatedly and no afforded abstrac-
tions, Oplearn yields little advantage. In summary, our ap-
proach is most appropriate in domains with subproblems
and where different actions require different state features.
This means sensitivity to how the action set is defined. If all
actions require all state features, in the worst case, our al-
gorithm reverts to baseline performance; however, in such
cases, little state abstraction is available and a large part of
any speedup benefit is precluded anyway.

Finally, let us consider the complexity of Oplearn. The
overhead associated with finding the best subproblem re-
quires the scoring of all maximal repeated action se-
quences. In domains that are highly nondeterministic or
simply have many optimal solutions to a subtask, there will
be many such sequences. However, the set is guaranteed to

be linear in the size of the trajectories. To score each ac-
tion sequence we must split the trajectories into those that
belong to the candidate subproblem and those that do not.
This requires a linear scan through the trajectories. Thus
the cost of finding the best subproblem is O(T 2) where T
is the length of the trajectories. The overhead of computing
the model of learned options is a constant on top of the cost
of solving the subproblem itself. Since, typically, T � N,
the computational complexity of Oplearn is no greater than
that of the base solver.

5. Experiments
We performed a series of experiments designed to explore
the speedup of Oplearn, and its robustness to varying num-
bers of trajectories and the quality of those trajectories.
These experiments were performed in the Taxi domain
where we could easily create variants to suit our needs. To
help gauge generalization, we also performed experiments
on a more complex domain based on Wargus. Trajectories
for the experiments, unless specified otherwise, were de-
rived from optimal policies (e.g., human provided). Each
trajectory is one successful episode from a random start
state.

Note that in our results, we use operations (OPs) as a mea-
sure of speed instead of raw time. OPs are the number of
expected value computations. This is similar to number of
backups but accounts for the size of the action set. OPs are
machine independent, timing tool independent, and more
reliable. Experiments measuring raw time maintain the
same trends.

5.1. Speedup

To measure the speedup Oplearn yields and how that
speedup is affected by the size of the domain, we created
variants of the Taxi domain. VI is used as the baseline for
comparison. To be fair, so that the trajectories do not offer
Oplearn untoward advantage, when applying VI, we ini-
tialized its value table with value estimates from the trajec-
tories. In these speedup experiments, Oplearn was given
10 optimal trajectories.

Figure 1 shows the speedup our technique yields over state
spaces of increasing size. We generated different sized Taxi
worlds by altering the size of the grid. Oplearn initially
only yields about a 50 percent reduction in the number of
operations. By the time the state space has reached 500k
states, however, Oplearn requires over an order of magni-
tude fewer operations.

Examination of the options learned explain this behavior.
Oplearn discovers options like “navigate to NE corner”. As
the size of the Taxi world increases, the frequency with
which we see navigate options does not change, nor does

Discovering Options from Example Trajectories

Figure 1: Oplearn and VI in terms of OPs

Figure 2: Oplearn and VI in two-person Taxi world

the state abstraction of the subproblem. The length of the
option, however, does change, and this results in increased
savings on larger worlds.

We are also interested in how speedup responds to addi-
tional state features. To measure this, we performed a sim-
ilar set of experiments on a two-person Taxi world. In this
variant, there are two passengers that need to be conveyed
to their destinations. Thus, instead of three state variables,
we have five: taxiLocation, passengerA_location,
passengerA_dropoff, passengerB_location, and
passengerB_dropoff. As shown in Figure 2, we retain
the trends seen previously; however, the slope of the curves
suggest greater savings. The reason is because discovered
options can ignore a larger percentage of the state features.
For example, the navigate option needs only one-fifth of
the state features, instead of one-third. Also, Oplearn
does not do the obvious decomposition of creating a single
“pickup” option. Instead it learns separate options for A
and B, allowing more state abstraction: when picking up
A, all features wrt. B can be ignored and vice versa.

To ensure the results hold for non-deterministic worlds, we
ran the same series of experiments on modified Taxi do-
mains similar to the “fickle” version in (Dietterich, 1998).
In particular, actions only work 80 percent of the time. The

Figure 3: Optimality over the number of trajectories

rest of the time, they fail and leave the state unchanged.
Results in the non-deterministic case maintain the behavior
and trends displayed above although the savings are even
greater. This is due to the ability of options to compartmen-
talize non-determinism. Due to non-deterministic actions,
navigating to the NE corner requires varying numbers of
steps and accumulated rewards. Many iterations of VI are
required before the value of a state will converge, and each
of these iterations is over the full state space. By contrast,
with Oplearn, the navigation task is factored out into a sub-
problem with an abstract state space consisting of just the
taxi location state variable. Although it takes just as many
iterations for the value to converge, each iteration is far
cheaper because the abstract state space is much smaller.
More to the point, the generated option will be determinis-
tic, making the remaining problem much easier. The option
“traps” the non-determinism inside itself.

