
Using Fast Weights to Improve Persistent Contrastive Divergence

Tijmen Tieleman tijmen@cs.toronto.edu

Geoffrey Hinton hinton@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada

Abstract

The most commonly used learning algorithm
for restricted Boltzmann machines is con-
trastive divergence which starts a Markov
chain at a data point and runs the chain
for only a few iterations to get a cheap, low
variance estimate of the sufficient statistics
under the model. Tieleman (2008) showed
that better learning can be achieved by es-
timating the model’s statistics using a small
set of persistent ”fantasy particles” that are
not reinitialized to data points after each
weight update. With sufficiently small weight
updates, the fantasy particles represent the
equilibrium distribution accurately but to ex-
plain why the method works with much larger
weight updates it is necessary to consider the
interaction between the weight updates and
the Markov chain. We show that the weight
updates force the Markov chain to mix fast,
and using this insight we develop an even
faster mixing chain that uses an auxiliary set
of ”fast weights” to implement a temporary
overlay on the energy landscape. The fast
weights learn rapidly but also decay rapidly
and do not contribute to the normal energy
landscape that defines the model.

1. Introduction

A Restricted Boltzmann Machine (RBM) is an energy-
based model for unsupervised learning (Hinton, 2002;
Smolensky, 1986). It consists of two layers of binary
units: one visible, to represent the data, and one hid-

den. RBM’s are typically used for unsupervised learn-
ing (i.e. for modelling a probability distribution over
binary visible vectors). If the visible units are divided
into two groups, they can also be used to model the

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

joint distribution of, for example, binary images and
their labels.

Standard notation is to use i for indices of visible units,
j for indices of hidden units, and wij for the strength
of the connection between the ith visible unit and the
jth hidden unit. If vi denotes the state of the ith visible
unit, and hj denotes the state of the jth hidden unit,
an energy function is defined on states:

E(v, h) = −
∑

i,j

vihjwij −
∑

i

vibi −
∑

j

hjbj (1)

where b stands for the biases. Through these energies,
probabilities are defined as

P (v, h) =
e−E(v,h)

Z
(2)

where Z is the normalizing constant

Z =
∑

x,y

e−E(x,y) (3)

The probability of a data point (represented by the
state v of the visible layer) is defined as the marginal:

P (v) =
∑

h

P (v, h) =

∑
h e−E(v,h)

Z
(4)

Thus, the training data likelihood, using just one train-
ing point for simplicity, is

φ = log P (v) = φ+ − φ− (5)

where
φ+ = log

∑

h

e−E(v,h) (6)

and
φ− = log Z = log

∑

x,y

e−E(x,y) (7)

The positive gradient ∂φ+

∂wij
is simple:

∂φ+

∂wij

= vi · P (hj = 1|v) (8)

Using Fast Weights to Improve Persistent Contrastive Divergence

The negative gradient

∂φ−

∂wij

= P (vi = 1, hj = 1) (9)

however, is intractable. If we could get samples from
the model, we could Monte Carlo approximate it, but
even getting those samples is intractable.

To get a tractable approximation of ∂φ−

∂wij
, one uses

some algorithm to approximately sample from the
model. The Contrastive Divergence (CD) algorithm
(Hinton, 2002) is one way to do this. It is designed
in such a way that at least the direction of the gra-
dient estimate is somewhat accurate, even when the

size is not. To estimate ∂φ−

∂wij
, the algorithm starts a

Markov Chain at one of the training data points used

to estimate ∂φ+

∂wij
, performs one full Gibbs update, and

treats the resulting configuration as a sample from the
model.

2. Using a Persistent Markov Chain to

Estimate the Model’s Expectations

Instead of starting the Gibbs sampling at a random
state or at a data point, it is possible to use a “persis-
tent” Markov chain that is not reinitialized each time
the parameters are changed. If the learning rate is suf-
ficiently small compared with the mixing rate of the
Markov chain, this persistent chain will always stay
very close to the stationary distribution even if it is
only run for a few Gibbs updates per weight update.
Samples from the persistent chain will be highly cor-
related for successive weight updates, but again, if the
learning rate is sufficiently small the chain will mix be-
fore the weights have changed enough to significantly
alter the unconditional expectations. Many persistent
chains can be run in parallel and we shall refer to the
current joint state of the hidden and visible units in
each of these chains as a “fantasy particle”. The effec-
tiveness of this technique for learning general Boltz-
mann machines was demonstrated by (Neal, 1992).
(Tieleman, 2008) showed that, given a fixed amount
of computation, restricted Boltzmann machines can
learn better models using this “Persistent Contrastive
Divergence” algorithm, i.e. using persistent Markov
chains, compared to using the “standard” contrastive
divergence method (Hinton, 2002) in which each chain
is reinitialized to a data point after each weight up-
date.

