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Abstract

In this paper we propose an algorithm
for polynomial-time reinforcement learn-
ing in factored Markov decision processes
(FMDPs). The factored optimistic initial
model (FOIM) algorithm, maintains an em-
pirical model of the FMDP in a conventional
way, and always follows a greedy policy with
respect to its model. The only trick of the
algorithm is that the model is initialized op-
timistically. We prove that with suitable ini-
tialization (i) FOIM converges to the fixed
point of approximate value iteration (AVI);
(ii) the number of steps when the agent
makes non-near-optimal decisions (with re-
spect to the solution of AVI) is polynomial in
all relevant quantities; (iii) the per-step costs
of the algorithm are also polynomial. To our
best knowledge, FOIM is the first algorithm
with these properties.

1. Introduction

Factored Markov decision processes (FMDPs) are
practical ways to compactly formulate sequential de-
cision problems—provided that we have ways to solve
them. When the environment is unknown, all effec-
tive reinforcement learning methods apply some form
of the “optimism in the face of uncertainty” princi-
ple: whenever the learning agent faces the unknown,
it should assume high rewards in order to encourage
exploration. Factored optimistic initial model (FOIM)
takes this principle to the extreme: its model is ini-
tialized to be overly optimistic. For more often visited
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areas of the state space, the model gradually gets more
realistic, inspiring the agent to head for unknown re-
gions and explore them, in search of some imaginary
“Garden of Eden”. The working of the algorithm is
simple to the extreme: it will not make any explicit
effort to balance exploration and exploitation, but al-
ways follows the greedy optimal policy with respect
to its model. We show in this paper that this simple
(even simplistic) trick is sufficient for effective FMDP
learning.

The algorithm is an extension of OIM (optimistic
initial model) (Szita & Lorincz, 2008b), which is
a sample-efficient learning algorithm for flat MDPs.
There is an important difference, however, in the way
the model is solved. Every time the model is up-
dated, the corresponding value function needs to be
re-calculated (or updated) For flat MDPs, this is not
a problem: various dynamic programming-based algo-
rithms (like value iteration) can solve the model to any
required accuracy in polynomial time.

The situation is less bright for generating near-optimal
FMDP solutions: all currently known algorithms may
take exponential time, e.g. the approximate policy it-
eration of Boutilier et al. (2000) using decision-tree
representations of policies, or solving the exponential-
size flattened version of the FMDP. If we require poly-
nomial running time (as we do in this paper in search
for a practical algorithm), then we have to accept sub-
optimal solutions (Liberatore, 2002). The only known
example of a polynomial-time FMDP planner is fac-
tored value iteration (FVI) (Szita & Lérincz, 2008a),
which will serve as the base planner for our learning
method. This planner is guaranteed to converge, and
the error of its solution is bounded by a term depend-
ing only on the quality of function approximators.

Our analysis of the algorithm will follow the estab-
lished techniques for analyzing sample-efficient rein-
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forcement learning (like the works of Kearns and Singh
(1998); Brafman and Tennenholtz (2001); Strehl and
Littman (2005); Szita and Lorincz (2008b) on flat
MDPs and Strehl (2007) on FMDPs). However, the
listed proofs of convergence rely critically on access to
a near-optimal planner, so they have to be generalized
suitably. By doing so, we are able to show that FOIM
converges to a bounded-error solution in polynomial
time with high probability.

We introduce basic concepts and notations in section 2,
then in section 3 we review existing work, with special
emphasis to the immediate ancestors of our method.
In sections 4 and 5 we describe the blocks of FOIM
and the FOIM algorithm, respectively. We finish the
paper with a short analysis and discussion.

2. Basic concepts and notations

An MDP is characterized by a quintuple
(X,A,R,P,v), where X is a finite set of states;
A is a finite set of possible actions; R: X x A — R is
the reward function of the agent; P : XxAxX — [0, 1]
is the transition function; and finally, v € [0,1) is
the discount rate on future rewards. A (station-
ary, Markov) policy of the agent is a mapping
m: Xx A — [0,1]. The optimal value function
V* . X — R gives the maximum attainable total
rewards for each state, and satisfies the Bellman
equation

V*(x) = max > Py | x,a) (R(x,0) +9V*()). (1)

Given the optimal value function, it is easy to
get an optimal policy: 7*(x,a) = 1 iff a =
argmax, » ., P(y | x,a) (R(X7 a)+'yV*(y)) and 0 oth-

erwise.

