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Abstract

We propose an analytic moment-based fil-
ter for nonlinear stochastic dynamic systems
modeled by Gaussian processes. Exact ex-
pressions for the expected value and the co-
variance matrix are provided for both the
prediction step and the filter step, where an
additional Gaussian assumption is exploited
in the latter case. Our filter does not re-
quire further approximations. In particular,
it avoids finite-sample approximations. We
compare the filter to a variety of Gaussian
filters, that is, the EKF, the UKF, and the re-
cent GP-UKF proposed by Ko et al. (2007).

1. Introduction

Recursively estimating the internal state of a nonlinear
dynamic system from noisy observations is a common
problem in many technical applications, for instance,
in sensor networks, robotics, or signal processing. Ex-
act Bayesian solutions in closed form, however, can be
found only in a few special cases. For example, for
linear Gaussian systems, the Kalman filter (1960) is
exact.

For most nonlinear cases, approximate methods are
required to obtain efficient analytic/closed-form solu-
tions. A variety of approximate Gaussian filters has
been proposed in the past. For example, the Ex-
tended Kalman Filter (EKF) linearizes the transition
and measurement functions by means of a Taylor series
expansion and applies the Kalman filter to propagate
full densities through them (Simon, 2006). Instead of
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approximating functions, the Unscented Kalman Filter
(UKF) by Julier and Uhlmann (2004) uses a determin-
istic sampling approach to approximate distributions,
while using the original nonlinear functions to propa-
gate them. This approach is considered equivalent to
stochastic linearization (Lefebvre et al., 2005).

Both the EKF and the UKF employ a known paramet-
ric model of the transition dynamics and the measure-
ment function. However, lack of modeling accuracy as
well as difficulties in the identification of the noise and
the model parameters are typically ignored. Instead
of a parametric description, Ko et al. (2007) and Ko
and Fox (2008) derive the GP-EKF and the GP-UKF
by incorporating probabilistic non-parametric Gaus-
sian process (GP) models of the transition dynamics
and the measurement function into the EKF and UKF.
Model uncertainty can explicitly be incorporated into
the prediction and the filtering processes, which is usu-
ally not the case for filtering approaches based on a
parametric model. Moreover, they train the GP mod-
els offline using ground truth of the hidden states.

In this paper, we derive a Gaussian filter algorithm
for nonlinear dynamic systems, where the transition
dynamics and the observation map are described by
GP models. In contrast to finite-sample approxima-
tions (UKF, GP-UKF) of the prior and the predictive
distribution, we propagate full densities by exploiting
specific properties of GP models. Furthermore, we ap-
proximate the predictive distribution by a Gaussian
with the exact mean and the exact covariance ma-
trix, which can be computed analytically using results
from (Quiñonero-Candela et al., 2003). This approxi-
mation, on which our filter is based, is known as mo-
ment matching. Hence, the proposed filter, which we
call GP-ADF, is an efficient form of an Assumed Den-
sity Filter (ADF) (Maybeck, 1979).

The paper is organized as follows: In Section 2, the
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Figure 1. Graphical model of a nonlinear dynamic system.
The shaded nodes yi are observed variables, the other
nodes are latent variables. The dependencies between vari-
ables are given by the arrows. The dashed nodes represent
functions f and g, which can either be observed or latent
depending on the model used.

models under consideration are reviewed and the pre-
diction and filtering problems are stated. A survey of
related work is given in Section 3. In Section 4, we pro-
vide background on prediction with GP models. The
GP-ADF itself is derived in Section 5. Simulation re-
sults are presented in Section 6. In Section 7, we dis-
cuss properties of the filter algorithm. Section 8 sum-
marizes the paper and gives a survey of future work.

