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Abstract

AODE (Aggregating One-Dependence Esti-
mators) is considered one of the most inter-
esting representatives of the Bayesian classi-
fiers, taking into account not only the low er-
ror rate it provides but also its efficiency. Un-
til now, all the attributes in a dataset have
had to be nominal to build an AODE clas-
sifier or they have had to be previously dis-
cretized. In this paper, we propose two differ-
ent approaches in order to deal directly with
numeric attributes. One of them uses condi-
tional Gaussian networks to model a dataset
exclusively with numeric attributes; and the
other one keeps the superparent on each
model discrete and uses univariate Gaussians
to estimate the probabilities for the numeric
attributes and multinomial distributions for
the categorical ones, it also being able to
model hybrid datasets. Both of them obtain
competitive results compared to AODE, the
latter in particular being a very attractive al-
ternative to AODE in numeric datasets.

1. Introduction

Supervised classification is a very common task, not
only in machine learning applications but also in many
aspects of daily life, such as spam detection in mail,
recommendations for a specific product according to
previous purchases, determination of the folder for in-
coming e-mail, etc. Bayesian network classifiers (Lang-
ley et al., 1992) offer significant advantages over other
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approaches for classification tasks. They are able to
deal naturally with uncertainty, and estimate not only
the label assigned to every object but also the proba-
bility distribution over the different labels of the class
variable.

NB (Duda et al., 1973) is the simplest Bayesian classi-
fier and one of the most efficient inductive algorithms
for machine learning (Wu et al., 2007). Despite the
strong independence assumption between predictive
attributes given the class value, it provides a sur-
prisingly high level of accuracy, even compared to
other more sophisticated models (Domingos & Paz-
zani, 1996). However, in many real applications it is
not only necessary to be accurate in the classification
task, but also to produce a ranking as precise as possi-
ble with the probabilities of the different class values.

During the last few years, attention has focused on
developing NB variants in order to alleviate the inde-
pendence assumption between attributes, and so far
AODE has come out as the most attractive option
due to its capability for improving NB’s accuracy with
only a slight increase in time complexity (from O(n)
to O(n2)), where n is the number of attributes. An
extensive study comparing different semi-naive Bayes
techniques (Zheng & Webb, 2005) proves that AODE
is significantly better in terms of error reduction com-
pared to the rest of semi-naive techniques, with the
exception of Lazy Bayesian Rules (LBR) (Zheng &
Webb, 2000) and Super-Parent TAN (SP-TAN)(Keogh
& Pazzani, 1999), which obtain similar results but with
a higher time complexity.

Bayesian networks (BNs) in general assume all random
variables are multinomial. Most of the algorithms and
procedures designed for Bayesian classifiers are only
able to handle discrete variables, and when a numeric
variable is present, it must be discretized. In (Pérez
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et al., 2006), wrapper and filter approaches are de-
signed to adapt four well-known paradigms of discrete
classifiers for handling continuous variables (namely
NB, Tree-augmented NB, k-dependence Bayesian clas-
sifier and semi NB). So far, the only way of training
an AODE classifier with a dataset containing numeric
attributes has been to discretize this dataset before
building the model, which can be a handicap in many
situations as this process, by definition, entails an in-
herent loss of information.

Nevertheless, when numerical variables are considered,
the problem arises of how to model the probability dis-
tribution for a variable conditioned, not only by the
class (which is discrete), but also by another numeric
attribute. Gaussian networks (Geiger & Heckerman,
1994) have been proposed as a good alternative to the
direct discretization of continuous attributes. A Gaus-
sian network is similar to a BN, but it assumes all
attributes are sampled from a Gaussian density distri-
bution, instead of a multinomial distribution. Despite
this strong assumption, Gaussian distributions usually
provide reasonable approximations to many real-world
distributions.

