
Trajectory Prediction: Learning to Map Situations to Robot
Trajectories

Nikolay Jetchev jetchev@cs.tu-berlin.de
Marc Toussaint mtoussai@cs.tu-berlin.de

TU Berlin, Franklinstr. 28/29,10587 Berlin, Germany

Abstract

Trajectory planning and optimization is a
fundamental problem in articulated robotics.
Algorithms used typically for this problem
compute optimal trajectories from scratch in
a new situation. In effect, extensive data is
accumulated containing situations together
with the respective optimized trajectories –
but this data is in practice hardly exploited.
The aim of this paper is to learn from this
data. Given a new situation we want to pre-
dict a suitable trajectory which only needs
minor refinement by a conventional opti-
mizer. Our approach has two essential in-
gredients. First, to generalize from previous
situations to new ones we need an appropri-
ate situation descriptor – we propose a sparse
feature selection approach to find such well-
generalizing features of situations. Second,
the transfer of previously optimized trajecto-
ries to a new situation should not be made in
joint angle space – we propose a more efficient
task space transfer of old trajectories to new
situations. Experiments on a simulated hu-
manoid reaching problem show that we can
predict reasonable motion prototypes in new
situations for which the refinement is much
faster than an optimization from scratch.

1. Introduction

The animal and human ability to generate trajecto-
ries quickly is amazing. In typical every-day situations
humans do not seem to require time for motion plan-
ning but execute complex trajectories instantly. This
suggests that there exists a “reactive trajectory pol-

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

icy” which maps “the situation” (or at least motion
relevant features of the situation) to the whole trajec-
tory.1 Such a mapping (if optimal) is utterly complex:
the output is not a single current control signal but
a whole trajectory which, traditionally, would be the
outcome of a computationally expensive trajectory op-
timization process accounting for collision avoidance,
smoothness and other criteria. The input is the cur-
rent situation, in particular the position of relevant ob-
jects for which it is unclear which representation and
coordinate systems to use as a descriptor. The goal of
this work is to learn such an (approximate) mapping
from data of previously optimized trajectories in old
situations. We coin this problem trajectory prediction.

Existing approaches to trajectory optimization from
scratch include traditional gradient-based methods, in
particular using a spline-based representation (Zhang
& Knoll, 1995), or sequential quadratic programming
of which iLQG (Todorov & Li, 2005) is an instance.
These methods efficiently converge to local optima
which is appropriate when the cost function implies
suitable gradients, e.g. to push out of collisions. In
more complex situations other methods like Rapidly-
exploring Random Trees (RRTs) (Bertram et al.,
2006) or probabilistic road maps (Kavraki et al., 1995)
are typically used to first find feasible (e.g. collision-
free) paths, which are then refined w.r.t. to smoothness
and costs using a local optimizer. Such methods are
a black-box ingredient to our approach; in the exper-
iment we will mainly utilize iLQG and mention also
RRTs.

Concerning our problem of learning from previous op-
timization data, there exist multiple branches of re-
lated work in the literature. In the context of Rein-

1This is not to be confused with a reactive controller
which maps the current sensor state to the current con-
trol signal – such a (temporally local) reactive controller
could not explain trajectories which efficiently circumvent
obstacles in an anticipatory way, as humans naturally do
in complex situations.

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

forcement Learning the transfer problem has been ad-
dressed, where the value function (Konidaris & Barto,
2006) or directly the policy (Stolle & Atkeson, 2007),
(Peshkin & de Jong, 2002) is transferred to a new
Markov Decision Process. Konidaris and Barto (2006)
also discussed the importance of representations for
the successful transfer. Although the problem setting
is similar, these methods are different in that they do
not consider a situation descriptor (or features of the
“new” MDP) as an input to a mapping, which directly
predicts the new policy or value function.

Related work with respect to exploiting databases of
previous trajectories has been proposed in the context
of RRTs. Branicky et al. (2008) constructed a com-
pact database of collision free paths that can be reused
in future situations to speed up planning under the
assumption that some of the previous paths will not
be blocked by future obstacles and can be reused for
fast planning. Martin et al. (2007) attempted to bias
RRTs such that after planning in a set of initial en-
vironments, the obstacles can be rearranged and pre-
vious knowledge will be used for faster replanning in
the new scene; an environment prior, that visits with
higher probability states visited in previous trials, is
used to speed up planning and use less tree nodes to
achieve the final goal. In both cases, the notion of
our situation descriptor and the direct mapping to an
appropriate new trajectory is missing. Another inter-
esting way to exploit a database of previous motions
is to learn a “capability map”, i.e., a representation
of a robot’s workspace that can be reached easily, see
(Zacharias et al., 2007). While this allows to decide
whether a certain task position can be reached quickly,
it does not encode a prediction of a trajectory in our
sense.