2. Model and Problem Statement

We consider discrete-time dynamic systems with tran-
sition dynamics given by

xk = f(xk−1) + w , (1)

where f is a possibly nonlinear function and w ∼
N (0,Σw

)
is white, additive Gaussian system noise

with uncorrelated dimensions. The D-dimensional
continuous-valued state is denoted by x, and k is a
discrete time index. Furthermore, we consider obser-
vations/measurements

yk = g(xk) + v , (2)

where g is a (non)linear function, yk is the E-
dimensional observation, and v ∼ N (0,Σv

)
is white,

additive Gaussian measurement noise with uncorre-
lated dimensions.

Figure 1 is a graphical model of the considered non-
linear dynamic system. We included dashed “function
nodes” for f and g. The function node is shaded if
and only if the function is explicitly known.

We assume a prior on x0 and aim to determine proba-
bility distributions of the hidden state xk based on all
observations y1:k. We distinguish between prediction
(moving from xk−1 to xk) and filtering (going from yk

to xk). Typically, prediction and filtering alternate.

Table 1. Classification of Gaussian filter methods.

samples full density

f, g : known UKF EKF
f, g : unknown GP-UKF GP-ADF

Prediction Step When we predict, we determine
the distribution p(xk|y1:k−1) of the hidden state
xk, where the result of the previous filter result
p(xk−1|y1:k−1) serves as the prior. Bayes’ law yields

p(xk|y1:k−1)=
∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1 (3)

by averaging over xk−1. Often, the involved integral
and the multiplication cannot be solved analytically
and require approximate methods.

Filter Update The filter update determines the dis-
tribution p(xk|y1:k) of the hidden state xk based on
collected observations from all previous and the cur-
rent time steps. Bayes’ law yields the filter update

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
. (4)

The likelihood p(yk|xk) is defined through the mea-
surement equation (2), the prior p(xk|y1:k−1) is the
result of the preceding prediction step (3). Often, the
filter update (4) does not admit a closed-form solution
since the integral in the normalization constant

p(yk|y1:k−1) =
∫
p(yk|xk)p(xk|y1:k−1) dxk

and the density multiplication in the numerator in
equation (4) cannot be computed exactly.

3. Related Work

Table 1 classifies the Gaussian filter methods dis-
cussed in this paper. We present density representa-
tion against knowledge of the parameterization of the
transition dynamics f and the observation function g.

The UKF by Julier and Uhlmann (2004) deterministi-
cally chooses sigma points that capture the moments
of the state distribution and maps them using a known
parameterization of the original nonlinear functions f
and g, respectively. The transformed sigma points pro-
vide a finite-sample approximation of the true predic-
tive distribution. The UKF is not moment preserving.

Ko et al. (2007) and Ko and Fox (2008) propose GPs
to model the transition and observation functions f
and g. GPs are incorporated into standard filters,
such as the UKF. The resulting GP-UKF maps the
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UKF sigma points through the GP models instead of
the parametric functions f and g. Like in the UKF,
all considered distributions are described by a finite
number of samples and the GP-UKF is not moment
preserving. In the limit of perfect GP models, that is,
the posterior mean functions match the latent func-
tions f and g and the posterior uncertainty is zero,
both the UKF and the GP-UKF are equivalent.

Like Ko et al. (2007), we utilize GPs to model f and
g. In contrast to both the UKF and the GP-UKF, our
proposed GP-ADF does not propagate samples from
a Gaussian, but the full Gaussian density. Our GP-
ADF heavily exploits the fact that the true moments
of the GP predictive distribution can be computed in
closed form. The predictive distribution is approxi-
mated by a Gaussian with the exact predictive mean
and the exact predictive covariance (moment match-
ing). Therefore, GP-ADF is a form of Assumed Den-
sity Filtering (ADF), which has previously been intro-
duced by Maybeck (1979), Boyen and Koller (1998),
and Opper (1998). Furthermore, to compute the first
two predictive moments, GP-ADF takes the uncer-
tainty about the latent functions f, g into account.
GP-ADF is moment preserving.