In this paper, we show two things, one theoretical and
one practical. First, there is an important interac-
tion between the mixing rate of a persistent Markov
chain and the weight updates. If the persistent chain

is sampling from the current stationary distribution
of the model, Qθ, the expected weight updates follow
the gradient of the log likelihood1, but if the chain is
sampling from a different distribution, R, there is an
additional term in the expected weight updates. This
additional term is the gradient of KL(R||Qθ) and it
moves the model’s distribution away from R which is
bad2, but this has the effect of making the persistent
chain mix much faster which is good. The fact that
the energy landscape is being manipulated to improve
the mixing rate means that the effectiveness of persis-
tent chains cannot be understood by using any type of
analysis that ignores this strong interaction between
learning and mixing.

Our practical contribution is to show that we can use
an additional set of “fast weights” that learn rapidly,
but also decay rapidly, to implement a temporary over-
lay on the energy landscape. This partially decouples
the two uses of the energy landscape: the rapid mixing
can be maintained by manipulating the fast weights
even when the learning rate of the regular weights
that represent the model is decreased towards zero.
The introduction of fast weights gives large improve-
ments in the speed with which the regular weights can
be learned. This corroborates our theoretical analysis
and leads to the most effective learning algorithm so
far for RBM’s.

3. How Learning Improves the Mixing

Rate of Persistent Markov Chains

Consider an RBM that is learning by using a set of
persistent Markov chains to provide estimates of the
model’s expectations. The current states of the M

persistent chains define a distribution R which only
places probability mass on at most M points and this
creates sampling noise. To begin with, suppose that
we have a very large number of fantasy particles so
that the sampling noise can be ignored. The weight
updates exactly3 follow the negative gradient of the
difference of two divergences:

C = KL(P ||Qθ) − KL(R||Qθ) (10)

1This assumes that the data-dependent expectations are
estimated correctly, which is easy in a restricted Boltzmann
machine.

2By contrast, in variational learning (Neal & Hinton,
1998; Jordan et al., 1999), the parameter updates try to
move the true posterior distribution over latent variables
towards the variational approximation.

3This is because, unlike in “standard” contrastive diver-
gence learning, the weights do not change R. In standard
CD, they do, and CD ignores that effect.

Using Fast Weights to Improve Persistent Contrastive Divergence

where P is the distribution of the training data and Qθ

is the model’s distribution. The first term in Eq. 10
is the negative log likelihood (minus the fixed entropy
of P). The second divergence, which is being maxi-

mized w.r.t. the parameters, measures the departure
of the model’s distribution from the distribution that
the fantasy particles are sampled from.

Provided the gradient of C in equation 10 w.r.t. the
parameters has a positive cosine with the gradient of
KL(P ||Qθ) the learning will increase the log likeli-
hood of the model. It is not necessary for R to be
close to Qθ. All that is required is that the gradient
of KL(R||Qθ) is not so large that its projection onto
the gradient of KL(P ||Qθ) is larger than this gradient
and in the opposite direction. Of course, this can be
ensured by making R extremely close to Qθ, but in
practice this is generally not necessary. This allows
much bigger learning rates than would be possible if
the persistent chains needed to stay close to the cur-
rent stationary distribution.

The parameter updates alternate with Gibbs updates
of the persistent chains which have the effect of min-
imizing KL(R||Qθ) w.r.t. R and this is what stops
KL(R||Qθ) getting out of hand. The undesirable
fact that the weight updates increase KL(R||Qθ) is
countered by the fact that when KL(R||Qθ) is large,
the persistent chains will mix fast, thus reducing
KL(R||Qθ) rapidly.