In our study, two approaches have been developed to
handle continuous variables in AODE: GAODE and
HAODE, which both inherit the same structure as
AODE. In the first one, we make use of CGNs to
model the relationship between a numeric attribute
conditioned to a discrete class and another numeric
attribute; hence, it is restricted to numerical datasets.
In the second one, a discrete version of the superparent
attribute is considered in every model, so the previous
relationship can be estimated by a univariate Gaussian
distribution. The latter approach applies multinomi-
als for nominal children, being able to deal directly
with all kinds of datasets.

This paper is organized as follows: sections 2 and 3
present an overview of AODE and CGNs respectively,
which are the main basis of the new classifiers devel-
oped. Section 4 provides a detailed explanation of the
two algorithms designed. In section 5, we describe the
experimental setup and results. And finally, section
6 summarizes the main conclusions of our paper and
outlines the future work related with this study.

2. Averaged One-Dependence

Estimators

The AODE classifier (Webb et al., 2005) is consid-
ered an improvement on NB and a good alternative to
other attempts such as LBR and SP-TAN, as they of-
fer similar accuracy ratios, but AODE is significantly

more efficient at classification time compared to the
first one and at training time compared to the second.

Back in 1996, Sahami (Sahami, 1996) introduced the
notion of k-dependence estimators, through which the
probability of each attribute value is conditioned by
the class and, at most, k other attributes. In order
to maintain efficiency, AODE is restricted to exclu-
sively use 1-dependence estimators (ODEs). Specifi-
cally, AODE makes use of SPODEs, as every attribute
depends on the class and another shared attribute, des-
ignated as superparent.

Considering the MAP (maximum a posteriori) hypoth-
esis, the classification of a single example in a SPODE
classifier (and hence, a 1-dependence ODE) is defined
in equation 1:

cMAP = argmaxc∈ΩC
p(c, aj)

n
∏

i=1,i6=j

p(ai|c, aj) (1)

where C represents the class variable, ΩC the set
of class labels, Aj the superparent attribute and
{a1, a2, · · · , an} the instance to be classified.

The BN corresponding to an SPODE classifier is de-
picted in figure 1. In order to avoid selection between
models or, in other words, trying to take advantage
of all the created ones, AODE averages the n SPODE
classifiers with every different attribute as superpar-
ent, as is shown in equation 2:

argmaxc∈ΩC





n
∑

j=1,N(aj)>m

p(c, aj)

n
∏

i=1,i6=j

p(ai|c, aj)





(2)

The N(aj) > m condition is used as a threshold to
avoid predictions from attributes with insufficient sam-
ples. If there is not any value which exceeds this
threshold, the results are equivalent to NB.

At training time, AODE has a O(tn2) time complexity,
where t is the number of training examples; whereas

C Aj

A1 A2
. . . Aj−1 Aj+1 . . . An

Figure 1. Generalized structure of SPODE classifiers.
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the space complexity is O(k(nv)2), where v is the av-
erage number of values per attribute and k the number
of classes. The resulting time complexity at classifi-

cation time is O(kn2), while the space complexity is
O(k(nv)2).

3. Conditional Gaussian Networks

Continuous nodes in a BN can be modeled by a Gaus-
sian distribution function, also called Normal distri-
bution. Any Gaussian distribution may be defined by
two parameters, location and scale: the mean (“av-
erage”, µ) and variance (standard deviation squared,
σ2) respectively. Likewise, every continuous node can
have a Gaussian distribution for every configuration of
its discrete parents. If a continuous node has one or
more continuous nodes as parents, the mean can be
linearly dependent over the states of these continuous
parents. This is the basic idea underlying CGNs (Lau-
ritzen & Jensen, 2001). Note that discrete nodes are
not allowed to have continuous parents though.

In this case, a parametrical learning process is carried
out, where the estimation of the parameters is made
from data. These parameters are modeled by the de-
pendency relationships between variables, represented
by the structure of the corresponding classifier or BN.
A noteworthy property of CGNs is that they offer a
frame where exactitude in inference is guaranteed. An-
other advantage of Gaussian networks is that they only
need O(n2) parameters to model a complete graph.