The UKF propagates samples through known or di-
rectly accessible functions, that is, the nodes for f and
g in Figure 1 are shaded. A classical ADF and the EKF
propagate entire densities, but they also require known
functions f and g. GP-UKF and GP-ADF are based
on probabilistic models of the latent functions. Hence,
the nodes f, g in Figure 1 are unshaded. The filters dif-
fer in the propagation method: GP-UKF propagates
a finite-sample approximation of a Gaussian, whereas
GP-ADF propagates the full Gaussian.

Ghahramani and Roweis (1999) discuss the EKF for
nonlinear dynamic systems, where the transition dy-
namics and the measurement function are modeled by
a radial basis function network, a parametric approx-
imation with limited expressiveness.

4. Gaussian Processes

Following the book by Rasmussen and Williams
(2006), we briefly introduce the notation and stan-
dard prediction models for Gaussian processes, which
are used to infer a latent function h from (noisy) ob-
servations yi = h(xi) + ε, ε ∼ N (0, σ2

ε). A GP is
completely specified by a mean function m( · ) and a
positive semidefinite covariance function k( · , · ), also
called a kernel. We write h ∼ GP if the latent func-
tion h is GP distributed. Throughout this paper, we

consider the squared exponential (SE) kernel

k(x,x′) = α2 exp
(− 1

2 (x− x′)>Λ−1(x− x′)
)
, (5)

where Λ is a diagonal matrix of the characteristic
length-scales of the SE kernel, and α2 is the variance
of the latent function h. The posterior predictive dis-
tribution of the function value h∗ = h(x∗) for an arbi-
trary test input x∗ is Gaussian with mean and variance

mh(x∗) = Eh[h∗] = k>∗ (K + σ2
εI)−1y = k>∗ β , (6)

σ2
h(x∗) = varh[h∗] = k∗∗ − k>∗ (K + σ2

εI)−1k∗ , (7)

respectively, with k∗ := k(X,x∗), k∗∗ := k(x∗,x∗),
β := (K + σ2

εI)−1y, and where K is the kernel ma-
trix with Kij = k(xi,xj). Moreover, X = [x1, . . . ,xn]
are the training inputs, and y = [y1, . . . , yn]> are the
corresponding training targets (observations).

4.1. Predictions for Uncertain Inputs

We review results by Rasmussen and Ghahramani
(2003), Quiñonero-Candela et al. (2003), and Kuss
(2006) of how to predict with GPs when the test input
x∗ is uncertain, which means that it has a probability
distribution.

Consider the problem of predicting a function value
h(x∗) for an uncertain test input x∗ ∼ N (µ,Σ), where
h ∼ GP with an SE kernel kh. The prediction problem
corresponds to seeking the distribution

p(h(x∗)|µ,Σ)=
∫
p(h(x∗)|x∗)p(x∗|µ,Σ) dx∗ . (8)

The mean and variance of the GP predictive distribu-
tion for p(h(x∗)|x∗) are given in equations (6) and (7),
respectively. For the SE kernel, we can compute the
mean µ∗ and the variance σ2

∗ of equation (8) in closed
form. The mean µ∗ is

µ∗ = Ex∗ [Eh[h(x∗)]|µ,Σ]
(6)
= Ex∗ [mh(x∗)|µ,Σ]

=
∫
mh(x∗)N

(
x∗ |µ,Σ

)
dx∗ = β>l (9)

with l = [l1, . . . , ln]>, where

li =
∫
kh(xi,x∗)p(x∗) dx∗ = α2|ΣΛ−1 + I|− 1

2

× exp
(− 1

2 (xi − µ)>(Σ + Λ)−1(xi − µ)
)

is an expectation of kh(xi,x∗) with respect to x∗. Note
that the predictive mean explicitly depends on the
mean and covariance of the distribution of the input
x∗. The variance σ2

∗ of p(h(x∗)|µ,Σ) is

σ2
∗ = Ex∗ [mh(x∗)2|µ,Σ] + Ex∗ [σ2

h(x∗)|µ,Σ]

− Ex∗ [mh(x∗)|µ,Σ]2

= β>L̃β + α2 − tr
(
(K + σ2

εI)−1L̃
)− µ2

∗ , (10)