To better understand the effect of the learning on the
mixing, it is helpful to consider how the energy land-
scape is changed by a set of fantasy particles many of
which have become trapped in the same low energy
mode. If the fraction of the fantasy particles in that
mode exceeds the fraction of the training data in the
mode, the net effect of following the negative gradient
of C in equation 10 will be to raise the energy of the
mode. So the mode will continue to rise until enough of
the fantasy particles can escape. By the time enough
particles have escaped, the energy of the mode will be
too high, thus preventing the fantasy particles from
returning in the near future4. Fantasy particles de-
velop an aversion to wherever they are and unless this
aversion is balanced by the energy-lowering presence
of training data, they continually seek out places they

4This has some resemblance to “taboo search” (Cvi-
jovi & Klinowski, 1995), but it is more effective in high-
dimensional spaces because it uses the parameters of the
energy function to remember where it has been rather
than storing points in the high-dimensional state space.
For the same reason, it should be a more effective way to
balance the heights of widely separated modes in a high-
dimensional and highly multi-modal space than the “dart-
ing” method described in (Sminchisescu & Welling, 2007)

have not recently visited.

4. Fast Weights

In addition to the regular weights that parameterize an
RBM, we introduce an additional set of “fast weights”
that are only used for updating the fantasy particles.
For these updates, the effective weights are the sum of
the fast and regular weights. Like the regular weights,
the fast weights are driven by the difference between
the data-dependent expectations and the model’s ex-
pectations (as estimated by the fantasy particles), but
they have much stronger weight-decay and a faster
learning rate. The role of the fast weights is to increase
the rate at which the combined energy landscape rises
in the vicinity of the fantasy particles in order to make
them mix faster. As learning progresses, it is helpful to
reduce the learning rate of the regular weights (Rob-
bins & Monro, 1951), but this has the unfortunate
side effect of reducing the changes in the energy land-
scape that cause fast mixing. Fast weights overcome
this problem. Their learning rate does not decrease as
learning progresses, but their fast decay ensures that
their effects are only temporary.

Those readers who wish to see a more rigorous analy-
sis of this method can read the paper “Stochastic ap-
proximation algorithms: Overview and recent trends”
(Bharath & Borkar, 1999). The method has been
known in the field of Statistics for some time, and
things such as convergence properties have been care-
fully analyzed.

5. Partially Smoothed Gradient

Estimates

Without fast weights, i.e. using PCD, the regular
weights have to aid the exploration of the state space.
For that reason, it is important that they change
rapidly. That is why momentum, or, almost equiv-
alently, averaging several previous gradient estimates
when choosing the weight update, hurts performance.
However, such averaging does help smooth the noisy
gradient estimates. One alternative to PCD is to use
such smoothing for the estimates of the positive gra-
dient, to reduce noise, but not use smoothing for the
estimates of the negative gradient, to still enable rapid
exploration of the state space. This does indeed in-
crease performance over that of PCD, but does not
perform as well as FPCD. We call this method PCD
PS, for ”Persistent Contrastive Divergence, with Par-
tial Smoothing”.

Using Fast Weights to Improve Persistent Contrastive Divergence

6. Pseudocode

Below is a pseudocode description of the PCD algo-
rithm. For simplicity, considerations such as momen-
tum and weight decay have been left out, but these
are easy to incorporate.

Program parameters:

• Schedule of regular learning rates (linearly
from the initial value to zero, in our experi-
ments)

• Schedule of fast learning rates (constant and
equal to the initial regular learning rate, in
our experiments)

Initialization:

• Initialize θ-regular to small random values.

• Initialize θ-fast to all zeros.

• Initialize the 100 Markov Chains v− to all
zero states.

Then repeat:

1. Get the next batch of training data, v+.

2. Calculate h+ = P (h|v+, θ-regular), i.e. infer-
ence using the regular parameters. Calculate

the positive gradient g+ = v+T
h+.

3. Calculate h− = P (h|v−, θ-regular + θ-fast),
i.e. inference using the regular parame-
ters plus the fast weights overlay on the en-
ergy surface. Calculate the negative gradient

g− = v−
T
h−.

4. Update v− = sample from
P (v|h−, θ-regular + θ-fast), i.e. one full
Gibbs update on the negative data, using
the fast weights.

5. Calculate the full gradient g = g+ − g−.

6. Update θ-regular = θ-regular + g ·
regular learning rate for this iteration.

7. Update θ-fast = θ-fast · 19

20
+ g ·

fast learning rate for this iteration

7. Experiments

First, we ran some experiments on small tasks, to get
some idea of the performance, and to find out what
values work well for the algorithm parameters (weight
decay, learning rate, etcetera). After that, we ran a
larger experiment, with algorithm parameters that ap-
peared to work reasonably well.