The question of what are suitable representations of
a physical configuration, in particular suitable coor-
dinate systems, has previously been considered in a
number of works. Wagner et al. (2004) discussed the
advantages of egocentric versus allocentric coordinate
systems for robot control, and (Hiraki et al., 1998)
talked about such coordinates in the context of robot
and human learning. The choice of the situation de-
scriptor is also crucial when trying to generalize data
from old to new situations. Our approach is to use
feature selection methods to decide on relevant and
well-generalizing situation features. To do this, we re-
dundantly blow up the situation descriptor by defining
a vector that contains all kinds of distances in various
coordinate systems that can be calculated for the cur-
rent situation – namely a 791-dimensional vector we
will define later.

The remainder of the paper is organized as follows. We
first provide some background, which sets an appropri-
ate framework to formalize our problem. In section 3
we present our approach to learn a trajectory predic-
tion in new situations, to transfer and refine them. In
section 4 we evaluate the approach on some humanoid
reaching problems.

2. The Trajectory Prediction Problem

Let qt ∈ Rn be the robot posture as given by all its
joint angles at time t. In a given situation x, i.e.,
for a given initial posture q0 and the positions of ob-
stacles and targets in this problem instance (we will
formally define x below), the problem is to compute
a trajectory q = (q0, .., qT) for some time horizon T ,
which fulfils different constraints like reaching a task
goal and avoiding collisions. We formulate this as an
optimization problem by defining a cost function

C(x, q) =
T∑

t=1

g(qt) + h(qt, qt-1) . (1)

We will specify such a cost function explicitly in our
experiments section. Generally, g will account for task
targets and collision avoidance and h for control costs.

A trajectory optimization algorithm essentially tries to
map a situation x on a trajectory q which is optimal,

x 7→ q∗ = argmin
q

C(x, q) . (2)

For this we assume to have access to C(x, q) and lo-
cal (linear or quadratic) approximations of C(x, q) as
provided by a simulator, i.e., we can numerically eval-
uate C(x, q) for given x and q but we have no analytic
model.

The problem we address in this paper is to learn an
approximate model of the mapping (2) from a data
set of previously optimized trajectories. The dataset
D comprises pairs of situations and optimized trajec-
tories,

D = {(xi, qi)
d
i=1} , qi ≈ argmin

q
C(xi, q) . (3)

As an aside, this problem setup generally reminds at
structured output regression. However, in a structured
output scenario one devises a discriminative function
C(x, q) for which argminq C(x, q) can efficiently be
computed, e.g. by inference methods. Our problem is
quite the opposite: we assume argminq C(x, q) is very
expensive to evaluate and thus learn from a data set of
previously optimized solutions. A possibility to bring

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

both problems together is to devise approximate, ef-
ficiently computable structured models of trajectories
and learn the approximate mapping in a structured re-
gression framework. But this is left to future research.

In this paper we will show the advantages of doing
trajectory prediction by adapting basic classification
and regression methods to work with pre-calculated
values of C(x, q) from costly simulations.

3. Prediction and Transfer of a
Trajectory to a New Situation

The problem of trajectory prediction as defined in the
previous section is generally very hard. We decom-
pose the whole problem into a number of steps which
we describe one after another in this section. As an
overview, these steps are:

1. Compute the high-dimensional descriptor x for
the new situation.

2. Use a learnt mapping to predict a (task space)
trajectory for the new situation x.

3. Transfer the trajectory to the new situation using
Inverse Kinematics (IK), generating a trajectory
q.

4. Use a trajectory optimization algorithm to refine
q, i.e., initialize the algorithm with q and compute
the optimal trajectory q∗.

We measure the performance of this procedure in
terms of how much refinement is needed in the last step
(the other steps are computationally cheap). Since the
optimizer we use in the refinement (iLQG) is an iter-
ative algorithm, we measure this “refinement cost” as
follows

F (x, q) =
J∑

j=1

C(x, qj) (4)

where qj is the trajectory vector found by the op-
timizer after j iterations, starting from initialization
q0 ≡ q, and J is a constant (we set J = 40 as a
good compromise between giving a good estimate of
the convergence and fast evaluation). This area mea-
sure can be interpreted as the area under the optimiza-
tion curve.