Analytic Moment-based Gaussian Process Filtering

where tr( · ) is the trace and

L̃ij =
kh(xi,µ)kh(xj ,µ)
|2ΣΛ−1 + I| 12 (11)

× exp
(
(z̃ij − µ)>(Σ + 1

2Λ)−1ΣΛ−1(z̃ij − µ)
)

with z̃ij := 1
2 (xi + xj). Like the predicted mean in

equation (9), the predictive variance explicitly depends
on the mean and the covariance matrix of the input
distribution. We approximate the predictive distribu-
tion p(h(x∗)|µ,Σ) by a Gaussian N (µ∗, σ2

∗
)

that ex-
actly matches the predictive mean and variance.

4.2. Multivariate Predictions

We extend the previous results to the case of a latent
function h : RD → RE , h ∼ GP with an SE kernel
kh. We train E GP models independently using the
same training inputs X, but different training targets
ya = [ya

1 , . . . , y
a
n]>, a = 1, . . . , E. This model implies

that any two target dimensions are conditionally inde-
pendent given the input. Intuitively, different target
dimensions can only “communicate” via the input.

For a deterministically given input x∗, the mean and
the variance of a predicted function value for each tar-
get dimension are given by equations (6) and (7), re-
spectively. The predicted covariance matrix is diago-
nal since we assume that the predicted target dimen-
sions are conditionally independent given the input.

For an uncertain input x∗ ∼ N
(
µ,Σ

)
, the predictive

mean vector µ∗ of p(h(x∗)|µ,Σ) is the collection of
all E individual predicted means µa

∗ given by equa-
tion (9). The target dimensions, however, co-vary and
the corresponding predictive covariance matrix

Σ∗|µ,Σ =

 var[h∗1|µ,Σ] . . . cov[h∗1, h
∗
E |µ,Σ]

...
. . .

...
cov[h∗E , h

∗
1|µ,Σ] . . . var[h∗E |µ,Σ]


is no longer diagonal. The variances on the diago-
nal are the predictive variances of the individual tar-
get dimensions given by equation (10). The cross-
covariances are given by

cov[h∗a, h
∗
b |µ,Σ] = Eh,x∗ [h∗ah

∗
b |µ,Σ]− µa

∗µ
b
∗ ,

where a, b ∈ {1, . . . , E} and h∗a := ha(x∗). We rewrite

Eh,x∗ [h∗ah
∗
b |µ,Σ] =

∫∫
h∗ah

∗
bp(ha, hb|x∗)p(x∗) dhdx∗

(9)
=
∫
ma

h(x∗)mb
h(x∗)p(x∗) dx∗ .

With βa := (Ka+σ2
εa

I)−1ya in equation (6), we obtain

Eh,x∗ [h∗a h
∗
b |µ,Σ]

=
∫
ma

h(x∗)mb
h(x∗)p(x∗) dx∗

(6)
=
∫
ka

h(x∗,X)βa k
b
h(x∗,X)βbp(x∗) dx∗

= β>a

∫
ka

h(X,x∗) kb
h(x∗,X)p(x∗) dx∗︸ ︷︷ ︸
=:L

βb .

Furthermore, with R := (Λ−1
a + Λ−1

b )−1 + Σ,

Lij = α2
aα

2
b |(Λ−1

a + Λ−1
b )Σ + I|− 1

2 (12)

× exp
(− 1

2 (xi − xj)>(Λa + Λb)−1(xi − xj)
)

× exp
(− 1

2 (zij − µ)>R−1(zij − µ)
)
,

zij := Λb(Λa + Λb)−1xi + Λa(Λa + Λb)−1xj .

Note that L equals L̃ in equation (11) if a = b.

With these results, the first two moments µ∗,Σ∗ of
p(h(x∗)|µ,Σ) can be exactly determined.