7.1. Initial Experiments on Small Tasks

7.1.1. A General Performance Comparison

We used two tasks, one requiring a bit more train-
ing time than the other. For both tasks, we used the
MNIST (LeCun & Cortes,) data set. The smaller task
was to train an RBM density model of the MNIST
images, with a small RBM (25 hidden units). The
larger task was classifying the MNIST images, using
an RBM with 500 hidden units that learns a joint
density model of images and labels, also known as a
classification RBM (Hinton et al., 2006; Larochelle &
Bengio, 2008). These same tasks were used in (Tiele-
man, 2008), which compared the performance of PCD
to that of other, more commonly used methods. We
include the data from that paper in our plots, so we
can show plots of the performance of older methods,
of PCD, and of PCD with fast and regular parameters
(Fast PCD, or FPCD) - see Figure 1.

To have a fairly principled comparison, we ran the ex-
periments as follows. We ran each algorithm many
times, allowing it different amounts of time for learn-
ing. On each run, the amount of training time was
decided in advance, and the learning rate was decayed
linearly to zero over the course of the run5. Thus,
these plots do not display the performance of one run
of the algorithm at different stages in the learning pro-
cess, but rather the performance obtained given vari-
ous amounts of total training time. For each algorithm
and for each of the different amounts of total training
time, we ran 30 experiments with different settings of
the algorithm parameters (such as initial learning rate
and weight decay), evaluating performance on a held-
out validation data set. Using the results of those val-
idation runs, we picked the settings that worked best,
and ran the experiment 10 times with those, evaluat-
ing on a held-out test data set. From the 10 perfor-
mance numbers that this gave, we calculate mean and
standard error of the mean to get error bars. After
doing that for each of the algorithms, and for each of
the amounts of total training time, the resulting error
bars can be shown in one plot, and that is what Figure
1 shows.

As can be seen in these plots, we ran the experiments
only for a short time. Nonetheless, there are some
important observations to be made. Except in the

5We used linear decay of the learning rate in order to be
directly comparable with the results in (Tieleman, 2008),
but we believe that for FPCD it would be better to decay
the learning rate more slowly at the end, since the rapid
mixing caused by the fast weights will allow the regular
weights to learn efficiently when the regular weights do
not themselves cause rapid mixing.

Using Fast Weights to Improve Persistent Contrastive Divergence

32s 64s 128s 4m 8m 17m 34m 68m 2h 4h 9h 18h
−170

−160

−150

−140

−130

−120

CD−10

MF CD

CD−1

PCD
FPCD

te
st

 d
at

a
lo

g
lik

el
ih

oo
d

pe
r

ca
se

training time (logarithmic)

4m 8m 17m 34m 68m 2h 4h 9h 18h 36h 3d
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

CD−10

MF CD

CD−1

FPCD
PCD

fr
ac

tio
n

of
 te

st
 d

at
a

co
rr

ec
tly

 c
la

ss
ifi

ed

training time (logarithmic)

Figure 1. Modeling MNIST data using an RBM with 25
hidden units (top), and classifying MNIST data using a
classification RBM with 500 hidden units (bottom). CD-1
and CD-10 refer to the Contrastive Divergence algorithm
(Hinton, 2002); MF CD stands for Mean Field Contrastive
Divergence (Welling & Hinton, 2002). For more details of
these experiments see (Tieleman, 2008). One can see that
using fast weights in situations with much training time
and a small model causes a slight decrease in performance.
Note that the error bars indicate the standard error of the
mean - i.e. they are not the estimated standard deviation
of the experiment outcomes, but, instead, that divided by√

N .

part with the large error bars, FPCD outperforms the
other algorithms. Comparing the amount of training
time required for FPCD to get the same performance
as PCD, we see that, on average, FPCD is about four
times as fast as PCD. This difference is largest when
there is little training time. We hope, therefore, that
for larger tasks (e.g. learning larger data sets, with
more hidden units), the difference will be even more
significant.

7.1.2. Investigating Various Parameter

Values

Fast PCD has various algorithm parameters. Not only
are there the usual parameters of learning rate and
weight decay for the regular model parameters, but
there is also the question of how rapidly the fast model
parameters should decay, whether to use momentum
on the fast parameters, and what learning rate to use
for the fast parameters.

In the experiments described in Figure 1, these algo-
rithm parameters were set in a simple, but probably
not optimal way. While the learning rate on the reg-
ular parameters was set with a decaying schedule, the
learning rate on the fast parameters was kept constant
at the initial learning rate for the regular parameters.
Momentum was not used at all for the fast parameters;
and the decaying of the fast parameters was done by
multiplying them by 19

20 after each parameter update.

