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Abstract

Clustering data in high dimensions is be-
lieved to be a hard problem in general. A
number of efficient clustering algorithms de-
veloped in recent years address this prob-
lem by projecting the data into a lower-
dimensional subspace, e.g. via Principal
Components Analysis (PCA) or random pro-
jections, before clustering. Here, we consider
constructing such projections using multiple
views of the data, via Canonical Correlation
Analysis (CCA).

Under the assumption that the views are un-
correlated given the cluster label, we show
that the separation conditions required for
the algorithm to be successful are signifi-
cantly weaker than prior results in the lit-
erature. We provide results for mixtures
of Gaussians and mixtures of log concave
distributions. We also provide empirical
support from audio-visual speaker clustering
(where we desire the clusters to correspond to
speaker ID) and from hierarchical Wikipedia
document clustering (where one view is the
words in the document and the other is the
link structure).

1. Introduction

The multi-view approach to learning is one in which
we have ‘views’ of the data (sometimes in a rather
abstract sense) and the goal is to use the relation-
ship between these views to alleviate the difficulty of a
learning problem of interest (Blum & Mitchell, 1998;
Kakade & Foster, 2007; Ando & Zhang, 2007). In this
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work, we explore how having two ‘views’ makes the
clustering problem significantly more tractable.

Much recent work has been done on understanding
under what conditions we can learn a mixture model.
The basic problem is as follows: We are given indepen-
dent samples from a mixture of k distributions, and
our task is to either: 1) infer properties of the under-
lying mixture model (e.g. the mixing weights, means,
etc.) or 2) classify a random sample according to which
distribution in the mixture it was generated from.

Under no restrictions on the underlying mixture, this
problem is considered to be hard. However, in many
applications, we are only interested in clustering the
data when the component distributions are “well sep-
arated”. In fact, the focus of recent clustering al-
gorithms (Dasgupta, 1999; Vempala & Wang, 2002;
Achlioptas & McSherry, 2005; Brubaker & Vempala,
2008) is on efficiently learning with as little separa-
tion as possible. Typically, the separation conditions
are such that when given a random sample from the
mixture model, the Bayes optimal classifier is able to
reliably recover which cluster generated that point.

This work makes a natural multi-view assumption:
that the views are (conditionally) uncorrelated, con-
ditioned on which mixture component generated the
views. There are many natural applications for which
this assumption applies. For example, we can con-
sider multi-modal views, with one view being a video
stream and the other an audio stream, of a speaker —
here, conditioned on the speaker identity and maybe
the phoneme (both of which could label the generat-
ing cluster), the views may be uncorrelated. A second
example is the words and link structure in a document
from a corpus such as Wikipedia – here, conditioned
on the category of each document, the words in it and
its link structure may be uncorrelated. In this paper,
we provide experiments for both settings.
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Under this multi-view assumption, we provide a sim-
ple and efficient subspace learning method, based
on Canonical Correlation Analysis (CCA). This algo-
rithm is affine invariant and is able to learn with some
of the weakest separation conditions to date. The in-
tuitive reason for this is that under our multi-view
assumption, we are able to (approximately) find the
low-dimensional subspace spanned by the means of
the component distributions. This subspace is impor-
tant, because, when projected onto this subspace, the
means of the distributions are well-separated, yet the
typical distance between points from the same distri-
bution is smaller than in the original space. The num-
ber of samples we require to cluster correctly scales
as O(d), where d is the ambient dimension. Finally,
we show through experiments that CCA-based algo-
rithms consistently provide better performance than
standard PCA-based clustering methods when applied
to datasets in the two quite different domains of audio-
visual speaker clustering and hierarchical Wikipedia
document clustering by category.

Our work adds to the growing body of results which
show how the multi-view framework can alleviate the
difficulty of learning problems.

Related Work. Most provably efficient clustering
algorithms first project the data down to some low-
dimensional space and then cluster the data in this
lower dimensional space (an algorithm such as sin-
gle linkage usually suffices here). Typically, these al-
gorithms also work under a separation requirement,
which is measured by the minimum distance between
the means of any two mixture components.