5. GP-ADF: Assumed Density Filtering
with Gaussian Processes

We assume that the transition dynamics f and the
measurement function g in equations (1) and (2) are
either not known or no longer accessible. Thus, we use
models of the latent functions. We will model both
functions by the GPs GPf and GPg with SE kernels
kf and kg, respectively. We assume that we have ac-
cess to ground truth observations of the hidden state
during training.1 In the following, we show how to
exploit these GP models for assumed density filtering
and derive the GP-ADF. We closely follow the steps
in Section 2.

5.1. Prediction Step (xk−1 → xk)

We compute the predictive distribution p(xk|y1:k−1)
in equation (3). Using p(xk−1|y1:k−1), the result of
the preceding filter step, as a Gaussian prior on xk−1,
we predict the outcome of f for uncertain inputs ac-
cording to Section 4.2 by treating xk−1 as x∗ and f as
h. Note that the transition density p(xk|xk−1) is ex-
actly Gaussian due to GPf . By integrating out xk−1

using equation (3), we determine the first two moments
µp

k and Cp
k of the predictive distribution exactly and

approximate p(xk|y1:k−1) by N (µp
k,C

p
k

)
.2

1This can be described by the graphical model in Fig-
ure 1, where the states xτ are observed (shaded), and the
index τ runs from −n to −1.

2We write µpk and Cp
k to indicate a one-step ahead pre-

diction from time step k − 1 to k given y1:k−1.
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5.2. Filter Update (yk → xk)

Now, let us consider the actual filter update at time
step k. The goal is to determine p(xk|y1:k). The
preceding prediction result p(xk|y1:k−1) ≈ N (µp

k,C
p
k

)
serves as the prior on xk and will be combined with
the recent observation yk to determine the filter up-
date (4) of the hidden state xk.

First, we determine the joint distribution

p(xk,yk|y1:k−1) = p(yk|xk)p(xk|y1:k−1) . (13)

The GP measurement model GPg yields an exact
Gaussian likelihood p(yk|xk), which is combined with
the Gaussian prior p(xk|y1:k−1), to obtain an approx-
imate Gaussian predictive distribution p(yk|y1:k−1) ≈
N (µy

k,C
y
k

)
. Note that µy

k and Cy
k are the exact mo-

ments of the predictive distribution, which can be com-
puted analytically using the results from Section 4.2 by
treating xk as x∗ and g as h.3

To approximate the joint distribution p(x,y) by a
Gaussian distribution4, we compute the cross terms
Cxy = Ex,g[x y>]− µp

k(µy
k)> of the joint covariance

C =
[

Cp
k Cxy

C>xy Cy
k

]
.

For the unknown values Ex,g[x ya], we obtain

Ex,ga [x ya] = Ex,ga [x
(
ga(x) + v

)
] = Ex,ga [x ga(x)]

=
∫

x
(∫

ga(x)p(ga|x) dga

)
︸ ︷︷ ︸

=Ega [ga(x)|x]=ma
g(x)

p(x) dx

(6)
=
∫

x

(
n∑

i=1

βa
i k

a
g (x,xi)

)
p(x) dx

=
n∑

i=1

βa
i

∫
x c1N (x|xi,Λa)N (x|µp

k,C
p
k) dx

for each target dimension a = 1, . . . , E. Here, c−1
1

is the normalization constant of the unnormalized SE
kernel ka

g . Note that xi, i = 1, . . . , n, are the train-
ing inputs of GPg. The product of the two Gaussians
results in a new (unnormalized) Gaussian, the normal-
ization constant of which is denoted by c−1

2 . The mean
of this new Gaussian is a function of xi and µp

k and

3In the following paragraph, we will implicitly assume
that all variables are conditioned on the previous observa-
tions y1:k−1. Moreover, we will omit the time index k for
brevity and clarity reasons. For example, p(xk,yk|y1:k−1)
will be denoted by p(x,y).

4This approximation also appears in standard Gaussian
filters, such as the UKF by (Julier & Uhlmann, 2004).

denoted by ψ(xi,µ
p
k). Hence, we finally obtain

Ex,g[x ya] = c1c
−1
2

n∑
i=1

βa
i ψ(xi,µ

p
k) , a = 1, . . . , E ,

and the covariance matrix C is completely determined.

