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Abstract

We present an on-line learning framework
tailored towards real-time learning from ob-
served user behavior in search engines and
other information retrieval systems. In par-
ticular, we only require pairwise comparisons
which were shown to be reliably inferred
from implicit feedback (Joachims et al., 2007;
Radlinski et al., 2008b). We will present an
algorithm with theoretical guarantees as well
as simulation results.

1. Introduction

When responding to queries, the goal of an information
retrieval system – ranging from web search, to desktop
search, to call center support – is to return the results
that maximize user utility. So, how can a retrieval
system learn to provide results that maximize utility?

The conventional approach is to optimize a proxy-
measure that is hoped to correlate with utility. A
wide range of measures has been proposed to this effect
(e.g., average precision, precision at k, NDCG), but all
have similar problems. Most obviously, they require
expensive manual relevance judgments that ignore the
identity of the user and the user’s context. This makes
it unclear whether maximization of a proxy-measure
truly optimizes the search experience for the user.

We therefore take a different approach based on im-
plicit feedback gathered directly from users. But how
can a learning algorithm access the utility a user sees
in a set of results? While it is unclear how to reliably
derive cardinal utility values for a set of results (e.g.
U(r) = 5.6), it was shown that interactive experiments
can reliably provide ordinal judgments between two
sets of results (i.e. U(r1) > U(r2)) (Joachims et al.,
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2007; Radlinski et al., 2008b). For example, to elicit
whether a user prefers ranking r1 over r2, Radlinski
et al. (2008b) showed how to present an interleaved
ranking of r1 and r2 so that clicks indicate which of
the two has higher utility. This leads to the following
on-line learning problem addressed in this paper.

Given a space of retrieval functions and a (noisy) pair-
wise test for comparing any two retrieval functions,
we wish to find a sequence of comparisons that has
low regret (i.e., we eventually find a close to optimal
retrieval function and never show clearly bad results in
the process). We call this the Dueling Bandits Prob-
lem, since only ordinal feedback is observable, not car-
dinal feedback as required by conventional bandit algo-
rithms (e.g., for optimizing web advertising revenue).

In this paper, we formalize the Dueling Bandits Prob-
lem and an appropriate notion of regret. Furthermore,
we propose a gradient-descent method which builds on
methods for on-line convex optimization (Zinkevich,
2003; Kleinberg, 2004; Flaxman et al., 2005). The
method is compatible with many existing classes of
retrieval functions, and we provide theoretical regret
bounds and an experimental evaluation.

2. Related Work

Most prior works on learning from implicit feedback
take an off-line approach. Usage logs (containing data
such as clicks) are typically transformed into rele-
vance judgments or integrated into the input features
(e.g., Agichtein et al., 2006; Carterette & Jones, 2007;
Dupret & Piwowarski, 2008). Such approaches are lim-
ited to passive learning from implicit feedback since
they cannot control the initial results presented to
users, and thus must use biased training data.

Related on-line methods use absolute measures of indi-
vidual retrieved results (Pandey et al., 2007; Langford
& Zhang, 2007; Radlinski et al., 2008a). While the-
oretical analyses show good regret (as formulated us-
ing absolute measures), in many settings such regret
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formulations might not reflect real user satisfaction.
For example, clicks are affected by presentation bias –
users tend to click on higher results regardless of rele-
vance (Joachims et al., 2007). Any objective based on
absolute measures must use careful calibration. In con-
trast, the interleaving method proposed by Radlinski
et al. (2008b) offers a reliable mechanism for deriving
relative preferences between retrieval functions.