In general, every node stores a local density function
(linear regression model) where the distribution for a
continuous variable X with discrete parents Y and
continuous parents Z = {Z1, . . . , Zs} (with s the num-
ber of continuous parents) is a one-dimensional Gaus-
sian distribution over the states of its parents (DeG-
root, 1970):

f(X|Y = y,Z = z; Θ) =

= N (x : µX(y) +

s
∑

j=1

bXZj
(y)(zj − µZj

(y)), σ2
X|Z(y))

(3)
where:
• µX(y) is the mean of X with the configuration

Y = y of its discrete parents.
• µZj

(y) is the mean of Zj with the configuration
Y = y of its discrete parents.
• σ2

X|Z(y) is the conditional variance of X over its
continuous parents Z and also according to the config-
uration Y = y of its discrete parents .
• bXZj

(y) is a regression term that individually mea-
sures the strength of the connection between X and

every continuous parent (it will be equal to 0 if there
is not an edge between them).

The local parameters are given by Θ =
(µX(y), bX(y), σ2

X|Z(y)), where bX(y) =

(bXZ1
(y), . . . , bXZs(y))

t is a column vector.

Then, if we focus on the bivariate case, where the X

variable is only conditioned by one continuous vari-
able Z and the discrete variables mentioned, the condi-
tional variance and the regression term would be easily
obtained as shown in equations 4 and 5 1:

σ2
X|Z(y) = σ2

X(y) − b2
XZ(y)σ2

Z(y) (4)

bXZ(y) =
σXZ(y)

σ2
Z(y)

(5)

Figure 2 shows an example of factorization of the den-
sity function in a SPODE structure, as in the model
depicted on the left. Following the former notation, in
this case bX(y) = bXZ(y) as there is just one continu-
ous variable.

Equation 3 has been obtained following the guidelines
in (Larrañaga et al., 1999) and (Neapolitan, 2003).
However, in the Hugin tool (Andersen et al., 1989),
the estimation of the Gaussian distribution of interest,
is carried out in a slightly different way. In the esti-
mation of the final mean for the CGN, Hugin does not
take into account the means of the continuous parents,
and the variance is constant for every state’s configura-
tion of the discrete parents. Hence, the corresponding
equation according to Hugin principles would be as
follows:

f(X|Y = y,Z = z; Θ) =

= N (x : µX(y) +
s

∑

j=1

bXZj
(y)zj , σ

2
X(y)) (6)

On the other hand, in (Pérez et al., 2006) the authors
consider equation 3 but the variance for the CGN is
constant for every state’s configuration of the discrete
parents.

1The estimate in equations 4 and 5 has been obtained
by working out the value of σ2

X|Z(y) and bXZ(y) when the

inverse of the precision matrix (W−1) and the covariance
matrix (Σ) from the Gaussian network are matched:

W
−1 =

„

σ2
Z(y) bXZ(y)σ2

Z(y)
bXZ(y)σ2

Z(y) σ2
X|Z(y) + b2

XZ(y)σ2
Z(y)

«

=

=

„

σ2
Z(y) σXZ(y)

σXZ(y) σ2
X(y)

«

= Σ
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Structure

C Aj

A1
. . . Ai

. . . An

Local densities

Θc = (CPT ) fC  P (C)

Θj = (µj(c), −, σj(c)) fAj |C=c  N (µj(c), σj(c))

Θ1 = (µ1(c), b1(c), σ1|j(c)) fA1|C=c,Aj=aj
 N (µ1(c)+

+ b1j(c)(aj − µj(c))), σ1|j(c))

Θi = (µi(c), bi(c), σi|j(c)) fAi|C=c,Aj=aj
 N (µi(c)+

+ bij(c)(aj − µj(c))), σi|j(c))

Θn = (µn(c), bn(c), σn|j(c)) fAn|C=c,Aj=aj
 N (µn(c)+

+ bnj(c)(aj − µj(c))), σn|j(c))

Factorization of the joint density function

f(c, aj , a1, . . . , ai, . . . , an) = f(c)f(aj |c)f(a1|c, aj) · · · f(ai|c, aj) · · · f(an|c, aj) = p(c)
1

√
2πσj(c)

e
− 1

2

 

aj−µj(c)