3.1. High-dimensional Situation Descriptor

Step 1 is to compute a high-dimensional situation de-
scriptor. A situation (or problem instance) is fully

specified by the initial robot posture q0 and the posi-
tions of obstacles and targets in this problem instance.
There are many ways to describe a situation by some
vector x. For instance, positions of obstacles could be
given relative to some world coordinate system, rela-
tive to the robot’s base or relative to the endeffector.
We should expect that our ability to generalize to new
situations crucially depends on how we describe sit-
uations. Our approach is to first define a very high-
dimentional and redundant situation descriptor which
includes distances and relative positions w.r.t. many
possible frames of reference. Given this descriptor we
use a feature selection technique to infer from the data
which of these dimensions are best for trajectory pre-
diction in new situations.

Concretely, in our reaching task experiments, x ∈ Rs

is defined as a s=791-dimensional vector. We have 31
robot joint angles in the posture vector q0. We have 20
objects for which we measure pairwise distances and
rotations, 18 body parts (upper body of our robot), the
obstacle object (a single table in our scenario) and the
reach target location. This makes 190 combinations of
such object pairs. For each pair i we measure the 3D
relative distance pi = (px

i , p
y
i , p

z
i) of the object centers

and the 1D cosine oi of the z axis relative orientation
of the objects.

(q0, p1, ..., p190, o1, ..., o190) ∈ R791 (5)

Even larger spaces are possible, for example taking po-
lar coordinates and relative object coordinate frames
instead of the world frame, but the choice of (5) turned
out to be sufficient in our experiments.

3.2. Trajectory Prediction

As in typical kernel machines, at the core of a good
predictor is a good choice of similarity measure (ker-
nel) in input space, see (Scholkopf & Smola, 2001).
We consider rather basic prediction methods for (2)–
namely nearest neighbour (NN) and locally weighted
regression (LWR) – but spend some effort in training
a suitable similarity measure in situation space. Given
the data set D = {(xi, qi)d

i=1} and a new situation x∗,
we want to compute a similarity between x∗ and each
xi in the data set,

k(x∗, xi) = exp{−1
2

(x∗ − xi)>W (x∗ − xi)} (6)

W = diag(w2
1, .., w

2
s) , (7)

where the entries w2
j of the diagonal metric

parametrize the weighting of the jth dimension in the
situation descriptor. Given this metric, the NN pre-

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

dictor is

f(x) = Txixqî , î = argmax
i

k(xi, x) , (8)

where Txix = φ-1
x ◦ φxi

is a transfer operator which
first projects to a task space in situation xi and then
projects back to a joint trajectory in situation x – we
will explain this operator in detail in the next section.
For K nearest neighbours, the LWR predictor is

f(x) = φ-1
x

∑K
i k(x, xi) φxi

qi∑K
j k(x, xj)

. (9)

Note that for K = 1 the two methods are identical.
For higher values of K the similarity k(x, xi) controls
how we average between the nearest neighbours in task
space and we remain always in the convex hull of these
neighbours, which assures meaningful trajectory out-
puts. We also tried Kernel Ridge Regression (KRR)
but observed worse performance, in particular when
the new situation is far from all previously seen (all
k(x, xi) are small) and KRR essentially returns the
global mean of all trajectories – this global interpola-
tion typically seemed not useful.

We train the parameters w = (w1, ..., ws) on the ba-
sis of the performance measure F (x, q) defined in (4).
Assume we had a probabilistic model f(x) that only
outputs (transferred) trajectories qi from the database
and selects them with probability

P (f(x)=Txixqi) =
1
Z

exp{−1
2

(x− xi)>W (x− xi)}
(10)

where Z =
∑

i exp{− 1
2 (x − xi)>W (x − xi)} ensures

normalization. The expected cost of this probabilistic
mapping over D is

E{F (x, f(x))} =

dX
i=1

P (f(x)=Txixqi)F (x, Txixqi) . (11)

We choose weights w so that E{F (x, f(x))} is mini-
mal for all x. Our approach has some analogies with
other kernel training and feature selection methods,
see (Lowe, 1995).The derivative of this expected cost,
with respect to the vector w can be calculated as:

∂E{F (x, f(x))}
∂w

=
dX

i=1

F (x, f(x))
∂P (f(x)=Txixqi)

∂w
(12)

∂P (f(x)=Txixqi)

∂w
=

Z
∂P̃i

∂w
− P (f(x)=Txixqi)

Pd
j=1

∂P̃j

∂w

Z2
(13)

∂P̃i

∂w
=
∂ exp{− 1

2 (x− xi)
>W (x− xi)}

∂w
= −P̃i(x− xi)

2
diag(w) (14)

where P̃i = exp{− 1
2 (x − xi)>W (x − xi)} is the un-

normalized probability. Given a second dataset D̄ of
situations for which we measured all costs F of situa-
tions from D, we want to minimize:∑

x∈D̄

E{F (x, f(x))}+ λ|w|1 (15)

where λ controls the trade-off with the regularization.
Having the squares of w on the diagonal of W ensures
that we get a positive matrix W with an unconstrained
minimization algorithm. We used the L1 norm of w to
get a sparse solution and took sign(w) as its gradient,
see (Schmidt et al., 2007).

3.3. Task Space Transfer

In the previous sections we already used the trans-
fer operator Txix that transfers a data trajectory from
situation xi to a new situation x. We propose to do
this transfer in task space. Assume we have a kine-
matic mapping φx : qt 7→ yt which maps a joint
configuration qt ∈ Rn to a task vector yt ∈ Rm, for
instance the endeffector position of the robot. Gener-
ally, such a mapping depends on the situation x, e.g.
the positions of other objects. Then we can project a
joint space trajectory q into the task space; we write
y = φx(q) ∈ RT+1×m for this, meaning that φ is ap-
plied in every time slice. In a new situation (where
we know the initial posture q0), this task space trajec-
tory can be projected back to joint space using inverse
kinematics (IK), see (Nakamura & Hanafusa, 1987).
Stretching rigorous mathematical notation a bit, we
write this IK projection of a task trajectory as φ-1

x (y).
In this notation, the transfer operator is the concate-
nation Tx′x = φ-1

x ◦ φx′ .

Generally, the task space can be freely defined in this
approach. In our experiments we chose the task space
to be the 3D endeffector position relative to an ob-
stacle (table) coordinate system. This choice of task
space helps to generalize to translations in obstacle
position, see (Berniker & Kording, 2008). We will ex-
plain more details on the used inverse kinematics in
the experimental section.

3.4. A Clustering Approach to Prediction

As an alternative to the above prediction scheme and
for empirical evaluation we also test a simple cluster-
ing approach where we choose from a small predefined
movement set:

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

Figure 1. Low dimensional embedding of D using Eu-
clidean distance matrix between φxi(qi). Colours indicate
assigned cluster. The situations xa and xb are visualized
in Figure 2

(a) Situation xa – move
hand under the table.

(b) Situation xb – move
hand over the table.

Figure 2. Two situations; the goal is to reach the target.

1. Cluster the task space trajectories φxi
(qi) using

standard Euclidean distance in c clusters with
centroids {yi}ci=1.

2. Gather training data pairs (x, i∗) where i∗ =
argmini∈C F (x, φ-1

x yi).

3. Train a supervised classification algorithm on this
data, so we can predict f(x) = φ-1

x yi∗ .

We were motivated for this approach by the good
low dimensional structure we found in D, see Figure
1, where different regions correspond to characteristic
movements and situations as in Figure 2. More elab-
orate ways to code generalized movements and primi-
tives have been proposed, like Hidden Markov Models
(Calinon & Billard, 2005; Shon et al., 2007), but clus-
ter analysis has the advantage of simplicity. The task
space trajectories yi correspond to prototype avoid-
ance paths around the obstacle in Figure 3, since map-
ping φxi projects successfully optimized trajectories in
relative endeffector-table coordinates.

Figure 3. Prototype trajectories yi, tracing good avoidance
paths around the obstacle.

4. Experiments

4.1. Problem setup

The scenario we examined contains a humanoid robot
body with the right hand index finger as endeffector,
a reaching target (red point) and an obstacle (the ta-
ble) as seen in Figure 2. The task for the robot is to
reach the target with the endeffector without colliding
with the obstacle. Different scenarios are generated by
uniformly sampling the position of the table in a rect-
angle of size (0.9, 02, 0.2), the target in (0.5, 0.2, 0.6),
and initial endeffector position in (0.3, 0.3, 0.9). Sit-
uations with initial collisions and too easy situations
where the endeffector was closer than 0.3 to the target
were discarded in order to avoid trivial situations and
to put a greater focus on more challenging scenarios,
where the endeffector must move on the other side of
the table to reach the target. With this generative
model we gathered a database D with 1000 situations
for use in our experiments. We set T = 200 to allow
for a smooth and detailed movement description.