3. The Dueling Bandits Problem

We define a new on-line optimization problem, called
the Dueling Bandits Problem, where the only actions
are comparisons (or duels) between two points within
a space W (e.g., a parameterized space of retrieval
functions in a search engine). We consider the case
where W contains the origin, is compact, convex, and
contained in a d-dimensional ball of radius R1. Any
single comparison between two points w and w′ (e.g.,
individual retrieval functions) is determined indepen-
dently of all other comparisons with probability

P (w � w′) =
1
2

+ ε(w,w′), (1)

where ε(w,w′) ∈ [−1/2, 1/2]. In the search example,
P (w � w′) refers to the fraction of users who prefer the
results produced by w over those of w′. One can regard
ε(w,w′) as the distinguishability between w and w′.
Algorithms learn only via observing comparison results
(e.g., from interleaving (Radlinski et al., 2008b)).

We quantify the performance of an on-line algorithm
using the following regret formulation:

∆T =
T∑

t=1

ε(w∗, wt) + ε(w∗, w′t), (2)

where wt and w′t are the two points selected at time
t, and w∗ is the best point known only in hindsight.
Note that the algorithm is allowed to select two iden-
tical points, so selecting wt = w′t = w∗ accumulates
no additional regret. In the search example, regret
corresponds to the fraction of users who would prefer
the best retrieval function w∗ over the selected ones
wt and w′t. A good algorithm should achieve sublinear
regret in T , which implies decreasing average regret.

3.1. Modeling Assumptions

We further assume the existence of a differentiable,
strictly concave value (or utility) function v : W → R.
This function reflects the intrinsic quality of each point
inW, and is never directly observed. Since v is strictly

1An alternative setting is the K-armed bandit case
where |W| = K (Yue et al., 2009)

Algorithm 1 Dueling Bandit Gradient Descent
1: Input: γ, δ, w1

2: for query qt (t = 1..T ) do
3: Sample unit vector ut uniformly.
4: w′

t ← PW(wt + δut) //projected back into W
5: Compare wt and w′

t

6: if w′
t wins then

7: wt+1 ← PW(wt + γut) //also projected
8: else
9: wt+1 ← wt

10: end if
11: end for

concave, there exists a unique maximum v(w∗). Prob-
abilistic comparisons are made using a link function
σ : R → [0, 1], and are defined as

P (w � w′) = σ(v(w)− v(w′)).

Thus ε(w,w′) = σ(v(w)− v(w′))− 1/2.

Link functions behave like cumulative distribution
functions (monotonic increasing, σ(−∞) = 0, and
σ(∞) = 1). We consider only link functions which
are rotation-symmetric (σ(x) = 1 − σ(−x)) and have
a single inflection point at σ(0) = 1/2. This im-
plies that σ(x) is convex for x ≤ 0 and concave for
x ≥ 0. One common link function is the logistic func-
tion σL(x) = 1/(1 + exp(−x)).

We finally make two smoothness assumptions. First,
σ is Lσ-Lipschitz, and v is Lv-Lipschitz. That is,
|σ(a) − σ(b)| ≤ Lσ‖a − b‖. Thus ε(·, ·) is L-Lipschitz
in both arguments, where L = LσLv. We further as-
sume that Lσ and Lv are the least possible. Second, σ
is second order L2-Lipschitz, that is, |σ′(a)− σ′(b)| ≤
L2‖a− b‖. These relatively mild assumptions provide
sufficient structure for showing sublinear regret.

4. Algorithm & Analysis

Our algorithm, Dueling Bandit Gradient Descent
(DBGD), is described in Algorithm 1. DBGD main-
tains a candidate wt and compares it with a neighbor-
ing point w′t along a random direction ut. If w′t wins
the comparison, then an update is taken along ut, and
then projected back into W (denoted by PW).

DBGD requires two parameters which can be inter-
preted as the exploration (δ) and exploitation (γ) step
sizes. The latter is required for all gradient descent al-
gorithms. Since DBGD probes for descent directions
randomly, this introduces a gradient estimation error
that depends on δ (discussed Section 4.2). We will
show in Theorem 2 that, for suitable δ and γ, DBGD
achieves sublinear regret in T ,

E[∆T ] ≤ 2λT T 3/4
√

26RdL,
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Figure 1. Example relative loss functions (εt(w) ≡
ε(wt, w)) using the logistic link function, W ⊆ R, and
value function v(w) = −w2, for wt = −3,−2,−1. Note
that the functions are convex in the area around w∗ = 0.

where λT approaches 1 from above as T increases. For
example, when T >

64R2d2L4
vL4

2
132L2L4

σ
, then λT < 2.

