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Abstract

There are well known algorithms for learn-
ing the structure of directed and undirected
graphical models from data, but nearly all as-
sume that the data consists of a single i.i.d.
sample. In contexts such as fMRI analysis,
data may consist of an ensemble of indepen-
dent samples from a common data generat-
ing mechanism which may not have identical
distributions. Pooling such data can result in
a number of well known statistical problems
so each sample must be analyzed individu-
ally, which offers no increase in power due to
the presence of multiple samples. We show
how existing constraint based methods can
be modified to learn structure from the ag-
gregate of such data in a statistically sound
manner. The prescribed method is simple to
implement and based on existing statistical
methods employed in metaanalysis and other
areas, but works surprisingly well in this con-
text where there are increased concerns due
to issues such as retesting. We report results
for directed models, but the method given is
just as applicable to undirected models.

1. Introduction

Directed and undirected graphical models are now
ubiquitous in machine learning. They are used for
a variety of applications including probabilistic and
causal inference, prediction, feature selection, data vi-
sualization, and modeling interventions. Learning the
structure of these models from data has remained an
active area of research for several decades. Most exist-
ing structure learning algorithms are either constraint
based, which use conditional independence tests, or
score based, which use decomposable score functions
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such as BIC. The well known constraint based PC
algorithm is guaranteed to learn the correct directed
acyclic graphical model (DAG) from data under rea-
sonable assumptions (Spirtes et al., 2000) and is use-
ful for datasets with hundreds of variables in general
or thousands with an additional sparcity assumption
(Kalisch & Biithlmann, 2007). The GES algorithm is
a score-based alternative with the same asymptotic
guarantees (Chickering, 2002), but in practice is useful
only with datasets that have far fewer variables.

Most existing structure learning algorithms assume
that the data consists of a single i.i.d. sample. In
some cases, however, we may obtain data from multi-
ple sources which we assume were generated by some
common data generating mechanism, but are not nec-
essarily identically distributed. Such data occur fre-
quently in fMRI analysis when a sequence of record-
ings are made for multiple individuals as they are
each subjected to the same experimental conditions.
We tend to observe the same dependencies between
the measured variables for each individual, but due
to differences in individual brains, the distribution of
the data can vary significantly across individuals even
when the same fMRI machine is used. Similarly, with
the increasing availability of large amounts of data,
researchers are often able to obtain multiple legacy
datasets which measure the variables they are inter-
ested in, but may vary in distribution due to differ-
ences in recording instruments or slight variations in
experimental procedures. Pooling such data can lead
to a number of well known statistical problems, such
as introducing new spurious associations and Yule-
Simpson effects. This can have a significant effect on
the accuracy of structure learning algorithms, as we
demonstrate in section 3. Standardizing the data to 0
mean and unit variance will not necessarily avoid these
errors. In these circumstances, experimenters typically
must base their analysis on only one of the samples or
analyze each separately and extrapolate a model for
the aggregate from these results. This wastes useful
data and does not produce the increase in statistical
power we typically observe when we obtain more data.
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In this paper, we show how existing constraint based
structure learning methods can be modified to learn
from the aggregate of such data where samples are
obtained from independent sources but may not be
identically distributed. The method given is simple
to implement and based on existing statistical meth-
ods employed in metaanalysis and other other areas to
address simpler problems. We show that despite the
increased fragility of these methods when they are used
to learn structure, due to retesting the same data and
results of early independence tests influencing which
tests are performed later, significant increases in accu-
racy are observed for these methods when compared to
using a single sample or the standardized pooled data.
In some instances, accuracy is greater than when an
i.i.d. sample of the same size as the aggregate data is
used. Section 2 describes this method and the relevant
background. Section 3 then presents experimental re-
sults which compare the method to using a single i.i.d.
sample and the standardized pooled data. Section 4
briefly discusses the related problem of learning struc-
ture from distributed data with overlapping variables
and shows how this method is useful for this problem.
Conclusions and possible future research are discussed
in section 5.