2.1. Vector notation

Let N := |X], and suppose that states are integers
from 1 to N, i.e. X = {1,2,...,N}. Clearly, value
functions are equivalent to N-dimensional vectors of
reals, which may be indexed with states. The vector
corresponding to V will be denoted as v and the value
of state x by vx. Similarly, for each a let us define
the N-dimensional column vector r® with entries r% =
R(x,a) and N x N matrix P¢ with entries Pg, =

P(y | x,a).

The Bellman equations can be expressed in vector no-
tation as v* = maxX,ca (r“ + ’yP“v*), where max
denotes the componentwise maximum operator. The

Bellman equations are the basis to many RL algo-

rithms, most notably, value iteration:
Vit1 i= maxXqea (r* +yP%vy), (2)

which converges to v* for any initial vector vy.

2.2. Factored structure

We assume that X is the Cartesian product of m
smaller state spaces (corresponding to individual vari-
ables):

X=X xXo x...xX,,.

For the sake of notational convenience we will assume
that each X; has the same size, | X;| = |Xo| = ... =
|Xm| = n. With this notation, the size of the full
state space is N = |X| = n". We note that all deriva-
tions and proofs carry through to different size variable
spaces.

Definition 2.1 For any subset of wariable indices
Z C {1,2,...,m}, let X[Z] := x X;, furthermore,
i€z

for any x € X, let x[Z] denote the value of the vari-
ables with indices in Z. We shall also use the nota-
tion X[Z] without specifying a full vector of values x,
in such cases x[Z] denotes an element in X[Z]. For
single-element sets Z = {i} we shall also use the short-
hand x[{i}] = x[i].

Definition 2.2 (Local-scope function) 4  func-
tion [ is a local-scope function if it is defined over
a subspace X[Z] of the state space, where Z is a
(presumably small) index set.

If | Z] is small, local-scope functions can be represented
efficiently, as they can take only n!Z| different values.

Definition 2.3 (Extension) For f: X[Z] - R be a
local-scope function. Its extension to the whole state
space is defined by f(x) := f(x[Z]). The extension
operator for Z is a linear operator with a matriz K|z €
RIXIXIXIZI with entries

1, ifu[Z] =v[Z];
(E[Z])UN[Z] :{ 0, othe[ru])ise. 7

For any local-scope function f with a corresponding
vector representation £ € RIXIZIIx1 Eiyf € RIXIX1 4
the vector representation of the extended function.

We assume that the reward function is the
sum of J local-scope functions with scopes Zj:

R(x,a) = ijl R;(x[Z;],a). In vector notation:
re = ijl Ejzari. We also assume that for each
variable i there exist neighborhood sets I'; such that
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the value of x;11[i] depends only on x;[I';] and the
action a; taken. Then we can write the transition
probabilities in a factored form

m

P(y | x,0) = [[ Py [i] | X[T], ) (3)

i=1

for each x,y € X, a € A, where each factor is a local-
scope function P; : X[[;] x A x X; — [0,1] (for all
i€{1,...,m}). In vector/matrix notation, for any
vector v € RXIX1 pay = @™ (P2v[l]), where @
denotes the Kronecker product. Finally, we assume
that the size of all local scopes are bounded by a small
constant my < m: |I';| < my for all i. As a conse-
quence, all probability factors can be represented with
tables having at most Ny := n™/ rows.

An FMDP is fully characterized by the tuple M =

(X A Z Y s AR s AT e { P X6 y) -

3. Related literature

The idea of representing a large MDP using a factored
model was first proposed by Koller and Parr (2000) but
similar ideas appear already in the works of Boutilier
et al. (1995); Boutilier et al. (2000).