One of the first provably efficient algorithms for learn-
ing mixture models is due to (Dasgupta, 1999), who
learns a mixture of spherical Gaussians by randomly
projecting the mixture onto a low-dimensional sub-
space. (Vempala & Wang, 2002) provide an algorithm
with an improved separation requirement that learns
a mixture of k spherical Gaussians, by projecting the
mixture down to the k-dimensional subspace of highest
variance. (Kannan et al., 2005; Achlioptas & McSh-
erry, 2005) extend this result to mixtures of general
Gaussians; however, they require a separation propor-
tional to the maximum directional standard deviation
of any mixture component. (Chaudhuri & Rao, 2008)
use a canonical correlations-based algorithm to learn
mixtures of axis-aligned Gaussians with a separation
proportional to σ∗, the maximum directional standard
deviation in the subspace containing the means of the
distributions. Their algorithm requires a coordinate-
independence property, and an additional “spreading”
condition. None of these algorithms are affine invari-
ant.

Finally, (Brubaker & Vempala, 2008) provide an affine-
invariant algorithm for learning mixtures of general
Gaussians, so long as the mixture has a suitably low
Fisher coefficient when in isotropic position. However,
their separation involves a large polynomial depen-
dence on 1

wmin
.

The two results most closely related to ours are the
work of (Vempala & Wang, 2002) and (Chaudhuri &
Rao, 2008). (Vempala & Wang, 2002) show that it is
sufficient to find the subspace spanned by the means
of the distributions in the mixture for effective clus-
tering. Like our algorithm, (Chaudhuri & Rao, 2008)
use a projection onto the top k − 1 singular value de-
composition subspace of the canonical correlations ma-
trix. They also require a spreading condition, which is
related to our requirement on the rank. We borrow
techniques from both of these papers.

(Blaschko & Lampert, 2008) propose a similar algo-
rithm for multi-view clustering, in which data is pro-
jected onto the top directions obtained by kernel CCA
across the views. They show empirically that for clus-
tering images using the associated text as a second
view (where the target clustering is a human-defined
category), CCA-based clustering methods out-perform
PCA-based algorithms.

This Work. Our input is data on a fixed set of ob-
jects from two views, where View j is assumed to be
generated by a mixture of k Gaussians (Dj

1, . . . , D
j
k),

for j = 1, 2. To generate a sample, a source i is picked
with probability wi, and x(1) and x(2) in Views 1 and
2 are drawn from distributions D1

i and D2
i . Following

prior theoretical work, our goal is to show that our al-
gorithm recovers the correct clustering, provided the
input mixture obeys certain conditons.

We impose two requirements on these mixtures. First,
we require that conditioned on the source, the two
views are uncorrelated. Notice that this is a weaker
restriction than the condition that given source i, the
samples from D1

i and D2
i are drawn independently.

Moreover, this condition allows the distributions in the
mixture within each view to be completely general, so
long as they are uncorrelated across views. Although
we do not prove this, our algorithm seems robust to
small deviations from this assumption.

Second, we require the rank of the CCA matrix across
the views to be at least k − 1, when each view is in
isotropic position, and the k − 1-th singular value of
this matrix to be at least λmin. This condition ensures
that there is sufficient correlation between the views.
If the first two conditions hold, then we can recover
the subspace containing the means in both views.
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In addition, for mixtures of Gaussians, if in at least
one view, say View 1, we have that for every pair of
distributions i and j in the mixture,

||µ1
i − µ1

j || > Cσ∗k1/4
√

log(n/δ)

for some constant C, then our algorithm can also de-
termine which component each sample came from.
Here µ1

i is the mean of the i-th component in View
1 and σ∗ is the maximum directional standard devi-
ation in the subspace containing the means in View
1. Moreover, the number of samples required to learn
this mixture grows (almost) linearly with d.