Making an additional convexity assumption2 described
in Corollary 2 yields a much simpler result,

E[∆T ] ≤ 2T 3/4
√

10RdL.

To analyze DBGD, we first define relative loss as

εt(w) ≡ ε(wt, w), (3)

which is the distinguishability between wt and any
other point. We will also define ε∗(w) as

ε∗(w) ≡ ε(w∗, w). (4)

This relative loss function is depicted pictorally in Fig-
ure 1 for the logistic link function and v(w) = −w2.

Analysis Approach. Our analysis follows two con-
ceptual phases. We first present basic results demon-
strating the feasibility of performing gradient descent
on the relative loss functions εt (3). These results in-
clude proving that εt is partially convex3, and how
pairwise comparisons can yield good gradient esti-
mates. We then build on existing results (Zinkevich,
2003; Flaxman et al., 2005) to show that DBGD mini-
mizes our regret formulation (2). We begin by observ-
ing that εt is partially convex.

Observation 1. For link functions σ(x) and value
functions v(w) satisfying assumptions from Section
3.1, εt(w) is partially convex for wt 6= w∗.

Proof. Define Wt = {w : v(w) ≥ v(wt)}, which has a
non-empty interior for wt 6= w∗. For a, b ∈ Wt and
β ∈ [0, 1] we know that

v(βa + (1− β)b) ≥ βv(a) + (1− β)v(b),

since v is concave. We then write εt(βa+(1−β)b) as

2The assumption currently lacks theoretical justifica-
tion, but is observed empirically in many settings.

3A function f : W → R is partially convex if there is
a convex region with a non-empty interior and containing
w∗ where f is convex.

= σ(v(wt)− v(βa + (1− β)b))− 1/2
≤ σ(v(wt)− βv(a)− (1− β)v(b))− 1/2
≤ βσ(v(wt)− v(a)) + (1− β)σ(v(wt)− v(b))− 1/2
= βεt(a) + (1− β)εt(b)

The first inequality follows from monotonicity of σ(x).
The second inequality holds since σ(x) is convex for
x ≤ 0 (holds for a, b ∈ Wt). Since Wt is convex (due to
concavity of v), we conclude that εt is partially convex.

4.1. Estimating Gradients

We now elaborate on the update procedure used by
DBGD. Flaxman et al. (2005) observed that

∇ct(wt) ≈ Eu[ct(wt + δu)u]
d

δ
, (5)

where δ > 0, d denotes the dimensionality, and u is a
uniformly random unit vector. Let Xt(w) denote the
event of w winning a comparison with wt:

Xt(w) =
{

1 w.p. 1− P (wt � w)
0 w.p. P (wt � w) . (6)

We can model the update in DBGD (ignoring γ) as

Xt(PW(wt + δut))ut,

which we now show, in expectation, matches the RHS
of (5) (ignoring d/δ) with an additional projection.
Lemma 1. Let

ct(w) = P (wt � w) = εt(w) + 1/2.

Then for δ > 0 and uniformly random unit vector u,

EXt,u[Xt(PW(wt + δu))u] = −Eu[ct(PW(wt + δu))u].