Second and finally, the joint Gaussian distribution
p(xk,yk|y1:k−1) = N ([(µp

k)>, (µy
k)>]>,C) leads to the

actual filter update

p(xk|y1:k) = N (xk |µe
k,C

e
k

)
, (14)

µe
k = µp

k + Cxy(Cy
k)−1(yk − µy

k) ,

Ce
k = Cp

k −Cxy(Cy
k)−1C>xy .

5.3. Assumptions and Computational
Complexity

For performing prediction and filtering in closed form,
we employ two approximations: First, if the input x∗
is Gaussian distributed, we approximate the true pre-
dictive distributions f(x∗) and g(x∗) by a Gaussian
with the exact mean and covariance. Second, the as-
sumption that the joint distribution (13) is Gaussian,
is only true if there is a linear relationship between x
and y. Otherwise, it is an approximation.

No sampling or finite-sample approximations are re-
quired in GP-ADF. In contrast to the UKF or the
GP-UKF, the GP-ADF propagates densities instead of
samples from them, which will allow for gradient-based
parameter learning in nonlinear dynamic systems.

The computational complexity of predicting and fil-
tering (after training the GPs) is O(E3) +O(DE2n2)
due to the inversion of the predicted covariance ma-
trices in equation (14), and the computation of the L-
matrix (12) for the predictive covariance matrix. Here,
D and E are the dimensionalities of the training inputs
and the training targets, respectively, and n is the size
of the GP training set. Classical filters, such as the
EKF or the UKF, scale in O(E3) computations.

6. Results

We assess filter performances for a 1D example with
a single filter step and a time-series in a 2D example.
The GP-UKF and the GP-ADF use the same models
for the transition and observation functions. The UKF
and EKF always have access to the true underlying
functions and noise models. We implemented the UKF
and the GP-UKF as described by (Ko et al., 2007).5

5The UKF and GP-UKF implementations are based on
Nando de Freitas’ UPF software available at http://www.
cs.ubc.ca/~nando/software. The GP-ADF code will be
publicly available at http://mlg.eng.cam.ac.uk/marc.
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Figure 2. True hidden states (black) and filter distributions
(red) for EKF, UKF, GP-ADF, and GP-UKF. The x-axis

shows µ0, the mean value of p(x
(i)
0 ), the y-axis is the fil-

tered distribution p(x
(i)
1 |y

(i)
1 , µ

(i)
0 , σ2

0) of the hidden state.
The error bars show twice the standard deviations of the
filtered state distributions. The filtered state distributions
of the EKF, UKF, and the GP-UKF suffer from occasional
inconsistencies that do not explain the true state at all. In
contrast, GP-ADF is always consistent.

6.1. 1D Example

We consider the one-dimensional nonlinear problem

xk+1 = 1
2xk + 25 xk

1+x2
k

+ w , w ∼ N (0, 0.22
)
,

yk = 5 sin(2xk) + v , v ∼ N (0, 0.012
)
,

which is similar to the growth model by Kitagawa
(1996). We randomly distributed 100 points in
[−10, 10] to train GPf and GPg. The prior on x0

is Gaussian with mean µ0 ∈ [−10, 10] and variance
σ2

0 = 0.52. For 200 independent pairs (x(i)
0 , y

(i)
1 ) of

states and observations of the successor states, we as-
sess the performance of a single filter step of four fil-
ters, the EKF, the UKF, the GP-UKF, and the GP-
ADF. Figure 2 shows a typical realization of the fil-
tered state distributions. We evaluate the performance
of the filters using two performance measures, the Ma-
halanobis distance

Mx =
√

(xtrue − µe
k)>(Ce

k)−1(xtrue − µe
k) (15)

between the ground truth and the filtered mean and
the negative log-likelihood NLx of the hidden states.
The filtered state distribution is an approximate Gaus-
sian N (µe

k,C
e
k

)
. The units of Mx are standard devia-

tions of xtrue from the mean of the filter distribution.
For both NLx and Mx, lower values indicate better
performance. NLx penalizes both uncertainty and in-
consistency, while Mx solely penalizes inconsistency.