This separation condition is considerably weaker than
previous results in that σ∗ only depends on the direc-
tional variance in the subspace spanned by the means,
which can be considerably lower than the maximum di-
rectional variance over all directions. The only other
algorithm which provides affine-invariant guarantees
is due to (Brubaker & Vempala, 2008) — the implied
separation in their work is rather large and grows with
decreasing wmin, the minimum mixing weight. To get
our improved sample complexity bounds, we use a re-
sult due to (Rudelson & Vershynin, 2007) which may
be of independent interest.

We stress that our improved results are really due to
the multi-view condition. Had we simply combined the
data from both views, and applied previous algorithms
on the combined data, we could not have obtained our
guarantees. We also emphasize that for our algorithm
to cluster successfully, it is sufficient for the distribu-
tions in the mixture to obey the separation condition
in one view, so long as the multi-view and rank condi-
tions are obeyed.

Finally, we study through experiments the perfor-
mance of CCA-based algorithms on data sets from two
different domains. First, we experiment with audio-
visual speaker clustering, in which the two views are
audio and face images of a speaker, and the target
cluster variable is the speaker. Our experiments show
that CCA-based algorithms perform better than PCA-
based algorithms on audio data and just as well on
image data, and are more robust to occlusions of the
images. For our second experiment, we cluster docu-
ments in Wikipedia. The two views are the words and
the link structure in a document, and the target cluster
is the category. Our experiments show that a CCA-
based hierarchical clustering algorithm out-performs
PCA-based hierarchical clustering for this data.

2. The Setting

We assume that our data is generated by a mixture
of k distributions. In particular, we assume that we

obtain samples x = (x(1), x(2)), where x(1) and x(2)

are the two views, which live in the vector spaces V1

of dimension d1 and V2 of dimension d2, respectively.
We let d = d1+d2. Let µji , for i = 1, . . . , k and j = 1, 2,
be the mean of distribution i in view j, and let wi be
the mixing weight for distribution i.

For simplicity, we assume that the data have mean 0.
We denote the covariance matrix of the data as:

Σ = E[xx>], Σ11 = E[x(1)(x(1))>]
Σ22 = E[x(2)(x(2))>], Σ12 = E[x(1)(x(2))>]

Hence, we have: Σ =
[

Σ11 Σ21

Σ12 Σ22

]
(1)

The multi-view assumption we work with is as follows:

Assumption 1 (Multi-View Condition) We assume
that conditioned on the source distribution l in the mix-
ture (where l = i is picked with probability wi), the two
views are uncorrelated. More precisely, we assume that
for all i ∈ [k],

E[x(1)(x(2))>|l = i] = E[x(1)|l = i]E[(x(2))>|l = i]

This assumption implies that: Σ12 =
∑
i wiµ

1
i · (µ2

i )
T .

To see this, observe that

E[x(1)(x(2))>] =
∑
i

EDi [x
(1)(x(2))>] Pr[Di]

=
∑
i

wiEDi
[x(1)] ·EDi

[(x(2))>]

=
∑
i

wiµ
1
i · (µ2

i )
T (2)

As the distributions are in isotropic position, we ob-
serve that

∑
i wiµ

1
i =

∑
i wiµ

2
i = 0. Therefore, the

above equation shows that the rank of Σ12 is at most
k−1. We now assume that it has rank precisely k−1.

Assumption 2 (Non-Degeneracy Condition) We as-
sume that Σ12 has rank k − 1 and that the minimal
non-zero singular value of Σ12 is λmin > 0 (where we
are working in a coordinate system where Σ11 and Σ22

are identity matrices).

For clarity of exposition, we also work in an isotropic
coordinate system in each view. Specifically, the ex-
pected covariance matrix of the data, in each view, is
the identity matrix, i.e. Σ11 = Id1 , Σ22 = Id2 .

As our analysis shows, our algorithm is robust to er-
rors, so we assume that data is whitened as a pre-
processing step.

One way to view the Non-Degeneracy Assumption is
in terms of correlation coefficients. Recall that for two
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directions u ∈ V1 and v ∈ V2, the correlation coeffi-
cient is defined as:

ρ(u, v) =
E[(u · x(1))(v · x(2))]√

E[(u · x(1))2]E[(v · x(2))2]
.