σj(c)

!2

1
√

2πσ1|j(c)
e
− 1

2

 

a1−(µ1(c)+b1j(aj−µj(c)))

σ1|j(c)

!2

· · ·
1

√
2πσi|j(c)

e
− 1

2

 

ai−(µi(c)+bij(aj−µj(c)))

σi|j(c)

!2

· · ·
1

√
2πσn|j(c)

e
− 1

2

 

an−(µn(c)+bnj(aj−µj(c)))

σn|j(c)

!2

Figure 2. Structure, local densities and result from the factorization of the joint density function in a network with the
SPODE structure where all the predictive attributes are continuous.

4. New proposals for the treatment of

continuous attributes with AODE

4.1. Gaussian AODE (GAODE) classifier

The underlying idea of this classifier consists in using
CGNs to deal with continuous attributes in AODE.
In fact, as the class variable is discrete, if we restrict
all the predictive attributes to be continuous, we can
make use of the Bayes rule to combine Bayesian and
Gaussian networks to encode the joint probability dis-
tributions among the domain variables, based on the
conditional independencies defined by AODE.

In this particular case of AODE, the density function
for every predictive attribute has to be estimated over
a node with a single discrete parent, that is, the class
C and another continuous parent, which is the super-
parent attribute in every model, Aj . The adaptation
of the conditional Gaussian (CG) density function in
equation 3 to this case is:

f(Ai = ai|C = c, Aj = aj) =

= N (ai : µi(c) + bij(c)(aj − µj(c)), σ
2
i|j(c)) (7)

The Bayesian structure for GAODE would remain the
same as AODE, and its MAP hypothesis is obtained
when we replace the multinomial probability distribu-
tions in equation 2 on page 2 with the correspond-
ing CG distribution function defined in equation 7.
Whereas the relationship between every predictive at-
tribute conditioned to the class and the corresponding
superparent is modeled by a CG distribution, the re-
lationship between every superparent and the class is
modeled by a univariate Gaussian distribution. Hence,

assuming all the predictive variables are continuous,
GAODE selects the class label which maximizes the
following summation:

argmaxc

 

n
X

j=1

N (aj : µj(c), σ
2
j (c))p(c)·

n
Y

i=1∧i6=j

N (ai : µi(c) + bij(c)(aj − µj(c)), σ
2
i|j(c))

!

(8)

As we can deduce from our definition of this classi-
fier with the application of CGNs, it is not possible
to define the corresponding probability function for a
discrete variable conditioned to a numeric attribute.
As in AODE, all the attributes play the superparent
role in one model, none of the children attributes are
allowed to be discrete and therefore, GAODE is only
defined to deal with datasets exclusively formed by
numeric attributes (plus, of course, the discrete class).

In this case, the space complexity at training and clas-

sification time becomes independent of the number of
values per attribute v, and equals O(kn2). Further-
more, as the number of necessary parameters is inde-
pendent of v, the probabilities estimated can be more
reliable compared to the multinomial version as they
are modeled from more samples, specially when the
size of the Conditional Probability Tables (CPTs) is
very large.

The time complexity undergo no variation as the pa-
rameters of the different Gaussian and CG distribu-
tions can be computed incrementally.
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4.2. Hybrid AODE (HAODE) classifier

As we have seen, the GAODE classifier defined is only
able to deal with datasets which exclusively contain
continuous attributes. In order to include the possibil-
ity of handling all kind of datasets, we decided to con-
sider every superparent as discrete in its correspond-
ing model, in principle, by means of any discretization
method. However, only the superparent will be dis-
cretized, for the rest of attributes their numeric value
will be considered. In this way, there is no need to
resort to CGNs, as all the parents in the network will
be discrete, but at the same time, we keep most of the
original precision from the numeric data.

This can also be seen as an even more simple way of
solving the problem of dealing with the continuous su-
perparents on each model in AODE, as there is no need
to use CGNs, but only univariate Gaussian distribu-
tions.