We chose the term h in the cost function (1) to enforce
a trajectory of short length with smooth transitions
between the trajectory steps. We define h as

h(qt, qt-1) = (qt − qt-1)2 . (16)

The cost term g in (1) is defined as

g(qt) = g1(qt) + g2(qt) (17)

where g1 penalizes collisions while executing the grasp
movement. The value of this collision cost is the sum of
the pairwise penetration depths ci of colliding objects.
Minimizing it moves the robot body parts away from
obstacles.

g1(qt) = 105
∑

i

c2i (18)

The task of reaching the target position with the end-
effector is represented in g2. We want the target to be

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

reached at the end of the movement, so we define this
cost function to have a higher value for t = T :

g2(qt) =

{
d2 t < T

104d2 t = T
(19)

where d is the Euclidean distance between the endef-
fector and the target.

For the mapping φ−1 we used the prioritized iterated
IK method similar to (Baerlocher & Boulic, 2004),
which allows to include additional task constraints
with priorities. We have three such constraints: to
follow the task space trajectory φ(q), to avoid colli-
sions as in (18), and to reach the target in the final
time step as in (19). We imposed higher priority on
the collision avoidance, that is, the task space transfer
tries to follow the given task space trajectory roughly
while avoiding any collisions and correcting for them.

4.2. Methods Compared

We evaluated several methods for trajectory predic-
tion:

• Linear stands for the baseline method usually
used for initialization of motion planners. It pre-
dicts a straight line trajectory of the endeffector
to the target, smoothed by IK (with same con-
straints as in the previous section).

• NNEuclid predicts a trajectory using (8) with the
default Euclid metric.

• LWREuclid uses for prediction (9) with 3 neigh-
bours and Euclid metric.

• NNOpt uses NN selection (8) with the metric op-
timized in (15).

• LWROpt uses (9) with 3 neighbours and trained
metric.

• Cluster uses initialization with the clustered pro-
totypes C as in section 3.4.

In the case of NNOpt we used cross-validation to choose
the regularization λ = 0.03, scaled all features to
[−1, 1], optimized for about 20 Quasi-Newton BFGS
iterations and got a sparse metric with 52 non-zero co-
efficients w2

i . Figure 5 shows the decay of the feature
coefficients and Table 1 highlights the top features.
Most of these encode highly collision or target rele-
vant information. The descriptor is compressed from
791 to 52 non-zero features.

In the case of Cluster we used spectral clustering of D
and chose the number of clusters to be 30. We made a

Figure 4. Predicted trajectory of the endeffector after task
space transfer. Yellow corresponds to Linear, red is Cluster
with y the striped line, black is from a RRT.

Figure 5. Features ordered by weight w2
i

new set of 900 situations D̂, and for each x ∈ D̂ mea-
sured F (x, φ-1(ŷi)) for all ŷi ∈ C, for a total of 27000
evaluations. We had 75% accuracy in predictions with
Linear SVM, and the bad classifications were usually
with a cluster that also has quite good costs.

Figure 4 gives a brief illustration of the Cluster
method. For comparison we also included an RRT
method (with 2000 nodes), which was worse than Lin-
ear for our problem setup but might be more compet-
itive in difficult cluttered environments.

4.3. Results

We measure total computation time (initialization and
iLQG) as follows: for a generated test set of 1000 sit-
uations (different from D), run all initialization algo-
rithms that are compared and measure the cost along
100 iLQG iterations (each of which lasts 0.065s). Let
Cmin(x) be the minimal achieved cost of all methods
for situation x. Compute the computation time for
each of the algorithms as the time in seconds until
Cmin(x) + ε is reached. A margin ε = 0.2 implies a
feasible solution without collisions whereas a smaller
margin like ε = 0.05 corresponds to solutions which
are near the optimum.