2. Learning with combined p-values
2.1. Background

Metaanalyses are statistical summaries of (possibly
contrary) experimental findings. Statistical proce-
dures are used to combine results from multiple inde-
pendent experiments and obtain a global assessment
of whether certain effects may be present in the popu-
lation. Experimenters typically report p-values associ-
ated with effects that are observed (or not observed),
which indicate probabilities of attaining a test statistic
as or more extreme than the observed statistic under
the null hypothesis no effect is present. Thus, a com-
mon and convenient method for fusing experimental
results is to combine the observed p-values from each
experiment into an appropriate new statistic which can
be used to decide whether the null hypothesis should
be rejected. If we know the distribution of the new
statistic, we can obtain a new p-value using the ob-
served value, which is representative of the data from
all of the studies. We refer to such p-values as com-
bined p-values. Such methods are used regularly in
metanalysis (Sutton et al., 2000) and also for certain
tasks in neuroimaging (Lazar et al., 2002). A signifi-
cant advantage of these methods over some other data
aggregation procedures is that they are not affected by
differences in distribution across the different experi-

ments, since they rely only on reported p-values.

The most naive method for combining information
from multiple p-values is to simply average the indi-
vidual p-values. This, however, ignores the fact that
each p-value constitutes an independent source of in-
formation and unlikely evidence from multiple sources
is more compelling than unlikely evidence from a single
source. For example, assume we set «, our acceptable
type I error rate, to .05 and observe p; = py = .06 in
two independent studies. The average p-value is .06
even though it is much less likely that we would ob-
serve p-values this extreme in two independent studies
than in a single study. We should expect a combined
p-value below the o threshold, which would change the
decision we make about rejecting the null hypothesis.

More sophisticated methods have thus been proposed
for combining information from multiple p-values that
account for the independent sources of evidence in a
theoretically sound manner. One of the most well
known is due to R.A. Fisher (Fisher, 1950). Fisher’s
method requires computing the statistic Tr which, as
shown below, has a y? distribution with 2k degrees
of freedom under the null hypothesis, where k is the
number of p-values combined.
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This follows simply from the fact that p-values have a
standard Uniform distribution under the null hypoth-
esis, which becomes an Exponential distribution after
the log transformation. The sum of & Exponentially
distributed random variables has a Gamma distribu-
tion, of which the x? is a special case. After calculat-
ing Tr, we can obtain a combined p-value for k stud-
ies, which we denote p, by calculating 1 — Fxék(TF)v
where F,2 is the X3, cumulative distribution func-
tion (or compare the observed value of Tr to the 1 —«
X3, quantile to make the rejection decision). Figure
1 shows the resulting § when Fisher’s method is used
to combine two p-values, as the two p-values are var-
ied from 0 to .25. It is easy to see that obtaining two
low p-values results in a much lower p, unlike taking
the average. In simulations and many previous studies,
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Figure 1. Fisher combined p-value for two p-values

Fisher’s method has in general been more reliable than
other similar methods for combining p-values (Lazar
et al., 2002). In addition, Fisher’s method satisfies an
optimality criterion known as Bahadur efficiency (Ba-
hadur, 1971), which is related to the effective use of
data as the number of samples increases (Lazar et al.,
2002).

We now briefly describe some of the most common
competing methods. Tippett (1950) and Worsely and
Friston (2000) propose using the first and kth order
statistics, respectively, for p,
: k
T = minp; Twr = maxp;
i=1 i=1
but require that the original o be transformed to
1— (1 —a)% and al/*, respectively. Stouffer et al.
(1949) uses the following test statistic, where ®~! is
the inverse Gaussian cumulative distribution function.