Hence, equation 2 is developed in the following way:

argmaxc

 

n
X

j=1,N(aj)>m

p(aj , c)
n
Y

i=1∧i6=j

N (ai : µi(c, aj), σ
2
i (c, aj)

!

(9)

This means the relationship between the superparent
and the class is modeled with a multinomial proba-
bility distribution, whereas the rest of relationships,
where every other attribute is conditioned to the class
and the superparent, are modeled by normal Gaussian
distributions, as long as they are continuous.

As we have pointed out above, this new classifier offers
the additional advantage of dealing with any kind of
dataset, including the ones that contain a mixture of
discrete and continuous variables. In those cases where
the child attribute is discrete, a multinomial distribu-
tion will be used, as in AODE. This feature represents
a significant advantage with respect to the use of CGNs
proposed in the previous section, as well as an evident
simplification in the calculation of parameters.

The models constructed are still 1-dependent, which
is why the CPTs required to store the different prob-
ability distributions, when necessary for HAODE, are
still three-dimensional, as in AODE. In this case, space
complexity will increase with the number of discrete
variables in the dataset, the top level being the same
as for AODE (O(k(nv)2)).

As in AODE, in both classifiers the model selection be-
tween the n SPODE models is unnecessary, thus avoid-
ing the computational cost required by this task and
hence maintaining AODE’s efficiency and minimizing
the variability in the error obtained.

5. Experimental Methodology and

Results

5.1. Datasets with only continuous attributes

In order to evaluate the performance of the two classi-
fiers developed, we have carried out experiments over
a total of 26 numeric datasets, downloaded from the
University of Waikato homepage (Wek08, 2008). We
gathered together all the datasets on this web page,
originally from the UCI repository (Asuncion & New-
man, 2007), which are aimed at classification problems
and exclusively contain numeric attributes according
to Weka (Witten & Frank, 2005). Table 1 displays
these datasets and their main characteristics.

Table 1. Main characteristics of the datasets: number of
predictive variables (n), number of classes (k) and number
of instances (I).

Id Datasets n k I Id Datasets n k I

1 balance-scale 4 3 625 14 mfeat-fourier 76 10 2000
2 breast-w 9 2 699 15 mfeat-karh 64 10 2000
3 diabetes 8 2 768 16 mfeat-morph 6 10 2000
4 ecoli 7 8 336 17 mfeat-zernike 47 10 2000
5 glass 9 7 214 18 optdigits 64 9 5620
6 hayes-roth 4 4 160 19 page-blocks 10 5 5473
7 heart-statlog 13 2 270 20 pendigits 16 9 10992
8 ionosphere 34 2 351 21 segment 19 7 2310
9 iris 4 3 150 22 sonar 60 2 208

10 kdd-JapanV 14 9 9961 23 spambase 57 2 4601
11 letter 16 26 20000 24 vehicle 18 4 946
12 liver-disorders 6 2 345 25 waveform-5000 40 3 5000
13 mfeat-factors 216 10 2000 26 wine 13 3 178

Table 2 shows the accuracy results obtained when us-
ing a 5x2 cross validation (cv) to evaluate the differ-
ent classifiers. Each value represents the arithmetical
mean from the 10 executions. The bullet next to cer-
tain outputs means the corresponding classifier on this
particular dataset either obtains the highest accuracy
or is not significantly worse than the classifier which
does. The results were compared using the 5x2 cv F
Test defined by (Alpaydin, 1999), which has lower type
I error and higher power than the 5x2 cv t-test. The
level of significance was fixed at 95% (α = 0.05). The
5x2 cv F Test is more conservative than the 5x2 cv
t-test, so a higher number of ties will be obtained with
the same level of significance.

Besides GAODE and HAODE, 3 other classifiers were
included in the comparison. From left to right: NB
classifier with Gaussian distributions to deal with con-
tinuous attributes (NB-G); and NB and AODE clas-
sifiers with the datasets previously discretized (NB
and AODE) using Fayyad and Irani’s MDL method
(Fayyad & Irani, 1993). The corresponding discretiza-
tion of the superparent attributes in HAODE was also
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Table 2. Accuracy results obtained for NB with Gaussians
(NB-G), NB, AODE (m = 1), GAODE and HAODE (m =
1) in continuous datasets.