5.2. Robustness

We ran two sets of experiments to explore Oplearn’s ro-
bustness. The first gauges the reaction to different numbers
of trajectories, the second, to varying trajectory qualities.

Figure 3 shows Oplearn’s response to the number of tra-
jectories on the simple Taxi domain and its “fickle” vari-
ant. Oplearn performs near optimal as long as there are a
sufficient number of trajectories. If there are too few tra-
jectories, there may not be enough examples of how a sub-
problem is solved. Oplearn infers the abstract action set for
a subproblem based on what actions it observes are used to
solve the subproblem. As long as a variety of actions are
seen, this is fine; too few, however, and the subproblem
may not contain all the actions needed to solve it. Consider
for example, the subproblem of navigating to the NE corner.
If there are few example trajectories, it may just so happen
that we only ever go to the NE corner from the NW corner.
This would lead Oplearn to infer that only East is needed
to solve the subproblem and produce suboptimal behavior.
In practice, Oplearn is able to perform near optimally with

Discovering Options from Example Trajectories

Figure 4: Optimality over increasing noise (temperature)

just four trajectories in the deterministic setting and eight
trajectories in the non-deterministic case.

To measure Oplearn’s response to the quality of trajecto-
ries, we generated trajectories using softmax action selec-
tion. In particular, we choose action a ∈ A with probabil-
ity exp(Q(a)/τ)

∑b exp(Q(b)/τ) where τ is a positive temperature param-
eter, and Q(a) is the expected value of taking action a.
High temperatures cause actions to be (nearly) equiprob-
able while low temperatures cause the action to be greedy.
We simulate noisy trajectories by varying τ. Figure 4 shows
the results. Oplearn was given 10 trajectories for this ex-
periment.

Oplearn performs robustly. Degradation of solution qual-
ity as the quality of input example trajectories grows worse
is expected. What is interesting is that Oplearn maintains
near optimality until temperatures of around 10. To give
some intuition, at temperatures around 10, there is only
a 30 percent chance of choosing the optimal action, just
twice as likely as random. The reason Oplearn is so ro-
bust is because it only uses the input trajectories to identify
subproblems. Once found, the subproblems are solved in-
dependently. Thus, Oplearn routinely performs better than
the example trajectories it learns from. The reason opti-
mality falls around 10 is because the trajectories have be-
come so noisy that it begins to affect Oplearn’s ability to
find good options. One may be surprised that after 200,
optimality recovers. This is because by 200 the policy has
become roughly random. The trajectories are so noisy that
no options are found at all. This results in Oplearn revert-
ing to baseline behavior. Oplearn suffers worse in the non-
deterministic setting due to the additional randomness of
the transitions.

5.3. Wargus

To ensure our technique is generalizable beyond simple
Taxi domains, we ran additional experiments in a Wargus-
like domain. Wargus is a complex, real-time strategy game
where players must gather resources, build bases, and train

armies to attack each other. A key aspect of the game
is the opening when each player is vulnerable and must
build up their economies and initial defenses from scratch.
The “grunt rush” strategy aims to exploit this weakness by
building an army of basic units as fast as possible so as to
strike the opponent while they are still weak. For our ex-
periments, we use a version of Wargus where this strategy
serves as the goal.

The state space is defined by: gold, wood, grunts, farms,
lumbermill, barracks, blacksmith, time, location,
status. Gold and wood indicate how much gold or wood
is available (for simplicity, we modified costs to be in hun-
dreds). Grunts, farms, lumbermill, barracks and blacksmith
indicate the number of each that has been built. Location
refers to the peon’s location. It can be one of three places:
townhall, goldmine, or woods. Status refers to the peasant’s
status, if it is carrying anything, if it is mining, etc. Finally,
we have added the state variable time indicating the time
of day to make the task more interesting (at night, there is
some probability of being ambushed by bandits).

The primitive actions are: Idle, GotoGoldmine, Go-
toWoods, GotoTownhall, Chop, Mine, Deposit, Build-
Farm, BuildBarracks, BuildLumbermill, BuildBlacksmith,
and TrainGrunt. Idle is useful for waiting out the night.

Reward is -10 by default, but there are bonuses and penal-
ties for various events. There a deposit bonus of +1 every
time gold or wood is deposited and a building bonus of +2
every time a building is erected. These are part of the scor-
ing at the end of Wargus. There is an army bonus every time
a grunt is trained or if a blacksmith is built (the blacksmith
gives upgraded weapons and armor) based on the amount
by which the army’s strength is increased. The army bonus
reflects our goal to build as powerful an army as fast as pos-
sible. Finally, if the peon is ambushed by bandits we incur
a bribe penalty of -40. As our domain is for learning the
grunt rush, we end the game when a sufficiently powerful
army has been built. We used a γ of 0.9995.