3.1. Planning in known FMDPs

Decision trees (or equivalently, decision lists) provide a
way to represent the agent’s policy compactly. Koller
and Parr (2000) and Boutilier et al. (1995); Boutilier
et al. (2000) present algorithms to evaluate and im-
prove such policies, according to the policy iteration
scheme. Unfortunately, the size of the policies may
grow exponentially even with a decision tree represen-
tation (Boutilier et al., 2000; Liberatore, 2002).

The exact Bellman equations (1) can be transformed
to an equivalent linear program with N variables and
N-|A| constraints. In the approximate linear program-
ming approach, we approximate the value function as
a linear combination of K basis functions, resulting
in an approximate LP with K variables and N - |A|
constraints. Both the objective function and the con-
straints can be written in compact forms, exploiting
the local-scope property of the appearing functions.
Guestrin et al. (2002) show that the maximum of ex-
ponentially many local-scope functions can be com-
puted by rephrasing the task as a non-serial dynamic
programming task and eliminating variables one by
one. Therefore, the equations can be transformed to
an equivalent, more compact linear program. The
gain may be exponential, but this is not necessarily
so in all cases. Furthermore, solutions will not be
(near-)optimal because of the function approximation;

the best that can be proved is bounded error from the
optimum (where the bound depends on the quality of
basis functions used for approximation).

The approximate policy iteration algorithm (Koller &
Parr, 2000; Guestrin et al., 2002) also uses an approx-
imate LP reformulation, but it is based on the policy-
evaluation Bellman equations. Policy-evaluation equa-
tions are, however, linear and do not contain the maxi-
mum operator, so there is no need for a costly transfor-
mation step. On the other hand, the algorithm needs
an explicit decision tree representation of the policy.
Liberatore (2002) has shown that the size of the deci-
sion tree representation can grow exponentially. Fur-
thermore, the convergence properties of these algo-
rithms are unknown.

Factored value iteration (Szita & Lérincz, 2008a) also
approximates the value function as a linear combi-
nation of basis functions, but uses a variant of ap-
proximate value iteration: the projection operator is
modified to avoid divergence. FVI converges in a
polynomial number of steps, but the solution may be
sub-optimal. The error of the solution has bounded
distance from the optimal value function, where the
bound depends on the quality of function approxima-
tion. As an integral part of FOIM, FVI is described
in detail in Section 4.1.

3.2. Reinforcement Learning in FMDPs

In the reinforcement learning setting, the agent inter-
acts with an FMDP environment with unknown pa-
rameters. In the model-based approach, the agent has
to learn the structure of the FMDP (i.e., the depen-
dency sets I'; and the reward domains Z;), the transi-
tion probability factors P; and the reward factors R;.

Unknown transitions. Most approaches assume
that the structure of the FMDP and the reward func-
tions are known, so only transition probabilities need
to be learnt. Examples include the factored versions of
sample-efficient model-based RL algorithms: factored
E? (Kearns & Koller, 1999), factored R-max, or fac-
tored MBIE (Strehl, 2007). All the abovementioned
algorithms have polynomial sample complexity (in all
relevant task parameters), and require polynomially
many calls to an FMDP-planner. Note however, that
all of the mentioned approaches require access to a
planner that is able to produce e-optimal solutions! —
and to date, no algorithm exists that would accomplish

!The assumption of (Kearns & Koller, 1999) is slightly
less restrictive: they only require that the value of the
returned policy has value at least pV™* with some p < 1.
However, no planner is known that can achieve this and
cannot achieve near-optimality.



Optimistic Initialization and Greediness Lead to Polynomial Time Learning in Factored MDPs

this accuracy in polynomial time. (Guestrin et al.,
2002) also present an algorithm where exploration is
guided by the uncertainties of the linear programming
solution. While this approach does not require ac-
cess to a near-optimal planner, no formal performance
bounds are known.

Unknown rewards. Typically, it is asserted that the
rewards can be approximated from observations anal-
ogously to transition probabilities. However, if the re-
ward is composed of multiple factors (i.e., J > 1), then
we can only observe the sums of unknown quantities,
not the individual quantities themselves. To date, we
know of no efficient approximation method for learning
factored rewards.

Unknown structure. Few attempts exist that try
to obtain the structure of the FMDP automatically.
Strehl et al. (2007) present a method that learns the
structure of an FMDP in polynomial time (in all rele-
vant parameters).