K oo1q
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Under the null hypothesis, Ts has a standard Gaussian
distribution. For a two-tailed test, we compute the
combined p-value by finding 2P(X > |Ts|), and use
the original v level. Mudholkar and George (1979) uses
a logit transform of the p-values to obtain the following
statistic, where ¢ = \/3(5k + 4)/kr2(5k + 2).

k
TMG = —CZIOg <1 ﬁlp>
i=1 v

Under the null hypothesis, Th;¢ has a standard ¢ dis-
tribution with 5k 4 4 degrees of freedom. For a two-
tailed test, we compute the combined p-value by find-
ing 2P(X > |Thc|) and use the original « level. Like

Fisher’s method, Mudholkar and George’s method is
Bahadur efficient (Lazar et al., 2002).

2.2. Application to structure learning

Constraint based structure learning algorithms inter-
act with the data only when doing conditional inde-
pendence tests. Since conditional independence tests
are simply special types of hypothesis tests, they
can be replaced with combined p-value tests when
we have multiple (k) samples which we believe are
from same data generating mechanism, but which may
have different distributions.! We propose the follow-
ing method for modifying constraint based algorithms
to take advantage of such data: whenever the con-
straint based algorithm queries whether X 1 Y | Z,
we (1) find p-values p1, ..., pr under the null hypothe-
sis X 1L Y | Z using the data from each of the k sam-
ples and an appropriate independence test; (2) obtain
p for p;,...,pr using one of the methods described in
section 2.1; and (3) reject X 1L Y | Z if p < «, our cho-
sen allowable type I error rate, and report this result
to the constraint based algorithm.

No additional theoretical justifications are required for
this modification. As more data are acquired (more
samples or more data points in each sample) it be-
comes increasingly unlikely that the test statistic will
land in the rejection region under the null hypothesis,
just as in the standard case. Practical performance
with this modification, however, is not at all obvious.
Many statistical issues come up in structure learning
that do not arise in the simpler cases in which these
methods have previously been evaluated. Many inde-
pendence tests over the same variables are required to
learn structure so data is often retested. Furthermore,
the PC algorithm and many other structure learning
algorithms use greedy procedures to limit the number
of tests performed. The results of early tests decide
which additional tests needs to be performed. Errors
made in early tests can have a more significant effect
on accuracy. In the next section, we thus empirically
investigate the practical performance of this modifica-
tion for each of the methods described in section 2.1.

3. Experimental results

The PC algorithm is one of the most well known con-
straint based DAG structure learning algorithm and

Tt is important to emphasize that we are not referring
to samples from different treatment conditions in an ex-
periment. The differences in distributions should only be
due to factors such as different response rates in individ-
uals, differences in measurement instruments, and minor
differences in the experimental procedures.
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has been used as a benchmark to compare to many
other structure learning algorithms. In the exper-
iments below, we evaluate modified versions of PC
which use one of the combined p-value tests described
in section 2.1. We compare these structure learning
procedures for multiple samples to the baseline perfor-
mance of the standard PC algorithm using (a) only one
of the samples and (b) a concatenated dataset formed
by pooling together each sample after standardizing
to mean 0 and unit variance. We follow the usual
distribution conventions found in the structure learn-
ing literature when generating synthetic data: we use
unconstrained multinomial distributions for discrete
variables and linear Gaussian distributions for contin-
uous variables (Chickering, 2002). We use Pearson’s
x? conditional independence test for discrete data and
Fisher’s Z test for continuous data, and set a = .05.