−20 −15 −10 −5 0 5
−6

−4

−2

0

2

4

x

g(
x)

Figure 3. Typical failing of unscented filters. Although
the function highly varies, the sigma points (red dots) are
mapped to almost the same function value (red crosses).
The sample predictive distribution is overconfident.

Table 2. Average filter performances (1D example).

NL0.25
x NL0.5

x NL0.75
x Mx

EKF 2.4× 105 2.9× 105 3.5× 105 30.2± 3.2
UKF 4.7× 104 6.5× 104 1.1× 105 3.9± 0.9
GP-UKF 319 1.1× 103 1.3× 104 1.5± 1.0
GP-ADF 90 98 106 0.46± 0.04

A distribution is inconsistent if the true underlying
value is an outlier under the distribution.

Figure 3 shows that finite-sample approximations of
densities can lead to overconfident predictions. The
predictive distribution p(y) = N (− 4.9, 0.0003

)
based

upon finite samples claims full confidence. The actual
measurement y = −2.6 cannot be explained.

Table 2 shows the average performance of the filters af-
ter 100 independent runs of the filter experiment. We
report the upper and lower quantiles NL0.75

x , NL0.25
x

and the median of NLx as well as the mean and the
standard deviation of Mx. According to NLx, EKF
is outperformed by all other filters. The EKF and
the UKF heavily suffer from inconsistencies. The GP-
UKF performs better than the UKF since particularly
GPg does not have training data in all relevant re-
gions, which alleviates the overconfidence problem in
Figure 3. According to the error measure Mx, GP-
ADF yields substantially better results than all other
filters. Moreover, the performance of GP-ADF is sta-
ble, which is expressed by the quantiles.

6.2. Recursive Filtering: Time-Series

We consider the problem of recursively filtering a time-
series of a two-dimensional pendulum, where

xk =

[
ϕk−1 + ∆tϕ̇k−1 + ∆2

t

2
mgl sin(ϕk−1)+uk−1

ml2

ϕ̇k−1 + ∆t
mgl sin(ϕk−1)+uk−1

ml2

]
+w ,

yk =

[
arctan

( p1−l sin(ϕk)
p1−l cos(ϕk)

)
arctan

( p2−l sin(ϕk)
p2−l cos(ϕk)

)]+v ,
[
p1

p2

]
=
[

1
−2

]
(16)
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are the time-discretized dynamics and observation
models. We choose Σw = diag(0.12, 0.32) ,Σv =
diag(0.22, 0.22). Here, x = [ϕ, ϕ̇]> with ϕ, ϕ̇ are the
angle and the angular velocity, respectively. The ap-
plied torque is denoted by u ∈ [−5, 5] Nm, the accelera-
tion of gravity is g = 9.81 m/s2, the length of the pendu-
lum is l = 1 m, the mass of the pendulum is m = 1 kg.
The discretization constant is ∆t = 400 ms. The mea-
surement equation (16) describes bearings-only mea-
surements of the Cartesian coordinates of the pendu-
lum tip and solely depends on the angle. Thus, the
filter distribution of the angular velocity has to be re-
constructed by using the cross-correlation information
between angle and angular velocity in the transition
dynamics model. We used 200 data points to train
GPf and GPg.

We start 100 independent trajectories from the initial
state distribution x0 ∼ N

(
µ0,Σ0

)
with µ0 = [−π, 0]>

and Σ0 = diag([0.12, 0.22]). This corresponds to the
still pendulum hanging downward. We fuse informa-
tion of a state prediction and a corresponding observa-
tion at each time step k. This filtered state distribu-
tion serves as prior for the subsequent state prediction.
We iterate this procedure for 200 time steps.