Proof. Let S denote the unit sphere. Then we see that
EXt,u[Xt(wt + δu)u] can be written as

= Eu[EXt
[Xt(PW(wt + δu))|u]u]

=
∫

S EXt
[Xt(PW(wt + δu))|u]udu

=
∫

S(1− ct(PW(wt + δu)))udu

= 0−
∫

S ct(PW(wt + δu))udu

= −Eu[ct(PW(wt + δu))u]

4.2. Gradient Quality & Function Smoothing

We now characterize the quality of the proposed gra-
dient approximation (5). Let ĉt denote a smoothed
version of some function ct,

ĉt(w) = Ex∈B[ct(PW(w + δx))],

where x is selected uniformly within the unit ball B.
We can show using Stokes Theorem that our sampled
gradient direction is an unbiased estimate of ∇ĉt.
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Lemma 2. Fix δ > 0, over random unit vectors u,

Eu[ct(PW(w + δu))u] =
δ

d
∇ĉt(w),

where d is the dimensionality of x. (Proof analagous
to Lemma 2.1 of Flaxman et al., 2005)

Combining Lemma 1 and Lemma 2 implies that
DBGD is implicitly performing gradient descent over

ε̂t(w) = Ex∈B[εt(PW(w + δx))]. (7)

Note that |ε̂t(w) − εt(w)| ≤ δL, and that ε̂t is para-
meterized by δ (suppressed for brevity). Hence, good
regret bounds defined on ε̂t imply good bounds defined
on εt, with δ controlling the difference.

One concern is that ε̂t might not be convex at wt.
Observation 1 showed that εt is convex at wt, and thus
satisfies εt(wt)− εt(w∗) ≤ ∇εt(wt) · (wt−w∗). We now
show that ε̂t(wt) is “almost convex” in a specific way.

Theorem 1. For λ defined as

λ =
Lσ

Lσ − δLvL2
, (8)

and δ ∈
(
0, Lσ

LvL2

)
, then

ε̂t(wt)− ε̂t(w∗) ≤ λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL.

Proof. First define wt,δx ≡ PW(wt + δx), and also
εt,δx(w) ≡ ε(wt,δx, w). We rewrite ε̂t(wt)− ε̂t(w∗) as

= Ex∈B [εt(PW(wt + δx))− εt(PW(w∗ + δx))]
≤ Ex∈B [εt,δx(wt,δx)− εt,δx(w∗)] + 3δL (9)
≤ Ex∈B [∇εt,δx(wt,δx) · (wt,δx − w∗)] + 3δL (10)

where (9) follows from ε being L-Lipschitz, and (10)
follows from wt,δx and w∗ both being in the convex
region of εt,δx. Now define σt(y) ≡ σ(v(wt) − y), and
σt,δx(y) ≡ σ(v(wt,δx)− y). We can see that

∇εt(wt,δx) = σ′t(v(wt,δx))∇v(wt,δx).

and similarly

∇εt,δx(wt,δx) = σ′t,δx(v(wt,δx))∇v(wt,δx).

We can then write (10) as

= Ex

[
σ′t,δx(wt,δx)∇v(wt,δx) · (wt,δx − w∗)

]
+ 3δL. (11)

We know that both σ′t,δx(y) ≤ 0 and σ′t(y) ≤ 0, and

σ′t,δx(v(wt,δx)) = −Lσ,

since that is the inflection point. Thus

−Lσ ≤ σ′t(v(wt,δx)) ≤ −Lσ + δLvL2,

which follows from σ being second order L2-Lipschitz.
Since εt,δx(wt,δx) − εt,δx(w∗) ≥ 0, the term inside the
expectation in (11) is also non-negative. Using our
definition of λ (8), we can write (11) as

≤ Ex [λσ′t(wt,δx)∇v(wt,δx) · (wt,δx − w∗)] + 3δL

= Ex [λ∇εt(wt,δx) · (wt,δx − w∗)] + 3δL

= Ex [λ∇εt(wt,δx) · (wt,δx − wt + wt − w∗)] + 3δL

≤ Ex [λ∇εt(wt,δx) · (wt − w∗)] + (3 + λ)δL (12)
= λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL

where (12) follows from observing that

Ex [∇εt(wt,δx) · (wt,δx − wt)] ≤ Ex [‖∇εt(wt,δx)‖δ] ≤ δL.