We first consider the case of learning a DAG struc-
ture from two non-identically distributed samples. We
generated 100 random DAG structures with 15 nodes,
and 100 random DAG structures with 40 nodes, us-
ing the Melangon et al. (2000) MCMC algorithm, to
represent a range of possible DAG structures we might
learn from data. Random parameters for both discrete
and continuous distributions were generated twice for
each structure, i.e. we specify two non-identical dis-
crete distributions and two non-identical continuous
distributions for each structure. Forward sampling
was used to generate datasets of sizes (N) 50, 100,
500, 1000, and 2500 for each structure and distribu-
tion. For each structure and sample size, we used the
modified and baseline PC procedures described above
to learn structure from the corresponding pairs of dis-
crete datasets with different distributions and contin-
uous datasets with different distributions. Figures 2,
3, 4, and 5 report the average (over the 100 random
structures) number of edge omission, edge commis-
sion, and orientation (reversed edges) errors for the
15 variable discrete, 15 variable continuous, 40 vari-
able discrete, and 40 variable continuous cases, re-
spectively. Error bars indicate 95% confidence in-
tervals. For edge omissions, a noticeable increase in
accuracy is observed in nearly every evaluation with
each of the combined p-value methods, except for
Worsely and Friston’s method, when compared to us-
ing a single dataset or the concatenated data. Fisher’s
method outperforms the other methods for combin-
ing p-values, which is consistent with the performance
of these methods in other applications (Lazar et al.,
2002). In some cases, Fisher’s method, when applied
to two datasets of the same size actually outperforms
the single dataset method when applied to a dataset of
twice that size, e.g. N=50 vs. N=100. This indicates

that it can be more advantageous to use this method
with two independent smaller samples than with one
larger sample. All of the methods except the concate-
nated data make few edge commissions; the large num-
ber of edge commissions with the concatenated data
indicates that many spurious associations result when
the non-identically distributed data is pooled. The
combined p-value methods also show fewer orientation
errors for the 15 variable continuous cases with sam-
ple sizes 500, 1000, and 2500. Fisher’s method again
shows the fewest errors. The runtimes for each method
are shown in figure 6. A small increase in runtime is
observed for the combined p-value methods when com-
pared to using a single dataset. These runtimes, how-
ever, remain within one second in the worst case for
continuous data and five seconds for discrete data. PC
sometimes becomes very slow with the concatenated
data due to increased statistical errors.

We also tested these methods with well known bench-
mark Bayesian networks (DAG structures with asso-
ciated joint probability distributions over the DAG
nodes). The Alarm network contains 37 nodes, 46
edges, and has maximum node degree (edges with end-
points at a particular node) 6. The Insurance network
contains 27 nodes, 52 edges, and has maximum node
degree 9. The Hailfinder network contains 56 nodes,
66 edges, and has maximum node degree 17. Each
network has a specified discrete parametrization. For
each network, we generated 100 samples of size 2500
from the given parametrization and 100 samples of size
2500 from a random discrete parametrization. Table
1 shows average edge omission, edge commission, and
orientation errors and runtimes with 95% confidence
intervals for each of the methods from the previous
experiment. Fisher’s method again outperforms the
other methods for combining p-values and shows a sig-
nificant improvement when compared to using a sin-
gle dataset or the concatenated data, especially for
the Hailfinder network where many of the other meth-
ods for combining p-values perform poorly. We again
observe a slight increase in runtime when combining
p-values, but this increase is not particularly large rel-
ative to the size and difficulty of learning the networks.

Finally, to confirm that the observed trend continues
as we increase the number of samples with different
distributions, we held the sample size fixed at 100 and
repeated the the first experiment as we varied the num-
ber of samples with different distributions. The results
for the discrete and continuous cases were nearly iden-
tical so we report errors only for the 15 discrete vari-
ables case in figure 7.

As expected, these results indicate that as we increase
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Figure 2. (a) edge omissions, (b) edge commissions, and (c) orientation
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Figure 3. (a) edge omissions, (b) edge commissions, and (c) orientation errors with 15 continuous variables
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Figure 4. (a) edge omissions, (b) edge commissions, and (c) orientation

45
Il Single Dataset

I Concatenated Data 40
[ Fisher 35
[ ITippett

[Iworseley & Friston 30
I Stouffer et al.