In Figure 4, we compare the performances of the UKF,
the GP-ADF, and the GP-UKF by considering NLy,
the negative log predictive likelihood of a full trajec-
tory. NLy assesses whether the observations yk can
be explained by the predicted measurement distribu-
tions p(yk|y1:k−1) = N (µy

k,C
y
k

)
. Note that in con-

trast to NLx, NLy solely depends on observations y,
and no longer on the hidden variables x. Additionally,
we consider the Mx-measure. A major observation is
that the UKF and the GP-UKF are unaware of losing
track of the state since the final covariances are tiny.
Therefore, they often yield inconsistent solutions af-
ter 200 time steps, whereas the GP-ADF determines
tight, but consistent distributions.

In general, we observed that the performance of GP-
ADF is particularly good for non-negligible noise levels
and fairly nonlinear mappings f and g. If the state
uncertainty is small or the functions f and g are nearly
linear, the UKF and the GP-UKF perform well.

7. Discussion

Non-parametric probabilistic GP models describe dis-
tributions over all functions that plausibly explain the
data. In the context of our work, this property matters
if a parametric model cannot easily be determined or
the real system does not closely follow idealized mod-
els.
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Figure 4. Recursive filter performances of UKF, GP-UKF,
and GP-ADF for the 2D pendulum. Panel (a) shows the
negative log predictive likelihood NLy. While the perfor-
mances of the UKF and the GP-UKF vary strongly and
depend on the particular noise realizations, the GP-ADF
reliably provides a good solution. Panel (b) shows the av-
eraged Mahalanobis distances of the filters. In contrast to
the GP-ADF, the UKF and the GP-UKF quickly become
inconsistent.

We observe that the uncertainty in the GP-ADF is
often larger than the uncertainty in the UKF and the
GP-UKF, which depends on two factors. First, in con-
trast to the GP-UKF, the GP-ADF explicitly incorpo-
rates the uncertainty about the underlying function.
Second, the predictive uncertainty is computed using
the entire prior. Due to the appropriate treatment of
uncertainties, we observe that the predictions of the
GP-ADF are rarely inconsistent.

Both UKF-based algorithms can easily fail when the
functions, which are used for mapping the sigma
points, are highly nonlinear and the input distribution
is wide (see Figure 3). The UKF and EKF are solely
applicable when the functions are known or directly
accessible. If only samples of the underlying function
are available, models have to be employed. Ko and Fox
(2008) replace transition and measurement functions
by GP models in standard filters, such as the EKF
and the UKF. However, they do not exploit the GP
structure that allows for an exact computation of the
first two predictive moments given a Gaussian prior.
Since Ko et al. (2007) and Ko and Fox (2008) do not
exploit these properties, the GP-UKF is not moment
preserving.

The GP-ADF can be considered the limit of the
GP-UKF propagating infinitely many samples from
a Gaussian input distribution if additionally the cor-
responding function values are sampled from the GP



Analytic Moment-based Gaussian Process Filtering

predictive distribution.

Like Ko et al. (2007) and Ko and Fox (2008), we as-
sume that the transition function and the measure-
ment function can be learned by having access to
ground truth observations of the hidden states. The
measurement function could be learned independent of
the transition function, but (measurement) noise-free
observations of the hidden states in Figure 1 can be
difficult to obtain.

For highly uncertain models for the latent functions
f, g GP-ADF is still consistent and shows the same
stable performance as described in Figure 4(a).

8. Summary and Future Work

In this paper, we propose the GP-ADF, a fully
Bayesian approach to assumed density filtering for
nonlinear dynamics and observation models. Similar
to the papers by Ko et al. (2007) and Ko and Fox
(2008), we model the transition dynamics and the mea-
surement function by GPs. However, we propagate full
densities and approximate the predictive distribution
by a Gaussian with the exact moments. In contrast to
the EKF, the UKF, and the recent GP-UKF, our filter
is consistent and moment preserving.

We will complete the forward-backward algorithm and
learn the GP models for the transition dynamics and
the measurements without the need of direct access to
the hidden states. We will utilize Expectation Max-
imization for this purpose since GP-ADF allows for
gradient-based parameter optimization.
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