Id NB-G NB AODE GAODE HAODE

1 •88, 864 77, 632 76, 992 •89, 088 •87, 68
2 •96, 0801 •97, 1102 •96, 6237 •95, 9662 •95, 0787
3 •74, 974 •74, 6875 •74, 5573 •74, 7917 •75, 9115
4 •83, 9881 •80, 7738 •81, 0119 •84, 5238 •84, 3452
5 49, 7196 •60 •60, 7477 •52, 8037 •60, 6542
6 •65, 375 •57, 5 •57, 5 •65, 625 •68, 5
7 •83, 4815 •81, 2593 •80, 8148 •83, 7778 •83, 037
8 •82, 963 •88, 8889 •90, 7123 •92, 0228 •91, 7379
9 •95, 0667 •93, 4667 •93, 3333 •97, 4667 •95, 6
10 85, 7444 84, 5758 90, 3885 91, 8442 •93, 9966
11 64, 06 73, 296 •86, 292 71, 235 •86, 138
12 •54, 2609 •58, 6087 •58, 6087 •57, 3333 •54, 2029
13 92, 29 92, 36 •96, 08 •95, 94 •96, 31
14 75, 7 75, 87 79, 25 •79, 39 •80, 69
15 93, 16 90, 48 •93, 83 •96, 15 •95, 92
16 •69, 32 68, 03 68, 9 •70, 79 •69, 95
17 72, 99 70, 21 74, 63 •77, 42 •78, 1
18 91, 1317 91, 7544 •96, 3167 93, 637 •96, 9181
19 •87, 7142 93, 1336 •96, 6307 •90, 9446 •91, 8144
20 85, 7041 87, 3362 •97, 1161 94, 2085 •97, 5182
21 80, 6753 90, 4416 •94, 1732 86, 6667 •95, 1602
22 67, 5 •75, 6731 •75, 5769 •71, 4423 •75, 9615
23 79, 5131 89, 8544 •92, 7277 79, 8566 77, 3658
24 43, 1678 58, 6052 67, 4704 •68, 5106 •72, 9787
25 80 79, 968 •84, 508 •4, 46 •84, 22
26 97, 4157 96, 9663 •96, 9663 •98, 427 97, 4157

Av 78, 4842 80, 3262 83, 1445 82, 4739 84, 1233

carried out using this method 2.

Table 3 shows, in the upper half of each cell, the com-
parison between every pair of algorithms, where each
entry w-t-l in row i and column j means that the algo-
rithm in row i wins in w datasets, ties in t (ties means
no statistical difference according to the 5x2 cv F Test)
and loses in l datasets, compared to the algorithm in
column j. The lower half of each cell contains the
results from the Wilcoxon tests (Demšar, 2006), with
α = 0.05, which compare every pair of algorithms with
the 26 datasets: whenever the test result represented
a significant improvement in favor of one of the tests
over the other, the name of the winner is shown, oth-
erwise NO is shown.

Table 3. Accuracy comparison between pairs of algorithms.

Ftest
NB-G NB AODE GAODE

Wilcoxon

NB
7-16-3
NO

AODE
11-14-1 14-12-0
AODE AODE

GAODE
12-14-0 12-12-2 5-16-5
GAODE GAODE NO

HAODE
13-13-0 13-12-1 6-19-1 6-18-2
HAODE HAODE HAODE HAODE

In terms of the arithmetical mean obtained, NB with
discretization might be thought to work better than
NB-G, but the number of datasets where NB-G is not

2Further experiments have been performed with differ-
ent discretization methods, and the results obtained follow
the same tendency.

significantly worse than the best method, or actually
is the best method, is 11, versus the 10 for NB. In
fact, the Wilcoxon test returned no significant differ-
ence between these two methods for these datasets.
We might expect the same reasoning to be extendable
to the comparison between AODE and GAODE. How-
ever, this is not entirely true as the difference between
means from the two algorithms is lower and the num-
ber of datasets where they are not significantly worse
than the other classifiers is exactly the same. In this
case, the Wilcoxon test also failed to show a significant
difference.