4.3. Regret Bound for DBGD

Thus far, we have focused on proving properties re-
garding the relative loss functions εt and ε̂t. We can
easily bound our regret formulation (2) using εt.

Lemma 3. Fix δ > 0. Expected regret is bounded by

E [∆T ] ≤ −2E

[
T∑

t=1

εt(w∗)

]
+ δLT.

Proof. We can write expected regret as

E [∆T ] ≤ 2E
[∑T

t=1 ε∗(wt)
]

+ δLT

= −2E
[∑T

t=1 εt(w∗)
]

+ δLT

by noting that |ε∗(w′t) − ε∗(wt)| ≤ δL, and also that
εt(w∗) = −ε∗(wt).

We now analyze the regret behavior of the smoothed
loss functions ε̂t. Lemma 4 provides a useful interme-
diate result. Note that the regret formulation analyzed
in Lemma 4 is different from (2).

Lemma 4. Fix δ ∈
(
0, Lσ

LvL2

)
, and define λ as in (8).

Assume a sequence of smoothed relative loss functions
ε̂1, . . . , ε̂T (ε̂t+1 depending on wt) and w1, . . . , wT ∈ W
defined by w1 = 0 and wt+1 = PW(wt − ηgt), where
η > 0 and g1, . . . , gT are vector-valued random vari-
ables with (a) E[gt|wt] = ∇ε̂t, (b) ‖gt‖ ≤ G, and (c)
W ⊆ RB. Then for η = R

G
√

T
,

E

[
T∑

t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ λRG

√
T + (3 + λ)δT. (13)

(Adapted from Lemma 3.1 in Flaxman et al., 2005)

Proof. Theorem 1 implies the LHS of (13) to be
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=
T∑

t=1

E [ε̂t(wt)− ε̂t(w∗)]

≤
T∑

t=1

E [ λ∇ε̂t(wt) · (wt − w∗) + (3 + λ)δL ]

= λ
T∑

t=1

E [E[gt|wt] · (wt − w∗)] + (3 + λ)δLT

= λ
T∑

t=1

E[gt · (wt − w∗)] + (3 + λ)δLT (14)

Following the analysis of Zinkevich (2003), we will use
the potential function ‖wt − w∗‖2. In particular we
can rewrite ‖wt+1 − w∗‖2 as

= ‖PW(wt − ηgt)− w∗‖2

≤ ‖wt − ηgt − w∗‖2 (15)

= ‖wt − w∗‖2 + η2‖gt‖2 − 2η(wt − w∗) · gt

≤ ‖wt − w∗‖2 + η2G2 − 2η(wt − w∗) · gt

where (15) follows from the convexity ofW. Rearrang-
ing terms allows us to bound gt · (wt − w∗) as

≤ ‖wt − w∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η
(16)

We can thus bound
∑T

t=1 E[gt · (wt − w∗)] by

≤
T∑

t=1

E
[
‖wt − w∗‖2 − ‖wt+1 − w∗‖2 + η2G2

2η

]
= E

[
‖w1 − w∗‖2

2η
+ T

η2G2

2η

]
≤ R2

2η
+ T

ηG2

2
(17)

which follows from choosing w1 = 0 and W ⊆ RB.
Combining (14) and (17) bounds the LHS of (13) by

≤ λ

(
R2

2η
+ T

ηG2

2

)
+ (3 + λ)δT.

Choosing η = R
G
√

T
finishes the proof.

We finally present our main result.