To investigate what settings for those algorithm pa-
rameters may be better, we ran various experiments
with a training time of 150 seconds - with that amount
of training time, there is a significant but not ex-
treme difference between the performance of PCD and
FPCD. We hope that this is somewhat representative
of the behavior on bigger tasks, where the ratio of
training time to problem size is similar, while the short
training time on these toy problems allows us to run
many experiments.

For the classification task (500 hidden units), we found
the following:

• Performance with 150 seconds of training time
with the aforementioned heuristically chosen set-
tings, and learning rate for the regular model
parameters chosen using the validation set, is
10.36% misclassification. We ran that experiment
1,000 times so we have a small standard error of
0.03 percentage points on that 10.36%.

• Trying out various weight decay settings, we
found that 6 · 10−6 (as opposed to zero) seemed
to work best, but performance was 10.33% mis-
classification with standard error of 0.06%, i.e. a
minor difference, less than the standard error.

• The learning rate that we used on the fast weights
(”fast learning rate”) turned out to be a bit larger
than optimal. We tried several alternative ”fast
learning rate” schedules, and the one that worked
best was a linear increasing schedule, starting
at about a third of the initial ”regular” learn-
ing rate, and ending at the initial regular learn-
ing rate. This way, interestingly, the sum of the

Using Fast Weights to Improve Persistent Contrastive Divergence

two learning rates is approximately constant, so
that the speed with which the energy surface rises
under the fantasy particles is approximately con-
stant. This keeps the fantasy particles moving
rapidly, when the regular learning rate becomes
small to allow fine-tuning of the regular parame-
ters. With that schedule, the classification error
rate was about 8.8% (the difference well exceeds
the standard error).

• Our choice of not using momentum on the fast
parameters turned out to be close to optimal -
although using a tiny bit of momentum resulted
in 1% less misclassification (again, this difference
exceeded the standard error).

• Lastly, the decay applied to the fast parameters
was also close to optimal: multiplying them by 49

50
after each parameter update, as opposed to our
heuristic 19

20 , gave a an improvement of 0.2 per-
centage points in the misclassification rate - a mi-
nor difference, even though it is beyond the stan-
dard error (we ran the experiments many times,
so the standard errors are very small).

Of course, if we were to search for optimal settings
for all of these five parameters combined, performance
would be better still, but our main aim was to have pa-
rameter settings that work reasonably well and require
no such search.

For the density modeling task with 25 hidden units,
similar results were found: choosing some of the pa-
rameters more carefully might help a bit, but the sim-
ple values we chose initially work fine: no weight de-
cay; ”fast learning rate” constant at the initial regular
learning rate; no momentum on the fast parameters;
and decaying the fast parameters using a multiplica-
tion by 19

20 after each weight update. From this we
conclude that for large problems, where it is very ex-
pensive to carefully tune such algorithm parameters,
these choices are sensible (though perhaps it is better
to keep the regular learning rate plus the fast learning
rate constant, as opposed to keeping the fast learn-
ing rate constant). If one uses them, there are no
more parameters to be chosen when using FPCD than
when using PCD. When comparing to CD-1 or MF
CD, FPCD is even more favorable, because, with a
reasonable amount of training data, weight decay can
safely be set to zero for FPCD, while CD-1 definitely
needs weight decay to keep the weights small and thus
allow significant mixing in one Gibbs update. Thus,
when using FPCD, the only parameters to be chosen
are those of the model architecture (number of hidden
units), and the basic optimization parameters (just the

128s 4m 8m 17m 34m 68m 2h 4h 9h 18h 36h
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

PCD
FPCD

fr
ac

tio
n

of
 te

st
 d

at
a

cl
as

si
fie

d
co

rr
ec

tly

training time (logarithmic)

Figure 2. Classifying MNIST data (the number of hidden
units is chosen using validation data).

learning rate for basic gradient descent). This makes
FPCD easy to use, in addition to being the best exist-
ing way to learn RBM’s.

7.2. Larger Experiments on MNIST

After verifying what algorithm parameter settings
work well, we tested the algorithm on a larger task.
The task was again classification of the MNIST im-
ages, but for these experiments, the number of hidden
units was not fixed, but was chosen using the valida-
tion set. The initial learning rate was also chosen using
the validation set. The additional FPCD parameters
were set using the aforementioned heuristically chosen
values. The result is displayed in Figure 2.