An alternative definition of λmin is the min-
imal non-zero correlation coefficient, λmin =
minu,v:ρ(u,v)6=0 ρ(u, v). Note 1 ≥ λmin > 0.

We use Σ̂11 and Σ̂22 to denote the sample covariance
matrices in views 1 and 2 respectively. We use Σ̂12 to
denote the sample covariance matrix combined across
views 1 and 2. We assume these are obtained through
empirical averages from i.i.d. samples from the under-
lying distribution.

3. The Clustering Algorithm

The following lemma provides the intuition for our al-
gorithm.

Lemma 1 Under Assumption 2, if U,D, V is the
‘thin’ SVD of Σ12 (where the thin SVD removes all
zero entries from the diagonal), then the subspace
spanned by the means in view 1 is precisely the col-
umn span of U (and we have the analogous statement
for view 2).

The lemma is a consequence of Equation 2 and the
rank assumption. Since samples from a mixture are
well-separated in the space containing the means of the
distributions, the lemma suggests the following strat-
egy: use CCA to (approximately) project the data
down to the subspace spanned by the means to get
an easier clustering problem, and then apply standard
clustering algorithms in this space.

Our clustering algorithm, based on the above idea, is
stated below. We can show that this algorithm clusters
correctly with high probability, when the data in at
least one of the views obeys a separation condition, in
addition to our assumptions.

The input to the algorithm is a set of samples S, and
a number k, and the output is a clustering of these
samples into k clusters. For this algorithm, we assume
that the data obeys the separation condition in View
1; an analogous algorithm can be applied when the
data obeys the separation condition in View 2 as well.

Algorithm 1.

1. Randomly partition S into two subsets A and B
of equal size.

2. Let Σ̂12(A) (Σ̂12(B) resp.) denote the empirical
covariance matrix between views 1 and 2, com-

puted from the sample set A (B resp.). Com-
pute the top k − 1 left singular vectors of Σ̂12(A)
(Σ̂12(B) resp.), and project the samples in B (A
resp.) on the subspace spanned by these vectors.

3. Apply single linkage clustering (Dunn & Everitt,
2004) (for mixtures of log-concave distributions),
or the algorithm in Section 3.5 of (Arora & Kan-
nan, 2005) (for mixtures of Gaussians) on the pro-
jected examples in View 1.

We note that in Step 3, we apply either single linkage
or the algorithm of (Arora & Kannan, 2005); this al-
lows us to show theoretically that if the distributions
in the mixture are of a certain type, and given the
right separation conditions, the clusters can be recov-
ered correctly. In practice, however, these algorithms
do not perform as well due to lack of robustness, and
one would use an algorithm such as k-means or EM to
cluster in this low-dimensional subspace. In particular,
a variant of the EM algorithm has been shown (Das-
gupta & Schulman, 2000) to cluster correctly mixtures
of Gaussians, under certain conditions.

Moreover, in Step 1, we divide the data set into two
halves to ensure independence between Steps 2 and 3
for our analysis; in practice, however, these steps can
be executed on the same sample set.

Main Results. Our main theorem is as follows.

Theorem 1 (Gaussians) Suppose the source distri-
bution is a mixture of Gaussians, and suppose As-
sumptions 1 and 2 hold. Let σ∗ be the maximum di-
rectional standard deviation of any distribution in the
subspace spanned by {µ1

i }ki=1. If, for each pair i and j
and for a fixed constant C,

||µ1
i − µ1

j || ≥ Cσ∗k1/4

√
log(

kn

δ
)

then, with probability 1−δ, Algorithm 1 correctly clas-
sifies the examples if the number of examples used is

c · d

(σ∗)2λ2
minw

2
min

log2(
d

σ∗λminwmin
) log2(1/δ)

for some constant c.

Here we assume that a separation condition holds in
View 1, but a similar theorem also applies to View 2.
An analogous theorem can also be shown for mixtures
of log-concave distributions.