4. Building blocks of FOIM

We describe the two main building blocks of our al-
gorithm, factored value iteration and optimistic initial
model.

4.1. Factored value iteration

We assume that all value functions are approximated

as the linear combination of K basis functions hj :
K

X = R: V(x) =) wphi(x).

Let H be the N x K matrix mapping feature weights
to state values, with entries Hx , = hi(x), and let
G be an arbitrary K x N linear mapping projecting
state values to feature weights. Let w € R¥ denote
the weight vector of the basis functions. It is known
(Szita & Lérincz, 2008a) that if || HG|| < 1, then the
approximate Bellman equations w* = Gmax,¢c 4 (r“—i—
~vP*H WX) have a unique fixed point solution w*, and
approximate value iteration (AVI)

Wil i= Gmaxgea (v + yP*Hwy) (4)

converges there for any starting vector wy.

Definition 4.1 Let the AVI-optimal value function be
defined as v = Hw*

As shown by Szita and Lérincz (2008a), the distance
of AVI-optimal value function from the true optimum
is bounded by the projection error of v*:

*

[v*—v |HGv* —v*|| (5)

oo—l'y

We make the further assumption that all the ba-
sis functions are local-scope ones: for each k €
{1,...,K}, hi : X[Ck] — R, with feature matrices
H,, € RXICIXK  The feature matrix H can be de-
composed as H = Zle Eic, Hg-

Definition 4.2 For any matrices H and G, let the
row-normalization of G be a matriz N(G) of the

same size as G, and having the entries [N(G)]kx =
Gk,x
MHGTe

Throughout the paper, we shall use the projection ma-

trix G = N (HT).

The AVI equation (4) can be considered as the prod-
uct of the K x N matrix G and an N X 1 vector
v; = max,ca(r® + yP*Hw,). Using the above as-
sumptions and notations, we can see that for any
x € X, the corresponding columm of G and the corre-
sponding element of v; can be computed in polynomial
time:

K
J— 1 T .
[G]k,x - W Z [Hk/]*,x[ck/] N
OO k=1
J K
o I;leaj( {Z x[za Z E[Fuck] (® Pz‘a) (hkwk,t)]
J=1 k=1 i€Cl

Factored value iteration draws N; < N states uni-
formly at random, and performs approximate value
iteration on this reduced state set.

Theorem 4.3 (Szita & Ldérincz, 2008a) Suppose
that G = N(HT) For any € > 0, § > 0, if the sample
size is Ni = O(Z’—;log ), then with probability at
least 1 — 6, factored wvalue iteration converges to a
weight vector w such that ||w —w>||_ < e. In terms
of the optimal value function,

X

v =vH . < ﬁ |HGv* —v*|| +e  (6)

oo

4.2. Optimistic initial model for flat MDPs

There are a number of sample-efficient learning algo-
rithms for MDPs, e.g., E3, Rmax, MBIE, and most
recently, OIM. The underlying principle of all these
methods is similar: they all maintain an approximate
MDP model of the environment. Wherever the un-
certainty of the model parameters is high, the models
are optimistic. This way, the agent is encouraged to
explore the unknown areas, reducing the uncertainty
of the models.

Here, we shall use and extend OIM to factored envi-
ronments. In the OIM algorithm, we introduce a hy-
pothetical “garden of Eden” (GOE) state x g, where
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the agent gets a very large reward Rg and remains
there indefinitely. The model is initialized with fake
experience, according to which the agent has experi-
enced an (z,a,zg) transition for all z € X and a € A.
According to this initial model, each state has value
Rg/(1 — 7), which is a major overestimation of the
true values. The model is continuously updated by
the collected experience of the agent, who always takes
the greedy optimal action with respect to its current
model. For well-explored (x,a) pairs, the optimism
of the model vanishes, thus encouraging the agent to
explore the less-known areas.

The reason for choosing OIM is twofold: (1) The op-
timism of the model is ensured at initialization time,
and after that, no extra work is needed to ensure the
optimism of the model or to encourage exploration.
(2) Results on several standard benchmark MDPs in-
dicate that OIM is superior to the other algorithms
mentioned.