Theorem 2. By setting w1 = 0,

δ =

√
2Rd√

13LT 1/4
, γ =

R√
T

, T >

(√
2RdLvL2√
13LLσ

)4

, (18)

DBGD achieves expected regret (2) bounded by

E [∆T ] ≤ 2λT T 3/4
√

26RdL

where

λT =
Lσ

√
13LT 1/4

Lσ

√
13LT 1/4 − LvL2

√
2Rd

. (19)

Proof. Adapting from Flaxman et al. (2005), if we let

gt = −d

δ
Xt(PW(wt + δut))ut,

using Xt as described in (6), then by Lemma 1 and
Lemma 2 we have E[gt|wt] = ∇ε̂t(wt). By restricting
T in (18), we guarantee δ ∈ (0, Lσ/LvL2). We can
then apply Lemma 4 using the update rule

wt+1 = PW(wt − ηgt)
= PW(wt + η d

δ Xt(PW(wt + δut))ut)

which is exactly the update rule of DBGD if we set
η = γδ/d. Note that

‖gt‖ =
∥∥∥∥d

δ
Xt(PW(wt + δut))ut

∥∥∥∥ ≤ d

δ
.

Setting G = d/δ and noting our choice of γ = R/
√

T ,
we have η = R

G
√

T
. Applying Lemma 4 yields

E

[
T∑

t=1

ε̂t(wt)− ε̂t(w∗)

]
≤ λRd

√
T

δ
+ (3 + λ)δLT. (20)

Combining Lemma 3 and (20) yields

E[∆T ] ≤ −2E
[∑T

t=1 εt(w∗)
]

+ δLT

= 2E
[∑T

t=1 εt(wt)− εt(w∗)
]

+ δLT

≤ 2E
[∑T

t=1 ε̂t(wt)− ε̂t(w∗)
]

+ 5δLT

≤ 2λRd
√

T
δ + (11 + 2λ)δLT

≤ λ
(

2Rd
√

T
δ + 13δLT

)
Choosing δ =

√
2Rd√

13LT 1/4 completes the proof.

Corollary 1. Using choices of w1, δ, and γ as stated
in Theorem 2, if

T >

(√
2RdLvL2√
13LLσ

)4(
1 + α

α

)4

,

for α > 0, then

E[∆T ] ≤ 2(1 + α)T 3/4
√

26RdL.

The potential non-convexity of ε̂t significantly compli-
cates the regret bound. By additionally assuming that
ε̂t is convex at wt (which we have observed empirically
in many settings), we arrive at a much simpler result.
Corollary 2. Assume for all possible wt that ε̂t is
convex at wt, which implies

ε̂t(wt)− ε̂t(w∗) ≤ ∇ε̂t(wt) · (wt − w∗).

Then for w1 = 0, δ =
√

2Rd√
5LT 1/4 , and γ = R√

T
, we have

E[∆T ] ≤ 2T 3/4
√

10RdL.

(Proof very similar to Theorem 2 and is omitted)
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Table 1. Average regret of DBGD with synthetic functions.

δL Factor 0.6 0.8 1 2 3
P1 0.465 0.398 0.334 0.303 0.415
P2 0.803 0.767 0.760 0.780 0.807
P3 0.687 0.628 0.604 0.637 0.663
P4 0.500 0.378 0.325 0.304 0.418
P5 0.710 0.663 0.674 0.798 0.887

4.4. Practical Considerations

Choosing δ to achieve the regret bound stated in The-
orem 2 requires knowledge of εt (i.e., L), which is
typically not known in practical settings. The regret
bound is indeed robust to the choice of δ. So sublinear
regret is achievable using many choices for δ, as we will
verify empirically. In the analysis w1 = 0 was chosen
to minimize its distance to any other point in W. In
certain settings, we might choose w1 6= 0, in which case
our analysis still follows with slightly worse constants.