In Table 2, # stands for the number of 1000 test sit-
uations that did not reach level ε using the particular
method. µ is the average time to reach level ε, calcu-
lated on the 773 situations where all of the levels for
all methods were reached. With ± the Standard Mean

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

Table 1. Several highly ranked features.
Feature w2

i

pywaist−table 20.7
pxchest−table 17.3
pxtarget−table 16.8
pyback−table 14.2
pzneck−target 11.4
pzwristR−target 8.9

Error of our estimate of µ is shown.

In Figure 6 we show performance after 0.75s (initial-
ization and 10 iLQG iterations) averaging for 1000 sit-
uations the distance ε from the optimal cost Cmin(x)
for the current iteration. We make the following ob-
servations from Table 2 and Figure 6:

• All of the 5 prediction methods using database D
improved greatly the convergence speed.The pre-
dicted trajectories take the endeffector on a colli-
sion free path around the table before any iLQG
refinement, unlike Linear which is often stuck in
collisions at first, see Figure 4. The predictions
also allowed iLQG to reach better optima much
more often, as seen in the # values in Table 2.

• The trained similarity metric improves signifi-
cantly NNOpt over NNEuclid in all statistics from
Figure 6 and Table 2.

• The Cluster and NNOpt methods are the best;
there is not a clear winner between them. Even-
tually, the choice will be influenced by additional
criteria like time to train and memory.

Cluster has the least number of failures # from
all methods. A possible explanation is that the
clusters C robustly represent good control trajec-
tories for all situations. Combined with the good
classification accuracy of the SVM, this allows for
minima even in the few situations where NNOpt

initialization fails.

On the other hand, Cluster has worse time µ than
NNOpt and has a larger area under the curve in
Figure 6, especially in the first iterations.

• Methods LWREuclid and LWROpt were slightly
worse compared to the respective NN methods.
A possible reason is that LWR is more sensitive
to parameters, so more data for training of the
situation metric can improve it.

Figure 6. Convergence averaged over 1000 situations.

5. Conclusion

In this paper we addressed the problem of trajectory
prediction: we want to exploit data from previous tra-
jectory optimizations to predict reasonable trajecto-
ries in new situations. We proposed two key aspects
to solve this problem: an appropriate situation de-
scriptor and a task space transfer of previously opti-
mized trajectories to new situations. Concerning the
situation descriptor, we demonstrated that learning a
(L1-regularized) metric in a high-dimensional descrip-
tor significantly increases performance of the mapping.
Interestingly, this means that we can extract features
of a situation (e.g., choose from a multitude of pos-
sible coordinate systems) that generalize well w.r.t.
trajectory prediction. As an alternative a clustering
approach yielded equally good empirical results. The
task space transfer is motivated by the fact that a naive
replay of a trajectory in a new situation will not yield
good motions, in particular w.r.t. collisions. The task
space transfer – that is, first projecting an old trajec-
tory to a task space and then projecting it back, in the
new situation, using IK – allows an adaptation to the
new situation implicit in the inverse kinematics.

One limitation of our current approach is the assump-
tion of perfect information and simple object geome-
try. This can be addressed by sensor-driven situation
descriptors, but these will also increase the problem
dimensionality and require algorithms that scale well.
Future research will focus on more cluttered scenes
and more difficult tasks, requiring different cost func-
tions and situation descriptors. Collecting a database
D will be more costly for such tasks, but then trajec-
tory prediction has the potential to save more time in
the online phase by finding and predicting complicated
movement patterns between different situations.

Acknowledgments

This work was supported by the German Research
Foundation (DFG), Emmy Noether fellowship TO
409/1-3.

Trajectory Prediction: Learning to Map Situations to Robot Trajectories

Table 2. Performance of different initialization methods. µ is average time in seconds, # is count of failures.
Method ε = 0.2 ε = 0.15 ε = 0.1 ε = 0.05
Linear # 31 41 63 155

µ 1.26 ± 0.04 1.29± 0.05 1.4 ± 0.05 1.96 ± 0.07

NNEuclid # 4 6 9 52
µ 0.4± 0.01 0.47 ± 0.01 0.62 ± 0.02 1.14 ± 0.04

LWREuclid # 4 9 19 58
µ 0.39 ± 0.01 0.45 ± 0.01 0.59 ± 0.02 1.05 ± 0.04

NNOpt # 2 3 4 33
µ 0.32 ± 0.01 0.36 ± 0.01 0.47 ± 0.01 0.83 ± 0.02

LWROpt # 3 4 16 49
µ 0.31 ± 0.01 0.35 ± 0.01 0.45 ± 0.01 0.76 ± 0.03

Cluster # 1 1 2 16
µ 0.39 ± 0.01 0.45 ± 0.01 0.57 ± 0.01 1.02 ± 0.03

References

Baerlocher, P., & Boulic, R. (2004). An inverse kine-
matics architecture enforcing an arbitrary number
of strict priority levels. The Visual Computer: Int.
Journ. of Computer Graphics, 20, 402–417.