5. Learning in FMDPs with an
Optimistic initial model

Similarly to other approaches, we will make the as-
sumptions that (a) the dependencies are known, and
(b) the reward function is known, only the transition
probabilities need to be learned.

5.1. Optimistic initial model for factored
MDPs

During the learning process, we will maintain approx-
imations of the model, in particular, of the transition
probability factors. We extend all state factors with
the hypothetical "garden of Eden” state xp. Seeing
the current state x and the action a taken, the tran-
sition model should give the probabilities of various
next states y. Specifically, the ith factor of the tran-
sition model should give the probabilities of various y;
values, given x[I';] and a. Initially, the agent has no
idea, so we let it start with an overly optimistic model:
we inject the fake experience to the model that taking
action a in x[I';] leads to a state with ¢th component
y; = xp. This optimistic model will encourage the
agent to explore action a whenever its state is consis-
tent with x[I';]. After many visits to (x[I';],a), the
weight of the initial fake experience will shrink, and
the optimistic belief of the agent (together with its
exploration-boosting effect) fades away. However, by
that time, the collected experience provides an accu-
rate approximation of the P;(y; | x[T';], a) values.

So, according to the initial model (based purely on

fake experience),

= |1, fy=(zE,...,TE);
P(y [ x,0) = { 0, otherwise,

~

R(x,a) = ¢ Rg, if ¢ components of x are zg. This
model is optimistic indeed, all non-GOE states have
value at least yRg /(1 —+). Note that it is not possible
to encode the Rp-rewards for the GOE states using
the original set of reward factors, so for all state factor
i, we add a new reward factor with local scope X;: R, :
X; x A — R, defining R}(z,a) = (];tE’ gtlfe;vvgicszi
With this modification, we are able to fully specify our
algorithm, as shown in the pseudocode below.

Algorithm 1 Factored optimistic initial model.

input:

M =IS{X¢}’1”;A; {Z;H AR Y AT P} x437)
{Hi}: {Ck}S > 056 > 0; R
initialization:

t:=0;

for all i, add GOE states: X; := X; U{zg}
for all 4, add GOE reward function r}

for all i, a, x[I';], y € X; \ {zg}, let
TransitionCount(x[[;], a,y) := 0;
TransitionCount(x[I;], a,zg) = 1;
VisitCount(x[L';], a) := 1;

repfat

[Pa] .__ TransitionCount; (x[I';],a,y)
i Ix[Tily = VisitCount; (x[I';],a) .

w; := Factored Valueltemtion(ﬁ/l\, {131-“}, €,0)
update TransitionCount and VisitCount corre-
sponding to transition (xi, as, X¢41).
t:=t+1

until interaction lasts

5.2. Analysis

Below we prove that FOIM gets as good as possi-
ble. What is “as good as possible”? We clearly
cannot expect better policies than the one the plan-
ner would output, were the parameters of the FMDP
known. And because of the polynomial-running-time
constraint on the planner, it will not be able to com-
pute a near-optimal solution. However, we can prove
that FOIM gets e-close to the solution of the planner
(which is AVI-near-optimal if the planner is FVI), ex-
cept for a polynomial number of mistakes during its
run.?

Theorem 5.1 Suppose that an agent is following

2We are using the term polynomial and polynomial in
all relevant quantities as a shorthand for polynomial in m,
Ny, |A|, Rmax, 1/(1 =), 1/e and 1/6.
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FOIM in an unknown FMDP, where all reward compo-
nents fall into the interval [0, Rimax|, there are m state
factors, and all probability- and reward-factors depend
on at most my factors. Let Ny = n"™f and let € > 0
and § > 0. If the initial values of FOIM satisfy

_ mRL, [ mNg Al
Rp = c- gy [10g (1,§)65] ;

then the number of timesteps when FOIM makes non-

AVI-near-optimal moves, i.c., when QO™ (x;, a;) <
Q> (x¢,a¢) — €, is bounded by
RZ m*N;|A 3 2 mNs|A
O (Moot og? log? L )

with probability at least 1 — 9.