Theorem 2 (Log-concave Distributions)
Suppose the source distribution is a mixture of
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log-concave distributions, and suppose Assumptions
1 and 2 hold. Let σ∗ be the maximum directional
standard deviation of any distribution in the subspace
spanned by {µ1

i }ki=1. If, for each pair i and j and for
a fixed constant C,

||µ1
i − µ1

j || ≥ Cσ∗
√
k log(

kn

δ
)

then, with probability 1−δ, Algorithm 1 correctly clas-
sifies the examples if the number of examples used is

c · d

(σ∗)2λ2
minw

2
min

log3(
d

σ∗λminwmin
) log2(1/δ)

for some constant c.

The proof follows from the proof of Theorem 1, along
with standard results on log-concave probability dis-
tributions – see (Kannan et al., 2005; Achlioptas &
McSherry, 2005). We do not provide a proof here due
to space constraints.

4. Analyzing Our Algorithm

In this section, we prove our main theorems.

Notation. In the sequel, we assume that we are given
samples from a mixture which obeys Assumptions 2
and 1. We use the notation S1 (resp. S2) to denote
the subspace containing the centers of the distributions
in the mixture in View 1 (resp. View 2), and notation
S′1 (resp. S′2) to denote the orthogonal complement to
the subspace containing the centers of the distributions
in the mixture in View 1 (resp. View 2).

For any matrix A, we use ||A|| to denote the L2 norm
or maximum singular value of A.

Proofs. Now, we are ready to prove our main the-
orem. First, we show the following two lemmas,
which demonstrate properties of the expected cross-
correlational matrix across the views. Their proofs
are immediate from Assumptions 2 and 1.

Lemma 2 Let v1 and v2 be any vectors in S1 and S2

respectively. Then, |(v1)TΣ12v
2| > λmin.

Lemma 3 Let v1 (resp. v2) be any vector in S′1

(resp. S′2). Then, for any u1 ∈ V1 and u2 ∈ V2,
(v1)TΣ12u

2 = (u1)TΣ12v
2 = 0.

Next, we show that given sufficiently many samples,
the subspace spanned by the top k − 1 singular vec-
tors of Σ̂12 still approximates the subspace containing
the means of the distributions comprising the mixture.
Finally, we use this fact, along with some results in
(Arora & Kannan, 2005) to prove Theorem 1. Our
main lemma of this section is the following.

Lemma 4 (Projection Subspace Lemma) Let v1

(resp. v2) be any vector in S1 (resp. S2). If the num-
ber of samples n > c d

τ2λ2
minwmin

log2( d
τλminwmin

) log2( 1
δ )

for some constant c, then, with probability 1 − δ, the
length of the projection of v1 (resp. v2 ) in the sub-
space spanned by the top k − 1 left (resp. right) sin-
gular vectors of Σ̂12 is at least

√
1− τ2||v1|| (resp.√

1− τ2||v2||).

The main tool in the proof of Lemma 4 is the follow-
ing lemma, which uses a result due to (Rudelson &
Vershynin, 2007).

Lemma 5 (Sample Complexity Lemma) If the
number of samples

n > c · d

ε2wmin
log2(

d

εwmin
) log2(

1
δ

)

for some constant c, then, with probability at least 1−δ,
||Σ̂12 − Σ12|| ≤ ε.

A consequence of Lemmas 5, 2 and 3 is the following.

Lemma 6 Let n > C d
ε2wmin

log2( d
εwmin

) log2( 1
δ ), for

some constant C. Then, with probability 1 − δ, the
top k − 1 singular values of Σ̂12 have value at least
λmin − ε. The remaining min(d1, d2) − k + 1 singular
values of Σ̂12 have value at most ε.

The proof follows by a combination of Lemmas 2,3, 5.