Analyzing these scores, we can confirm that both the
GAODE and HAODE classifiers are significantly bet-
ter than NB in any of its versions. As far as HAODE is
concerned, not only does it obtain the highest accuracy
mean, but also the highest number of datasets whose
accuracies are not significantly different from the best
provided by any of the other classifiers. Likewise, ac-
cording to the Wilcoxon test, it is significantly better
than AODE and GAODE for this group of numerical
datasets despite the considerable number of ties.

Furthermore, a Friedman test was performed for the
5 classifiers, yielding statistical difference. The poste-
rior Nemenyi tests (Demšar, 2006; Garćıa & Herrera,
2009) only rejected the hypothesis that two algorithms
are not significantly different in favor of GAODE and
HAODE over NB-G and NB, whereas AODE could not
be proved to be significantly better than any of them.

5.2. Hybrid Datasets

So far, we have seen the great capacity of HAODE
as an alternative to AODE for numeric datasets. As
opposed to GAODE, HAODE is able to deal with all
kinds of datasets, hence we have also carried out exper-
iments with 16 hybrid datasets included in a standard
group of 36 UCI repository datasets, whose main char-
acteristics are summarized in table 4. All the numeric
datasets in these group were included in the previous
set of experiments and for the discrete datasets both
classifiers are equal. That is the reason why in this
block we just focus on hybrid ones.

Table 5 shows the accuracy results with NB (estimat-
ing Gaussians or multinomials according to the at-
tribute type), AODE and HAODE using a 5x2cv on
the evaluation and applying the discretization method
previously mentioned in all the cases. The reason why
the order of the datasets was altered will be given be-
low.

Taking each w-t-l notation to mean that HAODE wins
in w datasets, ties in t and loses in l datasets compared
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Table 4. Characteristics of the hybrid datasets: number of
attributes (n), number of classes (k), number of instances
(I), number of discrete and continuous attributes (#D and
#C) and % of missing values (%M).

Id. Dataset n k I #D #C %M

1 anneal.ORIG 38 6 898 29 9 63, 32
2 anneal 38 6 898 29 9 0
3 autos 25 7 205 10 15 11, 06
4 colic.ORIG 27 2 368 20 7 18, 7
5 colic 27 2 368 15 7 22, 77
6 credit-a 15 2 690 9 6 5
7 credit-g 20 2 1000 13 7 0
8 heart-c 13 2 303 7 6 0, 17
9 heart-h 13 2 294 7 6 19

10 hepatitis 19 2 155 13 6 5, 39
11 hypothyroid 29 4 3772 22 7 5, 4
12 labor 16 2 57 8 8 0
13 lymph 18 4 148 15 3 0
14 sick 29 2 3772 22 7 5, 4
15 vowel 13 11 990 10 3 0
16 zoo 17 7 101 16 1 0

Table 5. Accuracy results obtained with NB, AODE and
HAODE classifiers in hybrid datasets.

Id NB AODE HAODE %M

16 •90, 495 •91, 6832 •94, 2574 0
13 •81, 0811 •80, 8108 •82, 5676 0
15 50, 6667 61, 0505 •78, 4444 0
7 •74, 16 •74, 44 •75, 32 0

12 •88, 4211 •87, 7193 •88, 0702 0
2 •95, 1448 •96, 7483 •92, 784 0
8 •83, 3003 •83, 3003 •83, 7624 0, 17
6 •86, 029 •86, 2609 78, 8696 5

10 •82, 3226 •83, 0968 •84, 3871 5, 39
11 •97, 7253 •98, 0011 95, 6416 5, 4
14 97, 0891 •97, 2057 94, 5652 5, 4
3 •58, 7317 •64, 1951 •57, 561 11, 06
4 •69, 6196 •69, 7826 60, 8696 18, 7
9 •83, 8776 •83, 9456 •83, 4014 19
5 •79, 3478 •81, 087 •78, 8043 22, 77
1 •93, 1403 •93, 9866 88, 7751 63, 32

Av •81, 947 •83, 3321 •82, 3801

to AODE at a 95% confidence level, the hybrid classi-
fier significantly improves on AODE in 1 of them, loses
in 5 others and draws in 10 of them (1-10-5). Even
though these are not the results we expected, consid-
ering only these hybrid datasets, it cannot be proved
that there exists a significant advantage of AODE over
HAODE, as Wilcoxon does not guarantee statistical
difference.