Proof sketch. The proof uses standard techniques from
the literature of sample-efficient reinforcement learn-
ing. Most notably, our proof follows the structure of
Strehl (2007). There are two important differences
compared to previous approaches: (1) we may not as-
sume that the planner is able to output a near-optimal
solution, and (2) FOIM may make an unbounded num-
ber of model updates, so we cannot make use of the
standard argument that “we are encountering only
finitely many different models, each of them fails with
negligible probability, so the whole algorithm fails with
negligible probability”. Instead, a more careful anal-
ysis of the failure probability is needed. The rigorous
proof can be found in the extended version of our pa-
per (Szita & Ldérincz, 2009)

5.2.1. BOUNDEDNESS OF VALUE FUNCTIONS

According to our assumptions, all rewards fall be-
tween 0 and Rp.x. From this, it is easy to derive
an upper bound on the magnitude of the AVI-optimal
value function v*. The bound we get is [|[v*|_ <

%Vmax := Vj. For future reference, we note that

Vo = O({1257).

5.2.2. FROM VISIT COUNTS TO MODEL ACCURACY

The FOIM algorithm builds a transition probability
model by keeping track of visit counts to state-action
components (x[I';], a) and state-action-state transition
components (x[I';],a,y). First of all, we show that if a
state-action component is visited many times, then the
corresponding probability components P, ;(y|x[[;], a)
become accurate.

Let us fix a timestep ¢ € N, a probability factor i €
{1,...,m} and a state-action component (x[I';],a) €
X[I';] x A, and ¢ > 0. Let us denote the number
of visits to the component up to time ¢ by k:(x[I;], a).
Let us introduce the shorthands p; = P;(y|x[[';], a) and

Pri = Pri(y|x[Ti],a). By Theorem 3 of Strehl (2007)
(an application of the Hoeffding—Azuma inequality),

€2 +(x[I';],a
Pr( Y (il >e) < 2"exp (- tbilel) ()
yeX;

Unfortunately, the above inequality only speaks about
a single time step t, but we need to estimate the failure
probability for the whole run of the algorithm. By the
union bound, that is at most

liPr(

Let ko == © ((1_”;;,62 log mQNf‘A‘). For k < ko, the

> Ipi = Bueal > 0, ) - (8)

yeX;

(1—7)de
number of visits is too low, so in eq. (7), either €,
or the right-hand side is too big. We choose the for-
mer: we make the failure probability less than some

. &
constant ¢’ by setting €, = L\/E)’ where B(6') =

\/2(10g 4 4+ nlog2). For k > ko, the number of visits
is sufficiently large, so we can decrease either the accu-
racy or the failure probability (or even both). It turns
out that an approximation accuracy e, = e(1 —+)/m

is sufficient, so we decrease failure probability. Let us
201 _ 2 2 . . .

set ' := © iisjifflgl /log TELliVj)lil). With this choice

of § and kg, 8(8') < €(1 — v)/m whenever k > ko,

furthermore, 2™ exp ( — k;; < ¢, so we get that

2
ZPY( Z lpi = Puil > maX(ﬁ\%)’ 5(17;«/)))
k=1 yeX;
ko—1 oo
< Z 5+ Z 2"exp (— 2’“;22)
k=1 k=ko

<5+ ) <O (o).

lfexp( — 503

We can repeat this estimation for every state-action
components (x[I';],a). There are at most mNy|A| of
these, so the total failure probability is still less than
©O(). This means that

i — Dri < max )
Z lpi — Pt.il ( T ([T, @) m

yeX;

will hold for all (x[I';], a) pairs and all timesteps ¢t with
high probability. From now on, we will consider only
realizations where the failure event does not happen,
but bear in mind that all our statements that are based
on (9) are true only with 1 — ©(d) probability.

From (9),
the accuracy

we can easily get L; bounds on
of the full transition probabil-

ity function: >yex |[P(ylx,a) — ﬁt(y\x, a) <
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m 5’ e(1—
>y max(\/ktﬁ(i[r)i] = (1m7)) for all (

and for all ¢.

x,a) € X x A

5.2.3. THE KNOWN-STATE FMDP

A state-action component (x[I';], a) is called known at
timestep t if it has been visited at least kg times, i.e.,
if ki(x[T;],a) < ko. We define the known-component
FMDP M¥¢ as follows: (1) its state and action space,
rewards, and the decompositions of the transition
probabilities (i.e., the dependency sets T';) are identi-
cal to the correspondlng quantities of the true FMDP
M, and hence to the current approximate FMDP Mt,
(2 ) foralla € A,i € {1,...,m} and x[I'?] € X[I'?], for
any y; € X;, the corresponding transition probability
component is P (y;|x[[';], a) :=

{ ﬁt,i(yﬂx[n],a),
Pi(yix[l';], a),

if (x[['],a) € Ky;
if (x[I';],a) & K.