Proof:(Of Lemma 5) To prove this lemma, we apply
Lemma 7. Observe the block representation of Σ in
Equation 1. Moreover, with Σ11 and Σ22 in isotropic
position, we have that the L2 norm of Σ12 is at most
1. Using the triangle inequality, we can write:

||Σ̂12−Σ12|| ≤
1
2

(||Σ̂−Σ||+||Σ̂11−Σ11||+||Σ̂22−Σ22||)

(where we applied the triangle inequality to the 2× 2
block matrix with off-diagonal entries Σ̂12 − Σ12 and
with 0 diagonal entries). We now apply Lemma 7 three
times, on Σ̂11 − Σ11, Σ̂22 − Σ22, and a scaled version
of Σ̂− Σ. The first two applications follow directly.

For the third application, we observe that Lemma 7
is rotation invariant, and that scaling each covariance
value by some factor s scales the norm of the matrix
by at most s. We claim that we can apply Lemma
7 on Σ̂ − Σ with s = 4. Since the covariance of any
two random variables is at most the product of their
standard deviations, and since Σ11 and Σ22 are Id1
and Id2 respectively, the maximum singular value of
Σ12 is at most 1; so the maximum singular value of Σ
is at most 4. Our claim follows. The lemma follows by
plugging in n as a function of ε, d and wmin �
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Lemma 7 Let X be a set of n points generated by
a mixture of k Gaussians over Rd, scaled such that
E[x · xT ] = Id. If M is the sample covariance matrix
of X, then, for n large enough, with probability at least
1− δ,

||M −E[M ]|| ≤ C ·

√
d log n log( 2n

δ ) log(1/δ)
√
wminn

where C is a fixed constant, and wmin is the minimum
mixing weight of any Gaussian in the mixture.

Proof: To prove this lemma, we use a concentration
result on the L2-norms of matrices due to (Rudelson
& Vershynin, 2007). We observe that each vector xi in
the scaled space is generated by a Gaussian with some
mean µ and maximum directional variance σ2. As
the total variance of the mixture along any direction
is at most 1, wmin(µ2 + σ2) ≤ 1. Therefore, for all
samples xi, with probability at least 1 − δ/2, ||xi|| ≤
||µ||+ σ

√
d log( 2n

δ ).

We condition on the fact that the event ||xi|| ≤
||µ|| + σ

√
d log( 2n

δ ) happens for all i = 1, . . . , n. The
probability of this event is at least 1− δ/2.

Conditioned on this event, the distributions of the vec-
tors xi are independent. Therefore, we can apply The-
orem 3.1 in (Rudelson & Vershynin, 2007) on these
conditional distributions, to conclude that:

Pr[||M −E[M ]|| > t] ≤ 2e−cnt
2/Λ2 logn

where c is a constant, and Λ is an upper bound on the
norm of any vector ||xi||. The lemma follows by plug-

ging in t =
√

Λ2 log(4/δ) logn
cn , and Λ ≤ 2

√
d log(2n/δ)
√
wmin

. �

Proof: (Of Lemma 4) For the sake of contradiction,
suppose there exists a vector v1 ∈ S1 such that the
projection of v1 on the top k−1 left singular vectors of
Σ̂12 is equal to

√
1− τ̃2||v1||, where τ̃ > τ . Then, there

exists some unit vector u1 in V1 in the orthogonal com-
plement of the space spanned by the top k−1 left sin-
gular vectors of Σ̂12 such that the projection of v1 on
u1 is equal to τ̃ ||v1||. This vector u1 can be written as:
u1 = τ̃ v1 +(1− τ̃2)1/2y1, where y1 is in the orthogonal
complement of S1. From Lemma 2, there exists some
vector u2 in S2, such that (v1)>Σ12u

2 ≥ λmin; from
Lemma 3, for this vector u2, (u1)>Σ12u

2 ≥ τ̃λmin.
If n > c d

τ̃2λ2
minwmin

log2( d
τ̃λminwmin

) log2( 1
δ ), then, from

Lemma 6, (u1)T Σ̂12u
2 ≥ τ̃

2λmin.