Our experiments indicate that Oplearn yields similar re-
sults in the Wargus domain as it did in our prior test do-
mains, requiring an order of magnitude fewer ops than VI.
As we scaled the size of the problem, by increasing the
range of various state variables and the power of the army
required, the savings increased. For example, when only
an army of power four is needed, VI took approximately
20 million ops while Oplearn only needed 2 million, a 10x
savings. However, in the larger case where an army of
power eight was needed, VI took approximately 80 mil-
lion ops while Oplearn only needed 3 million, a 27x sav-
ings. This is because Oplearn discovers options like “mine
gold”, “chop wood”, “build a farm”, “build a barracks”, etc.
As the size of the problem increases, the amount of work
each subproblem chunks away and the frequency of their

Discovering Options from Example Trajectories

use also increases, because more gold, wood and buildings
are needed.

Oplearn’s solution was near optimal, although it required
more trajectories than the Taxi domains. In Taxi, only four
to eight trajectories were needed. Here we needed about
15 trajectories before Oplearn consistently performed op-
timally.

6. Related Work
There exists a range of related works in automated problem
decomposition. One approach is based on analysis of state
features. For example, (Jonsson & Barto, 2006) assumes
a dynamic Bayesian network (DBN) transition model and
uses it to generate a causal graph depicting how state vari-
ables influence each other. It uses this causal graph to pro-
duce options for changing the value of various state vari-
ables. (Hengst, 2002) also focuses on state features but
uses their rate of change as a heuristic for finding options.
In contrast with our work, these approaches focus on find-
ing task independent options and do not make use of trajec-
tories.

Closer to our approach is (Mehta et al., 2008). Like (Jon-
sson & Barto, 2006) they assume a DBN model and use
causal analysis but they also take advantage of a single ex-
ample trajectory to guide the options discovery. While we
share many similarities with (Mehta et al., 2008), our fo-
cus and approach are different. We focus on subproblem
discovery for the express purpose of solving a given prob-
lem faster. To this end, we only factor out subproblems
estimated to improve running time and infer its model. By
contrast, they focus on problem decomposition, aiming for
a full MAXQ hierarchy. These differing foci reflect our
differing approaches. We discover subproblems based on
frequency, length and abstraction affordance. Their work
is based on the insight of grouping together consecutive
actions that contribute to achieving a specific literal.

Other problem decomposition techniques include ap-
proaches based on state clustering and bottleneck detec-
tion such as (McGovern & Barto, 2001) and (Mannor et al.,
2004), as well as multi-tasks approaches such as (Pickett &
Barto, 2002). Unlike the approach taken here, the former
typically do not focus on state abstraction and are usually
model-free, used in conjunction with Q-learning or similar
algorithms. The latter is similar in spirit but aimed to help
solve future problems in the same domain, not the current
problem at hand.

The general idea of using trajectories to facilitate learning
is not new. Apprenticeship learning is based around the
concept of taking advantage of example “teacher” trajec-
tories. From this perspective, our method can be viewed
as a technique for speeding up apprenticeship learning by

discovering and incorporating options.

7. Conclusion
We introduced a method for discovering useful subprob-
lems by taking advantage of example trajectories. We then
showed how to achieve significant speedups by solving the
subproblems and inserting them as actions into the original
problem. Our method produces near optimal policies as-
suming enough near optimal example trajectories. As seen
in our empirical results, it works well with relatively few
trajectories and is robust to trajectory quality.

References
Dietterich, T. G. (1998). The MAXQ method for hierar-

chical reinforcement learning. Intl. Conf. on Machine
Learning (pp. 118–126).

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with hexq. Intl. Conf. on Machine Learning (pp.
243–250).

Jonsson, A., & Barto, A. (2006). Causal graph based
decomposition of factored mdps. Journal of Machine
Learning Research, 7, 2259–2301.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004).
Dynamic abstraction in reinforcement learning via clus-
tering. Intl. Conf. on Machine Learning (pp. 560–567).

McGovern, A., & Barto, A. G. (2001). Automatic discov-
ery of subgoals in reinforcement learning using diverse
density. Intl. Conf. on Machine Learning (pp. 361–368).

Mehta, N., Ray, S., Tadepalli, P., & Dietterich, T. (2008).
Automatic discovery and transfer of maxq hierarchies.
Intl. Conf. on Machine Learning (pp. 648–655).

Parr, R., & Russell, S. (1997). Reinforcement learning with
hierarchies of machines. Advances in Neural Informa-
tion Processing Systems (pp. 1043–1049).

Pickett, M., & Barto, A. G. (2002). Policyblocks: An al-
gorithm for creating useful macro-actions in reinforce-
ment learning. Intl. Conf. on Machine Learning (pp.
506–513).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 112, 181–211.

Ukkonen., E. (1992). Constructing suffix-trees on-line in
linear time. Algorithms, 1, 484–492.