Note that FMDPs MX: and ]\//Tt are very close
to each other: unknown state-action com-
ponents  have identical transition  functions
by definition, while for known components,

Syex, [PE@XIT L) = BalixTi 0| < <.
Consequently, for all (x,a),

> [PE(ylx,a) -

yeXx

e(l—7)

Iz yx,a‘g
oy e,a)| < S

(10)

For an arbitrary policy , let v and ¥, be the value
functions (the fixed points of the approximate Bell-
man equations) of 7 in M¥t and J\//ft7 respectively. By
a suitable variant of the Simulation Lemma (see sup-
plementary material) that works with the approximate
Bellman equations, we get that whenever (10) holds,
Ve = all <€

5.2.4. THE FOIM MODEL IS OPTIMISTIC

First of all, note that FOIM is not_directly using the
empirical transition probabilities P ;, but it is more
optimistic; it gives some chance for getting to the gar-
den of Eden state zg: PtFOIM(yZ-|X[FZ-], a) =

Ees +1Pt Z(yt‘x[ } a)a if Yi 7& TE;

km 1 otherwise,

where we introduced the shorthand k; ; = k;(x[T;], a).
Now, we show that

Q*(x.a) — [R(x.0)+7 > PFOM(ylx, )V (y)]

yeX

<O(e(1=7)), (11)

or equivalently,

> (Ply | x,a) = PFO™(y | x,a)V*(y)

,6 e(1—v) ktl—f—l
Z T ) Vo + 1= Ve

Every term in the right-hand side is larger than
—e(1 — v)/m, provided that we can prove the

slightly stronger inequality — max(\/%, 6(177;7)) 2Vo+
t,i

AV > — (1_7) . First note that if the second term
domlnates the max expression, then the inequality is
automatically true, so we only have to deal with the
situation when the first term domlnates In this case,

. . . 1
the inequality takes the form — \/ﬁ - 2Vo + o Vi =

—W , which always holds because of our choice of
Rp.

We show by induction that V() (x) > V*(x) — O(e)
and QW (x,a) > Q*(x,a) — O(e) for all t = 0,1,2,...
and all (x,a) € X x A. The inequalities hold for ¢ = 0.
When moving from step ¢t to ¢t + 1,

= R(x,a)+ 7~ Z ﬁt(y | x, G)V(t)(Y)

QU (x,a)

yeX
> Rix,a)+1 3 By | %,0)(V(y) - 0(6))
yeX
> Q" (x,a) —7v0(e) = O((1 = 7)e)
for all (x,a), where we applied the induc-
tion assumption and eq. (11). Consequently,

max,ea QU (x,a) > max,ea Q% (x,a) — O(e) for
all x. Note that according to our assumptions, all
entries of H are nonnegative as well as the entries
of G = N(HT), so multiplication by rows of HG
is a monotonous operator, furthermore, all rows
sum to 1, yielding Z[HG]y’xmaxQ(tH)(x, a) >
X a€A
Z [HG]y,x(r;leaj(QX(x, a) — ©(e)), that is,

xeX
VD (x) > VX (x) — O(e).

5.2.5. PROXIMITY OF VALUE FUNCTIONS

The rest of the proof is standard, so we give here a
Very rough sketch only. We define a cutoff horizon

=02 2 log 6(1177)) and an escape event A which
happens at tlmestep t if the agent encounters an un-
known transition in the next H steps. We will separate
two cases depending on whether Pr(A) is smaller than

6(11% ) or not. If the probability of escape is low, then

we can show that QFO™ (x; a;) > Q* (x¢,az) — O(e).
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Otherwise, if Pr(A) is large, then an unknown state-
action component is found with significant probabil-
ity. However, this can happen only at most mN|A|kg
times (because all components become known after kg
visits), which is polynomial, so the second case can
happen only a polynomial number of times.