I Mudholkar & George 25

20
15
10

Number of Edges Incorrectly Added

-

5

0

N=50 N=100

N=500 N=1000 N=2500
Sample sizes

(a)

Figure 5. (a) edge omissions, (b) edge commissions, and (c) orientation errors with 40 continuous variables
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Table 1. Errors for the (a) Alarm, (b) Insurance, and (c) Hailfinder networks

Method Edge Omissions Edge Commissions  Orientations Time (seconds)
Single Dataset 5.00 £0.00 2.00 £ 0.00 17.00 £ 0.00 3.01 £0.02
Concatenated Data 1.72+£0.27 123.68 £ 6.42 257.55 £12.27  1419.92 £ 114.55
Fisher 0.73£0.16 1.48+0.15 12.50 £1.01 6.92 £0.05
(a) Tippett 0.73£0.15 1.87+0.15 13.73 £1.02 7.05£0.05
Worsely & Friston 6.18 + 0.37 0.15+0.11 25.67 £ 1.03 4.37+0.70
Stouffer et al. 1.30 £0.19 1.95£1.10 12.85£1.26 65.26 + 44.65
Mudholkar & George 0.95£0.16 2.30 £1.08 13.38 £1.35 65.44 £+ 44.62
Single Dataset 16.00 = 0.00 1.00 £ 0.00 39.00 £ 0.00 3.27£0.09
Concatenated Data 1.69+£0.26 109.78 £ 2.82 257.20 £5.18  1101.25 4 194.36
Fisher 2.22£0.21 0.20 £0.09 38.52 £ 0.82 19.90+1.93
(b) Tippett 2.44£0.25 0.20 £0.09 38.90 £ 0.89 20.26 £1.92
Worsely & Friston 15.93+£0.22 0.56 £0.13 41.34 £ 0.79 5.26 £ .48
Stouffer et al. 3.17£0.21 0.33 £0.11 42.87 £ 0.83 17.91 +1.62
Mudholkar & George 2.62+0.25 0.35£0.12 41.72 +0.84 18.72 £1.76
Single Dataset 34.00 £ 0.00 33.00 £ 0.00 76.00 £ 0.00 14.23+0.33
Concatenated Data 3.97 +£0.28 113.60 £ 2.36 23540 £5.14  1509.16 £ 191.80
Fisher 4.154+0.22 2.53+£0.22 25.45 +1.86 313.65 £ 23.55
(¢c) Tippett 4.15 £ 0.20 2.83£0.13 27.50 £1.68 313.66 £ 25.22
Worsely & Friston 33.90 £0.14 36.73 £0.72 83.73 £1.18 53.46 £11.10
Stouffer et al. 4.08 £0.25 60.70 £+ 0.46 106.55 £1.02  928.66.4 £ 41.77
Mudholkar & George 3.884+0.23 62.37 + 0.50 107.78 £0.90  924.56.3 = 50.91

the number of samples, fewer errors are made by each
of the combined p-value methods except for Worsely
and Friston’s, and the computational tradeoff is small.

These results show that the procedure described in
section 2.2 can lead to noticeable gains in accuracy
when learning structure from data with different dis-
tributions when compared to using only one sample or
pooling the standardized data. Fisher’s method out-
performs the others in all of the evaluations so we rec-
ommend it in general. If a researcher has prior knowl-
edge about the data, then there may be a reason to
use another method. Such considerations, however,
are beyond the scope of this paper. A comprehensive
investigation of each method may yield information
about specific contexts where each may be optimal.

We also note the overall poor performance of Worsely
and Friston’s method. Both Worsely and Friston’s and
Tippett’s methods throw away all p-values except the
max and min, respectively. Unlike the other methods,
these are not based on sufficient statistics so we should
expect poor performance. The better performance of
Tippett’s method is most likely artificial.