5. Experiments

5.1. Synthetic Value Functions

We first experimented using synthetic value functions,
which allows us to test the robustness of DBGD to dif-
ferent choices of δ. Since L is unknown, we introduced
a free parameter δL and used δ = T−1/4δL

√
0.4Rd. We

tested on five settings P1 to P5. Each setting optimizes
over a 50-dimensional ball of radius 10, and uses the
logistic transfer function with different value functions
that explore a range of curvatures (which affects the
Lipschitz constant) and symmetries:

v1(w) = −wT w, v2(w) = −|w|

v3(w) = −
∑
i:odd

(
w(i)

)2

−
∑

i:even

∣∣∣w(i)
∣∣∣

v4(w) = −
∑

i

[
exp

(
w(i)

)
+ exp

(
−w(i)

)]
v5(w) = v3(w)−

∑
i:(i%3=1)

e[w
(i)]+ −

∑
i:(i%3=2)

e[−w(i)]+

The initial point is w1 = ~1
√

5/d. Table 1 shows the
regret over the interesting range of δL values. Per-
formance degrades gracefully beyond this range. Note
that the regret of a random point is about 1 since most
points in W have much lower value than v(w∗).

We also compared against Bandit Gradient Descent
(BGD) (Flaxman et al., 2005). Like DBGD, BGD ex-
plores in random directions at each iteration. How-
ever, BGD assumes access to P (wt � w), whereas
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Figure 2. Average regret for δL = 1

DBGD only observes random outcomes. Thus BGD
assumes strictly more information4. We evaluated two
versions: BGD1 using P (wt � w), and BGD2 using
εt(w) = P (wt � w) − 1/2. We expect BGD2 to per-
form best since the sign of εt(w) reveals significant in-
formation regarding the true gradient. Figure 2 shows
the average regret for problems P1 and P5 with δL = 1.
We observe the behaviors of DBGD and BGD being
very similar for both. Interestingly, DBGD outper-
forms BGD1 on P5 despite having less information.
We also observe this trend for P2 and P3, noting that
all three problems have significant linear components.

5.2. Web Search Dataset

For a more realistic simulation environment, we lever-
aged a real Web Search dataset (courtesy of Chris
Burges at Microsoft Research). The idea is to simulate
users issuing queries by sampling from queries in the
dataset. For each query, the competing retrieval func-
tions will produce rankings, after which the “user” will
randomly prefer one ranking over the other; we used
a value function based on NDCG@10 (defined below)
to determine the comparison outcome probabilities.

We stress that our usage of the dataset is very different
from supervised learning settings. In particular, (ex-
tensions of) our algorithm might be applied to exper-
iments involving real users where very little is known
about each user’s internal value function. We leverage
this dataset as a reasonable first step for simulating
user behavior in an on-line learning setting.

The training, validation and test sets each consist of
1000 queries. We only simulated on the training set, al-
though we measured performance on the other sets to
check for, e.g., generalization power. There are about
50 documents per query, and documents are labeled
by 5 levels of relevance from 0 (Bad) to 4 (Perfect).
The compatibility between a document/query pair is

4Our analysis yields matching upper bounds on ex-
pected regret for all three methods, though it can be shown
that the BGD gradient estimates have lower variance.
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Table 2. Average (upper) and Final (lower) NDCG@10 on
Web Search training set (sampling 100 queries/iteration)

δ \ γ 0.001 0.005 0.01 0.05 0.1
0.5 0.524 0.570 0.580 0.569 0.557
0.8 0.533 0.575 0.582 0.576 0.566
1 0.537 0.575 0.584 0.577 0.568
3 0.529 0.565 0.573 0.575 0.571

0.5 0.559 0.591 0.592 0.569 0.565
0.8 0.564 0.593 0.593 0.574 0.559
1 0.568 0.592 0.595 0.582 0.570
3 0.557 0.581 0.582 0.577 0.576

represented using 367 features. A standard retrieval
function computes a score for each document based on
these features, with the final ranking resulting from
sorting by the scores. For simplicity, we considered
only linear functions w, so that the score for document
x is wT x. Since only the direction of w matters, we are
thus optimizing over a 367-dimensional unit sphere.