Finally, we remind that the statements are true only
with probability 1 — ©(d). To round off the proof, we
note that we are free to choose the constant in the
definition of Rp (as it is hidden in the ©(-) notation),
so we set it in a way that ©(e) and ©(d) become at
most € and J, respectively.

6. Discussion

FOIM is conceptually very simple: the exploration-
exploitation dilemma is resolved without any explicit
exploration, action selection is always greedy. The
model update and model solution are also at least
as simple as the alternatives found in the literature.
Further, FOIM has some favorable theoretical proper-
ties. FOIM is the first example to an RL algorithm
that has a polynomial per-step computational com-
plexity in FMDPs. To achieve this, we had to relax
the near-optimality of the FMDP planner. The par-
ticular planner we used, FVI, runs in polynomial time,
it does reach a bounded error, and the looseness of the
bound depends on the quality of basis functions. In al-
most all time steps, FOIM gets e-close to the FVI value
function with high probability (for any pre-specified ¢).
The number of timesteps when this does not happen
is polynomial. From a practical point of view, calling
an FMDP model-solver in each iteration could be pro-
hibitive. However, the model and the value function
usually change very little after a single model update,
so we may initialize F'VI with the previous value func-
tion, and a few iterations might be sufficient.

Acknowledgements

This work has been supported by the EC NEST Per-
ceptual Consciousness: Explication and Testing grant
under contract 043261. Opinions and errors in this
manuscript are the authors responsibility, they do not
necessarily reflect the opinions of the EC or other
project members. The first author has been partially
supported by the Fulbright Scholarship.

References

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995).
Exploiting structure in policy construction. Inter-
national Joint Conference on Artificial Intelligence

(pp. 1104-1111).

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000).
Stochastic dynamic programming with factored rep-
resentations. Artificial Intelligence, 121, 49-107.

Brafman, R. I., & Tennenholtz, M. (2001). R-MAX - a
general polynomial time algorithm for near-optimal
reinforcement learning. International Joint Confer-
ence on Artificial Intelligence (pp. 953-958).

Guestrin, C., Koller, D., Parr, R., & Venkataraman,
S. (2002). Efficient solution algorithms for factored
MDPs. Journal of Artificial Intelligence Research,
19, 399-468.

Kearns, M. J., & Koller, D. (1999). Efficient reinforce-
ment learning in factored MDPs. International Joint
Conference on Artificial Intelligence (pp. 740-747).

Kearns, M. J., & Singh, S. (1998). Near-optimal re-
inforcement learning in polynomial time. Interna-

tional Conference on Machine Learning (pp. 260—
268).

Koller, D., & Parr, R. (2000). Policy iteration for fac-
tored MDPs. Uncertainty in Artificial Intelligence
(pp- 326-334).

Liberatore, P. (2002). The size of MDP factored poli-
cies. AAAI Conference on Artificial Intelligence (pp.
267-272).

Strehl, A. L. (2007). Model-based reinforcement learn-
ing in factored-state MDPs. IEEFE International
Symposium on Approximate Dynamic Programming
and Reinforcement Learning (pp. 103-110).

Strehl, A. L., Diuk, C., & Littman, M. L. (2007). Ef-
ficient structure learning in factored-state MDPs.
AAAI Conference on Artificial Intelligence (pp.
645-650).

Strehl, A. L., & Littman, M. L. (2005). A theoretical
analysis of model-based interval estimation. Inter-
national Conference on Machine Learning (pp. 856—
863).

Szita, 1., & Lérincz, A. (2008a). Factored value itera-
tion. Acta Cybernetica, 18, 615-635.

Szita, 1., & Lérincz, A. (2008b). The many faces of
optimism: a unifying approach. International Con-
ference on Machine Learning (pp. 1048-1055).

Szita, 1., & Lérincz, A. (2009). Optimistic ini-
tialization and greediness lead to polynomial time
learning in factored MDPs - extended version.
http://arxiv.org/abs/0904.3352.