Now, since u1 is in the orthogonal complement of
the subspace spanned by the top k − 1 left singu-
lar vectors of Σ̂12, for any vector y2 in the subspace

spanned by the top k−1 right singular vectors of Σ̂12,
(u1)>Σ̂12y

2 = 0. This means that there exists a vector
z2 ∈ V2, the orthogonal complement of the subspace
spanned by the top k− 1 right singular vectors of Σ̂12

such that (u1)T Σ̂12z
2 ≥ τ̃

2λmin. This implies that the
k-th singular value of Σ̂12 is at least τ̃

2λmin. However,
from Lemma 6, all but the top k− 1 singular values of
Σ̂12 are at most τ

3λmin, which is a contradiction. �

Proof:(Of Theorem 1) From Lemma 4, if n >
Cd

τ2λ2
minwmin

log2( d
τλminwmin

) log2( 1
δ ), then, with proba-

bility at least 1 − δ, the projection of any vector v
in S1 or S2 onto the subspace returned by Step 2 of
Algorithm 1 has length at least

√
1− τ2||v||. There-

fore, the maximum directional variance of any Di in
this subspace is at most (1 − τ2)(σ∗)2 + τ2σ2, where
σ2 is the maximum directional variance of any Di.
When τ ≤ σ∗

σ , this is at most 2(σ∗)2. From the
isotropic condition, σ ≤ 1√

wmin
. Therefore, when

n > Cd
(σ∗)2λ2

minw
2
min

log2( d
σ∗λminwmin

) log2( 1
δ ), the maxi-

mum directional variance of any Di in the mixture in
the space output by Step 2 is at most 2(σ∗)2.

Since A and B are random partitions of the sample set
S, the subspace produced by the action of Step 2 of
Algorithm 1 on the set A is independent of B, and vice
versa. Therefore, when projected onto the top k − 1
SVD subspace of Σ̂12(A), the samples from B are dis-
tributed as a mixture of (k−1)-dimensional Gaussians.
The theorem follows from the previous paragraph, and
Theorem 1 of (Arora & Kannan, 2005). �

5. Experiments

5.1. Audio-visual speaker clustering

In the first set of experiments, we consider cluster-
ing either audio or face images of speakers. We use
41 speakers from the VidTIMIT database (Sanderson,
2008), speaking 10 sentences (about 20 seconds) each,
recorded at 25 frames per second in a studio environ-
ment with no significant lighting or pose variation.
The audio features are standard 12-dimensional mel
cepstra (Davis & Mermelstein, 1980) and their deriva-
tives and double derivatives computed every 10ms over
a 20ms window, and finally concatenated over a win-
dow of 440ms centered on the current frame, for a total
of 1584 dimensions. The video features are pixels of
the face region extracted from each image (2394 di-
mensions). We consider the target cluster variable to
be the speaker. We use either CCA or PCA to project
the data to a lower dimensionality N . In the case of
CCA, we initially project to an intermediate dimen-
sionality M using PCA to reduce the effects of spuri-
ous correlations. For the results reported here, typical
values (selected using a held-out set) are N = 40 and
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PCA CCA
Images 1.1 1.4
Audio 35.3 12.5
Images + occlusion 6.1 1.4
Audio + occlusion 35.3 12.5
Images + translation 3.4 3.4
Audio + translation 35.3 13.4

Table 1. Conditional perplexities of the speaker given the
cluster, using PCA or CCA bases. “+ occlusion” and “+
translation” indicate that the images are corrupted with
occlusion/translation; the audio is unchanged, however.

M = 100 for images and 1000 for audio. For CCA, we
randomize the vectors of one view in each sentence, to
reduce correlations between the views due to other la-
tent variables such as the current phoneme. We then
cluster either view using k-means into 82 clusters (2
per speaker). To alleviate the problem of local min-
ima found by k-means, each clustering consists of 5
runs of k-means, and the one with the lowest score is
taken as the final clustering.