Our value function is based on Normalized Discounted
Cumulative Gain (NDCG), which is a common mea-
sure for evaluating rankings (Donmez et al., 2009). For
query q, NDCG@K of a ranking for documents of q is

1

N
(q)
K

K∑
k=1

2rk − 1
log(k + 1)

,

where rk is the relevance level of the kth ranked
document, and N

(q)
K is a normalization factor5 such

that the best ranking achieves NDCG@K=1. For
our experiments, we used the logistic function and
10×NDCG@10 to make probabilistic comparisons.

We note a few properties of this setup, some going
beyond the assumptions in Section 3.1. This allows
us to further examine the generality of DBGD. First,
the value function is now random (dependent on the
query). Second, our feasible spaceW is the unit sphere
and not convex, although it is a well-behaved mani-
fold. Third, we assume a homogenous user group (i.e.,
all users have the same value function – NDCG@10).
Fourth, rankings vary discontinuously w.r.t. document
scores, and NDCG@10 is thus a discontinuous value
function. We addressed this issue by comparing mul-
tiple queries (i.e., delaying multiple iterations) before
an update decision, and also by using larger choices of
δ and γ. Lastly, even smoothed versions of NDCG have
local optima (Donmez et al., 2009), making it difficult
to find w∗ (which is required for computing regret).
We thus used NDCG@10 to measure performance.

We tested DBGD for T = 107 and a range of γ and

5Note that N
(q)
K will be different for different queries.
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Figure 3. NDCG@10 on Web Search training set

δ values. Table 2 shows the average (across all iter-
ations) and final training NDCG@10 when compar-
ing 100 queries per update. Performance peaks at
(δ, γ) = (1, 0.01) and degrades smoothly. We found
similar results when varying the number of queries
compared per update. Figure 3 depicts per iteration
NDCG@10 for the best models when sampling 1, 10
and 100 queries. Making multiple comparisons per
update has no impact on performance (the best pa-
rameters are typically smaller when sampling fewer
queries). Sampling multiple queries is very realistic,
since a search system might be constrained to, e.g.,
making daily updates to their ranking function. Per-
formance on the validation and test sets closely follows
training set performance (so we omit their results).
This implies that our method is not overfitting.

For completeness, we compared our best DBGD mod-
els with a ranking SVM, which optimizes over pair-
wise document preferences and is a standard baseline
in supervised learning to rank settings. More sophisti-
cated methods (e.g., Chakrabarti et al., 2008; Donmez
et al., 2009) can further improve performance. Table
3 shows that DBGD approaches ranking SVM per-
formance despite making fundamentally different as-
sumptions (e.g., ranking SVMs have access to very spe-
cific document-level information). We caution against
over-optimizing here, and advocate instead for devel-
oping more realistic experimental settings.

6. Conclusion

We have presented an on-line learning framework
based on pairwise comparisons, and naturally fits with
recent work on deriving reliable pairwise judgments.
Our proposed algorithm, DBGD, achieves sublinear re-
gret. As evidenced by our simulations based on web
data, DBGD can be applied much more generally than
suggested by our theoretical analysis. Hence, it begs
for more sophisticated formulations which account for
properties such as heterogenous user behavior, query
dependent value functions, and the discontinuity of
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Table 3. Comparing Ranking SVM vs. final DBGD model using average NDCG@10 and per-query win/tie/loss counts.

Model SVM Sample 1 Sample 5 Sample 10 Sample 25 Sample 50 Sample 100
NDCG@10 0.612 0.596 0.593 0.589 0.593 0.596 0.595

W/T/L – 490/121/389 489/121/390 504/118/378 489/118/393 472/119/409 490/116/394

rankings. Another interesting direction is adaptively
choosing δ and γ for any-time regret analyses.

Our framework is extendable in many ways, such as
integrating pairwise document preferences (Joachims
et al., 2007; Carterette et al., 2008), and diversity (Yue
& Joachims, 2008; Radlinski et al., 2008a). Progress in
this area can lead to cost-effective systems for a vari-
ety of application domains such as personalized search,
enterprise search, and also small interest groups.
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