4. Relation to learning from distributed
data with overlapping variables

Tillman et al. (2009) and Tillman (2008) investigate
learning structure from distributed data with overlap-
ping variables, i.e. collections of datasets with some
variables in common, but other variables unique to
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Figure 7. (a) edge omissions, (b) edge commissions, and (c) orientation errors for 15 discrete variables

particular datasets. An example of this is economet-
ric data for the United States and United Kingdom
economies. Due to differences in financial recording
conventions, the U.S. and U.K. record different sets
of variables, but many of the recorded variables are
recorded by both countries, i.e. they are overlapping
variables. Constraint based algorithms for this sce-
nario have been proposed which learn the complete set
of structures that are consistent with every dataset.
Since sets of independencies can imply further inde-
pendencies, e.g. through the graphoid axioms (Pearl,
2000), these algorithms can exclude many more struc-
tures than only those that are inconsistent with the
conditional independencies common to every dataset.

Due to statistical errors, conditional independence
tests for particular variables can yield contrary results
for two or more datasets where we should expect the
same independencies. This poses a major problem for
these algorithms and is often undetectable in practice,
e.g. a learned association may conflict with an in-
dependence that is implied by two independence deci-
sions made at different stages in the algorithm. Even a
considerable amount of bookkeeping cannot avoid this
problem since deriving every independence implied by
a set of independencies can require an infinite sequence
of steps (Studeny, 1992). Undiscovered contradictory
independence information causes these algorithms to
find no structures that are consistent with the data.
This problem occurs more frequently as the dimen-
sionality of the data increases since conditional inde-
pendence tests become less reliable. As a result, the
algorithms have thus far only been useful for datasets
with a few variables. We found that with 10 vari-
ables and N = 2500, the DCI algorithm, described in
(Tillman, 2008), returns structures consistent with the
data less than half of the time (out of 100 examples).
Figure 8 plots the trend.

We combined the Fisher combined p-value test with
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0.87 [__IN=500
[ N-1000
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0.4

0.2

Percentage of runs with 0 consistent structures

n=4 n=5 n=6 n=7 n-8 n=9 n=10
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Figure 8. Frequency no consistent structures are found

the DCI algorithm and had much better results. In
our modified algorithm, whenever DCI would normally
perform a conditional independence test using a spe-
cific dataset, we checked whether all of the variables
involved in the test were contained in another dataset
and if so used the Fisher combined p-value tests with
each of these datasets to make the independence deci-
sion.? Consistent structures were returned every time
for 100 random 15 variable discrete and continuous
cases with each sample size shown in figure 8, which
indicates that this method prevents these errors from
occurring 100% of the time. We observed edge omis-
sion, edge commission, and orientation errors compa-
rable to previous simulations of the DCI algorithm us-
ing datasets with fewer variables.

5. Conclusions

In many contexts where structure learning is relevant,
we may encounter data from multiple sources. If we
believe that the data are from the same data generat-
ing mechanism, but the data from each source are not
identically distributed, then we should not naively pool

*We actually made further changes to handle more com-
plicated cases, but this is beyond the scope of this paper.
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the data to do structure learning, since this can result
in significant errors as we demonstrated in section 3.
However, relying on a single sample is unsatisfying;
it wastes useful data and does not result in the usual
increase in statistical power that is observed when we
obtain more data. In this paper we described a statisti-
cally sound way to learn structure using the aggregate
of such data which is easy to implement by modifying
existing constraint based procedures. Our experimen-
tal results indicate that using this method can produce
significant gains in accuracy, especially when Fisher’s
method is used, without a significant computational
tradeoff when compared to using a single sample or
the pooled standardized data. These gains in accuracy
occur despite concerns of retesting the same data and
results of early independence tests determining which
later tests are performed, which were not an issue in
previous evaluations of the methods given in section
2.1.

As mentioned in section 3, there is room for addi-
tional investigations into each of the methods for com-
bining p-values to characterize any instances where
each might be favorable to use when learning struc-
ture from non-identically distributed data. Consid-
ering and comparing possible alternative score based
methods for structure learning with non-identically
distributed samples is another topic that can be in-
vestigated in future research.
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