Berniker, M., & Kording, K. (2008). Estimating the
sources of motor errors for adaptation and general-
ization. Nature Neuroscience, 11, 1454–1461.

Bertram, D., Kuffner, J., Dillmann, R., & Asfour,
T. (2006). An integrated approach to inverse kine-
matics and path planning for redundant manipula-
tors. IEEE Int. Conf. on Robotics and Automation
(ICRA) (pp. 1874–1879).

Branicky, M., Knepper, R., & Kuffner, J. (2008).
Path and trajectory diversity: Theory and algo-
rithms. IEEE Int. Conf. on Robotics and Automa-
tion (ICRA) (pp. 1359–1364).

Calinon, S., & Billard, A. (2005). Recognition and re-
production of gestures using a probabilistic frame-
work combining PCA, ICA and HMM. 22nd Int.
Conf. on Machine Learning (ICML) (pp. 105–112).

Hiraki, K., Sashima, A., & Phillips, S. (1998). From
Egocentric to Allocentric Spatial Behavior: A Com-
putational Model of Spatial Development. Adaptive
Behavior, 6, 371–391.

Kavraki, L. E., Latombe, J.-C., Motwani, R., &
Raghavan, P. (1995). Randomized query process-
ing in robot path planning. Twenty-seventh annual
ACM Symposium on Theory of Computing (STOC)
(pp. 353–362).

Konidaris, G., & Barto, A. (2006). Autonomous shap-
ing: knowledge transfer in reinforcement learning.
23rd Int. Conf. on Machine Learning (ICML) (pp.
489–496).

Lowe, D. G. (1995). Similarity metric learning for
a variable-kernel classifier. Neural Computation, 7,
72–85.

Martin, S., Wright, S., & Sheppard, J. (2007). Of-
fline and online evolutionary bi-directional RRT al-
gorithms for efficient re-planning in dynamic envi-

ronments. IEEE Int. Conf. on Automation Science
and Engineering (CASE). (pp. 1131–1136).

Nakamura, Y., & Hanafusa, H. (1987). Optimal redun-
dancy control of robot manipulators. Int. Journ. of
Robotic Research, 6, 32–42.

Peshkin, L., & de Jong, E. D. (2002). Context-based
policy search: Transfer of experience across prob-
lems. ICML-2002 Workshop on Development of
Representations.

Schmidt, M., Fung, G., & Rosales, R. (2007). Fast op-
timization methods for l1 regularization: A compar-
ative study and two new approaches. 18th European
Conf. on Machine Learning (ECML) (pp. 286–297).

Scholkopf, B., & Smola, A. J. (2001). Learning with
kernels: Support vector machines, regularization,
optimization, and beyond. Cambridge, MA, USA:
MIT Press.

Shon, A., Storz, J., & Rao, R. (2007). Towards a
real-time bayesian imitation system for a humanoid
robot. IEEE Int. Conf. on Robotics and Automation
(ICRA) (pp. 2847–2852).

Stolle, M., & Atkeson, C. (2007). Knowledge trans-
fer using local features. IEEE Int. Symposium on
Approximate Dynamic Programming and Reinforce-
ment Learning (ADPRL). (pp. 26–31).

Todorov, E., & Li, W. (2005). A generalized iterative
LQG method for locally-optimal feedback control of
constrained nonlinear stochastic systems. Proc. of
the American Control Conference (pp. 300–306).

Wagner, T., Visser, U., & Herzog, O. (2004). Egocen-
tric qualitative spatial knowledge representation for
physical robots. Robotics and Autonomous Systems,
49, 25 – 42.

Zacharias, F., Borst, C., & Hirzinger, G. (2007).
Capturing robot workspace structure: representing
robot capabilities. IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS) (pp. 3229–3236).

Zhang, J., & Knoll, A. (1995). An enhanced opti-
mization approach for generating smooth robot tra-
jectories in the presence of obstacles. Proc. of the
European Chinese Automation Conf. (pp. 263–268).