As was observed on the smaller tasks, FPCD takes,
on average, about one quarter of the time required by
PCD to get the same performance.

It is interesting to see what number of hidden units
worked best for PCD versus FPCD. Given the same
amount of training time, more hidden units means
fewer parameter updates - the product of these two
numbers has to be approximately constant. It turned
out that for FPCD, the optimal number of hidden
units is significantly larger than for PCD. For example,
given 9 hours of training time, FPCD worked best with
about 1200 hidden units, while PCD worked best with
about 700 hidden units. This ratio of close to 2 was
fairly consistent for different amounts of training time.
The most natural explanation is that FPCD has the
greatest advantage when fewer parameter updates can
be done. That is why FPCD works best with a more
powerful model, even though that means fewer param-

Using Fast Weights to Improve Persistent Contrastive Divergence

eter updates. PCD needs many parameter updates,
and thus cannot afford many hidden units. Again,
this confirms the hypothesis that FPCD is particu-
larly advantageous for large tasks, where the amount
of training time is a bottleneck.

7.3. Experiments on Another Data Set:

’Micro-NORB’

We also ran experiments on a modified version of the
NORB data set (LeCun et al., 2004). NORB is an
object classification data set, where the task is to tell
apart previously unseen types of aircraft, trucks, cars,
people, and animals, all under various lighting con-
ditions and viewing angles. One drawback of NORB
is its large input dimensionality: the data consists of
pairs of 96x96 images, i.e. it is 18432-dimensional.
Compared to MNIST’s 784, this means that exper-
imentation on NORB requires much more computer
time.

We made a modified version of NORB, Micro-NORB
(MNORB). The modification involved three steps:
first, we apply a Mexican Hat filter to the images; then,
we threshold the outcomes of the Mexican Hat filter;
and finally, we downsample the images from 96x96 to
32x32, by averaging each 3x3 pixels into one pixel (see
Figure 3). We use only the first of the two NORB im-
ages to further reduce the size of the input. This leaves
us with a data set of 32x32 images - one eighteenth of
the original size. This allows for less costly experimen-
tation. The parameters of the Mexican Hat, as well as
the threshold, were chosen to optimize the classifica-
tion performance of the logistic regression algorithm,
trained on 80% of the training set, and evaluated on
the remaining 20%. Logistic regression performance
on the test set (when trained on the full training set)
was 26% misclassification, compared to approximately
23% on the full 18432-dimensional NORB data. In
other words, the reduction in input size has made clas-
sification harder, but not impossible.

For these experiments, we tried some different learn-
ing rate schedules. As anticipated, the linearly-to-zero
schedule turned out to be suboptimal. Another learn-
ing rate schedule, which allows more fine-tuning with
small learning rates, worked better for all investigated
algorithms, though the improvement was greatest for
FPCD. The results, shown in Figure 4, are somewhat
less clear due to measurement noise. However, roughly
the same pattern is shown, with FPCD outperform-
ing PCD. It appears that overfitting is a more serious
concern for this data set: in the plot, one can see that
more training time does not necessarily make for bet-
ter performance. That is different for the MNIST data

Figure 3. Some example pictures from MNORB. Some of
these are easily recognizable, while others have become
hard or impossible to recognize after the downsampling.

set. Nonetheless, for the MNORB data set, too, FPCD
outperforms PCD and PCD PS.

After some additional experiments on the MNIST data
set, we chose a constant learning rate for the fast
weights, of simply e−1. That worked well, both for
short and long runs. We used that same constant
fast learning rate for the MNORB experiments, and
on that data set, too, it seems to have worked well.
We recommend setting the fast learning rate to that
constant, as a first thing to try, also on other data sets.