Looking for a plausible explanation of this fact, spe-
cially taking into account the good results obtained by
HAODE vs AODE in numerical datasets (table 2), we
analyzed the percentage of numerical variables with
respect to discrete ones in hybrid datasets, but no sig-
nificant pattern was found. Then, we turned to study
the impact of missing values and, in this case, a rele-
vant pattern can be obtained: the presence of missing

values punishes HAODE vs AODE. Thus, in table 5,
hybrid datasets have been ordered according to their
percentage of missing values. Above the line of the
2nd column in table 5 we have the ones with almost no

missing values. In fact, the Wilcoxon test shows sta-
tistical difference when only the datasets with missing
values are considered. Based on the apparent tendency
of HAODE to punish datasets with missing values, we
then preprocessed all the datasets with an unsuper-
vised filter to replace missing values with the modes
and means from the existing data in the corresponding
column. The same experiments were executed obtain-
ing a result of 2-12-2. For the first group of numeric
datasets the results are the same, as only breast-w has
a 0, 23% of missing values. These results lead us to
the conclusion that HAODE can be more sensitive to
missing values than the other classifiers included in the
comparison. It seems that the repeated use of different
estimators (average of n models) made from few data
when using Gaussian networks is more damaging than
when they are made from multinomials.

6. Conclusions and Future Work

In this paper, we have proposed two alternatives to
the AODE classifier in order to deal with continu-
ous attributes without performing a direct discretiza-
tion process over the whole data. The first classifier,
GAODE, applies CGNs to model the relationships be-
tween each predictive attribute and its parents, obtain-
ing competitive results compared to AODE. GAODE
implies a reduction in the space complexity and the
parameters can be computed a priori in a single pass
over the data, maintaining AODE’s time complexity as
well. This approach can also provide a more reliable
and robust computation of the necessary statistics as
the parameters are exclusively class-conditioned.

Furthermore, we have also presented a “hybrid” clas-
sifier, HAODE, which keeps the superparent attribute
discrete in every model. This approach offers the
clear advantage of dealing with any kind of dataset.
Nonetheless, even though it is in general competitive
when compared with AODE, it has shown a clear pref-
erence for datasets with continuous attributes and the
absence of missing data, where it is significantly bet-
ter than AODE. The proper treatment of these missing
values in HAODE is beyond the scope of this paper,
so we shall tackle it in future work.

Even though Gaussian networks often provide a rea-
sonable approximation to many real-world distribu-
tions, they assume variables are sampled from Gaus-
sian distributions. In the future, we are planning to
explore more general distribution probabilities, specif-
ically the application of Mixtures of Truncated Expo-
nentials (MTEs) (Moral et al., 2001)) to AODE, which
entail a more precise estimation, being also able to
model Bayesian, Gaussian and hybrid networks.
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Larrañaga, P., Etxeberria, R., Lozano, J., & Peña,
J. M. (1999). Optimization by learning and simula-

tion of Bayesian and Gaussian networks (Technical
Report). University of the Basque Country.

Lauritzen, S. L., & Jensen, F. (2001). Stable local com-
putation with conditional Gaussian distributions.
Statistics and Computing, 11, 191–203.

Moral, S., Rumı́, R., & Salmerón, A. (2001). Mixtures
of Truncated Exponentials in hybrid Bayesian net-
works. Proc. of the 6th European Conf. on Symbolic

and Quantitative Approaches to Reasoning with Un-

certainty (pp. 156–167).

Neapolitan, R. E. (2003). Learning Bayesian networks.
Prentice Hall.
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