Similarly to (Blaschko & Lampert, 2008), we measure
clustering performance using the conditional entropy
of the speaker s given the cluster c, H(s|c). We report
the results in terms of conditional perplexity, 2H(s|c),
which is the mean number of speakers corresponding
to each cluster. Table 1 shows results on the raw data,
as well as with synthetic occlusions and translations
of the image data. Considering the clean visual envi-
ronment, we expect PCA to do very well on the image
data. Indeed, PCA provides an almost perfect clus-
tering of the raw images and CCA does not improve
it. However, CCA far outperforms PCA when cluster-
ing the more challenging audio view. When synthetic
occlusions or translations are applied to the images,
the performance of PCA-based clustering is greatly de-
graded. CCA is unaffected in the case of occlusion; in
the case of translation, CCA-based image clustering
is degraded similarly to PCA, but audio clustering is
almost unaffected. In other words, even when the im-
age data are degraded, CCA is able to recover a good
clustering in at least one of the views. 1 For a more
detailed look at the clustering behavior, Figures 1(a-d)
show the distributions of clusters for each speaker.

1The audio task is unusually challenging, as each fea-
ture vector corresponds to only a few phonemes. A typ-
ical speaker classification setting uses entire sentences. If
we force the cluster identity to be constant over each sen-
tence (the most frequent cluster label in the sentence), per-
formance improves greatly; e.g., in the “audio+occlusion”
case, the perplexity improves to 8.5 (PCA) and 2.1 (CCA).

5.2. Clustering Wikipedia articles

Next we consider the task of clustering Wikipedia ar-
ticles, based on either their text or their incoming and
outgoing links. The link structure L is represented as
a concatenation of “to”and “from” link incidence vec-
tors, where each element L(i) is the number of times
the current article links to/from article i. The article
text is represented as a bag-of-words feature vector,
i.e. the raw count of each word in the article. A lex-
icon of about 8 million words and a list of about 12
million articles were used to construct the two feature
vectors. Since the dimensionality of the feature vec-
tors is very high (over 20 million for the link view), we
use random projection to reduce the dimensionality to
a computationally manageable level.

We present clustering experiments on a subset of
Wikipedia consisting of 128,327 articles. We use either
PCA or CCA to reduce the feature vectors to the final
dimensionality, followed by clustering. In these experi-
ments, we use a hierarchical clustering procedure, as a
flat clustering is poor with either PCA or CCA (CCA
still usually outperforms PCA, however). In the hier-
archical procedure, all points are initially considered
to be in a single cluster. Next, we iteratively pick the
largest cluster, reduce the dimensionality using PCA
or CCA on the points in this cluster, and use k-means
to break the cluster into smaller sub-clusters (for some
fixed k), until we reach the total desired number of
clusters. The intuition for this is that different clus-
ters may have different natural subspaces.

As before, we evaluate the clustering using the condi-
tional perplexity of the article category a (as given by
Wikipedia) given the cluster c, 2H(a|c). For each arti-
cle we use the first category listed in the article. The
128,327 articles include roughly 15,000 categories, of
which we use the 500 most frequent ones, which cover
73,145 articles. While the clustering is performed on
all 128,327 articles, the reported entropies are for the
73,145 articles. Each sub-clustering consists of 10 runs
of k-means, and the one with the lowest k-means score
is taken as the final cluster assignment.

Figure 1(e) shows the conditional perplexity versus the
number of clusters for PCA and CCA based hierarchi-
cal clustering. For any number of clusters, CCA pro-
duces better clusterings, i.e. ones with lower perplex-
ity. In addition, the tree structures of the PCA/CCA-
based clusterings are qualitatively different. With
PCA based clustering, most points are assigned to a
few large clusters, with the remaining clusters being
very small. CCA-based hierarchical clustering pro-
duces more balanced clusters. To see this, in Fig-
ure 1(f) we show the perplexity of the cluster distribu-
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Figure 1. (a-d) Distributions of cluster assignments per speaker in audio-visual experiments. The color of each cell (s, c)
corresponds to the empirical probability p(c|s) (darker = higher). (e-f) Wikipedia experiments: (e) Conditional perplexity
of article category given cluster (2H(a|c)). (f) Perplexity of the cluster distribution (2H(c))

tion versus number of clusters. For about 25 or more
clusters, the CCA-based clustering has higher perplex-
ity, indicating a more uniform distribution of clusters.
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