8. Discussion and Future Work

In our MNIST experiments, we find that FPCD in-
deed outperforms PCD without fast weights. The dif-
ference is largest when the number of weight updates
is small. With more time available for the optimiza-
tion, the value of fast weights seems to diminish. How-
ever, it must be said that our choices for the algorithm
parameters were chosen to match those in (Tieleman,
2008), which were optimized for PCD. A regular learn-
ing rate that decays linearly to zero may be a fine
choice for PCD, but for FPCD it is likely suboptimal.
The more established 1

t
learning rate schedule (Rob-

bins & Monro, 1951) fails to work well for PCD, be-
cause the mixing of the negative data Markov Chains
requires a significant learning rate. Thus, very little
learning would be possible for PCD after the learning
rate gets small. For FPCD, however, mixing is ensured
by the fast weights, so the regular weights can have a
small learning rate without preventing rapid mixing.
Thus, as long as the sum of the fast and the regular
learning rates remains large enough, FPCD can hope

Using Fast Weights to Improve Persistent Contrastive Divergence

11.0 12.0 13.0 14.0 15.0 16.0 17.0
0.76

0.78

0.8

0.82

0.84

0.86

0.88
FPCD

PCDPCD PS

fr
ac

tio
n

of
 te

st
 s

et
 c

la
ss

ifi
ed

 c
or

re
ct

ly

log of nHiddens*nIterations

Figure 4. Classifying the MNORB data. On the x-axis is
the logarithm of the product of two quantities: the number
of hidden units and the number of updates. This product is
approximately linearly related to the amount of time that
the optimization requires. The ratio of these two quan-
tities was chosen using validation data, for each plotted
point. Notice that performance decreases at times, even
though the learning rate was chosen using validation data,
and thus early stopping was possible. The most plausible
explanation for this is stochastic measurement noise.

to do fine-tuning with a small regular learning rate,
which PCD cannot. With learning rate schedules that
are more appropriate for FPCD, it is quite possible
that even with much training time it will outperform
PCD. Investigation into other learning rate schedules
for FPCD is the main component of future work.

Our MNORB experiments suggest that FPCD can also
perform well in situations where overfitting is a con-
cern. They also suggest that the algorithm can work
well with a simple, constant fast learning rate.

Other future work is to run this algorithm for a long
time on an established data set, to test whether state
of the art performance can be achieved or possibly
exceeded, by RBMs using FPCD training.

Acknowledgements

We thank Ruslan Salakhutdinov for many useful dis-
cussions and suggestions. This research was financially
supported by NSERC and Microsoft.

References

Bharath, B., & Borkar, V. (1999). Stochastic approx-
imation algorithms: Overview and recent trends.
Sadhana, 24, 425–452.

Cvijovi, D., & Klinowski, J. (1995). Taboo Search: An
Approach to the Multiple Minima Problem. Science,
267, 664–666.

Hinton, G. (2002). Training Products of Experts by
Minimizing Contrastive Divergence. Neural Compu-

tation, 14, 1771–1800.

Hinton, G., Osindero, S., & Teh, Y. (2006). A fast
learning algorithm for deep belief nets. Neural Com-

putation, 18, 1527–1554.

Jordan, M., Ghahramani, Z., Jaakkola, T., & Saul, L.
(1999). An Introduction to Variational Methods for
Graphical Models. Machine Learning, 37, 183–233.

Larochelle, H., & Bengio, Y. (2008). Classification
using discriminative restricted boltzmann machines.
Proceedings of the 25th international conference on

Machine learning (pp. 536–543).

LeCun, Y., & Cortes, C. The MNIST database
of handwritten digits. http://yann.lecun.com/

exdb/mnist/.

LeCun, Y., Huang, F., & Bottou, L. (2004). Learning
methods for generic object recognition with invari-
ance to pose and lighting. Proceedings of the 2004

IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (pp. 97–104).

Neal, R. (1992). Connectionist learning of belief net-
works. Artificial Intelligence, 56, 71–113.

Neal, R., & Hinton, G. (1998). A view of the EM al-
gorithm that justifies incremental, sparse, and other
variants. Learning in Graphical Models, 89, 355–368.

Robbins, H., & Monro, S. (1951). A Stochastic Ap-
proximation Method. The Annals of Mathematical

Statistics, 22, 400–407.

Sminchisescu, C., & Welling, M. (2007). Generalized

darting monte carlo (Technical Report CSRG-478).
University of Toronto, Department of Computer Sci-
ence.

Smolensky, P. (1986). Information processing in dy-

namical systems: foundations of harmony theory.
MIT Press Cambridge, MA, USA.

Tieleman, T. (2008). Training restricted Boltzmann
machines using approximations to the likelihood
gradient. Proceedings of the 25th international con-

ference on Machine learning (pp. 1064–1071).

Welling, M., & Hinton, G. (2002). A new learning
algorithm for mean field Boltzmann machines. Pro-

ceedings of the International Conference on Artifi-

cial Neural Networks (pp. 351–357). Springer.

