Learning Spectral Graph Transformations for Link Prediction

Jérome Kunegis
Andreas Lommatzsch

KUNEGIS@QDAI-LAB.DE
ANDREASQDAI-LAB.DE

DAI-Labor, Technische Universitéit Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Abstract

We present a unified framework for learn-
ing link prediction and edge weight predic-
tion functions in large networks, based on
the transformation of a graph’s algebraic
spectrum. Our approach generalizes several
graph kernels and dimensionality reduction
methods and provides a method to estimate
their parameters efficiently. We show how
the parameters of these prediction functions
can be learned by reducing the problem to
a one-dimensional regression problem whose
runtime only depends on the method’s re-
duced rank and that can be inspected visu-
ally. We derive variants that apply to undi-
rected, weighted, unweighted, unipartite and
bipartite graphs. We evaluate our method
experimentally using examples from social
networks, collaborative filtering, trust net-
works, citation networks, authorship graphs
and hyperlink networks.

1. Introduction

In the area of graph mining, several machine learning
problems can be reduced to the problem link predic-
tion. These problems include the prediction of social
links, collaborative filtering and predicting trust.

Approaching the problem algebraically, we can con-
sider a graph’s adjacency matrix A, and look for a
function F'(A) returning a matrix of the same size
whose entries can be used for prediction. Our ap-
proach consists of computing a matrix decomposition
A = UDV7 and considering functions of the form
F(A) = UF(D)VT, where F(D) applies a function on
reals to each element of the graph spectrum D sepa-
rately. We show that a certain number of common link

Appearing in Proceedings of the 26" International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

and edge weight prediction algorithms can be mapped
to this form. As a result, the method we propose pro-
vides a mechanism for estimating any parameters of
such link prediction algorithms. Analogously, we also
consider a network’s Laplacian matrix as the basis for
link prediction.

Recently, several link prediction methods have been
studied: weighted sums of path counts between
nodes (Liben-Nowell & Kleinberg, 2003), the ma-
trix exponential (Wu & Chang, 2004), the von Neu-
mann kernel and diffusion processes (Kandola et al.,
2002), the commute time and resistance distance ker-
nels (Fouss et al., 2007), random forest kernels (Cheb-
otarev & Shamis, 1997) and the heat diffusion ker-
nel (Ito et al., 2005). Similarly, rank reduction of
the adjacency matrix has been proposed to implement
edge weight prediction (Sarwar et al., 2000). Our main
contribution is to generalize these link prediction func-
tions to a common form and to provide a way to reduce
the high-dimensional problem of learning the various
kernels’ parameters to a one-dimensional curve fitting
problem that can be solved efficiently. The runtime of
the method only depends on the chosen reduced rank,
and is independent of the original graph size.

We show that this generalization is possible under the
assumption that the chosen training and test set are
simultaneously diagonalizable, which we show to be
an assumption made by all link prediction methods
we studied. Our framework can be used to learn the
parameters of several graph prediction algorithms, in-
cluding the reduced rank for dimensionality reduction
methods. Since we reduce the parameter estimation
problem to a one-dimensional curve fitting problem
that can be plotted and inspected visually to compare
the different prediction algorithms, an informed choice
can be made about them without having to evaluate
each algorithm on a test set separately.

We begin by describing the method for undirected,
unipartite graphs, and then extend it to weighted
and bipartite graphs. As an experimental evaluation,
we then apply our method to several large network

Learning Spectral Graph Transformations for Link Prediction

datasets and show which link prediction algorithm per-
forms best for each.

2. Link Prediction in Undirected
Graphs

In this section, we review common link prediction
methods in undirected graphs that we generalize in
the next section.

We will use the term [link prediction in the general
sense referring to any problem defined on a graph in
which the position or weight of edges have to be pre-
dicted. The networks in question are usually large and
sparse, for instance social networks, bipartite rating
graphs, trust networks, citation graphs and hyperlink
networks. The link prediction problems we consider
can be divided into two classes: In unweighted graphs,
the task consists of predicting where edges will form
in the future. In weighted graphs, the task consists of
predicting the weight of such edges. While many net-
works are directed in practice, we restrict this study to
undirected graphs. Applying this method to directed
graphs can be achieved by ignoring the edge directions,
or by reducing them to bipartite graphs, mapping each
vertex to two new vertices containing the inbound and
outbound edges respectively.

Let A € {0,1}™*™ be the adjacency matrix of a sim-
ple, undirected, unweighted and connected graph on n
vertices, and F'(A) a function that maps A to a matrix
of the same dimension.

The following subsections describe link prediction
functions F(A) that result in matrices of the same
dimension as A and whose entries can be used for link
prediction. Most of these methods result in a positive-
semidefinite matrix, and can be qualified as graph ker-
nels. The letter o will be used to denote parameters
of these functions.

2.1. Functions of the Adjacency Matrix

Let D € R™"™ be the diagonal degree matrix with
D;; =Y ;Aj;. Then A = D7"/2AD~"/% is the nor-
malized adjacency matrix. Transformations of the ad-
jacency matrices A and A give rise to the exponential
and von Neumann graph kernels (Kondor & Lafferty,
2002; Tto et al., 2005).

Frxp(A) = exp(aA) (1)
Fexp(A) = exp(aA) (2)
Fyeu(A) = (I-aA)™! (3)
Fypu(A) = (I —aA)™? (4)

« is a positive parameter. Additionally, the von Neu-
mann kernels require o < 1.

2.2. Laplacian Kernels

L = D—A is the combinatorial Laplacian of the graph,
and £L = I - A = D"Y/2LD~!/2 is the normalized
Laplacian. The Laplacian matrices are singular and
positive-semidefinite. Their Moore-Penrose pseudoin-
verse is called the commute time or resistance distance
kernel (Fouss et al., 2007). The combinatorial Lapla-
cian matrix is also known as the Kirchhoff matrix, due
to its connection to electrical resistance networks.

Fcom(L) = L* (5)
Feom(£) = LT (6)

By regularization, we arrive at the regularized Lapla-
cian kernels (Smola & Kondor, 2003):

(I+aL)™* (7)
(I+aL)™! (8)

Foomr(L) =
Fecomr(L) =

As a special case, the non-normalized regularized
Laplacian kernel is called the random forest kernel for
a =1 (Chebotarev & Shamis, 1997). The normalized
regularized Laplacian is equivalent to the normalized
von Neumann kernel by noting that (1 + af)™! =
1+a)(—aA)~t

(Ito et al., 2005) define the heat diffusion kernel as

Fupar(L) =
Fupar(£) =

exp(—al) (9)
exp(—al) (10)

The normalized heat diffusion kernel is equivalent
to the normalized exponential kernel: exp(—afl) =
e~ “exp(aA) (Smola & Kondor, 2003).

2.3. Rank Reduction

Using the eigenvalue decomposition A = UAU7T, a
rank-k approximation of A, L, A and L is given by a
truncation leaving only k eigenvalues and eigenvectors
in A and U.

Fyy(A) = UmAwpUj, (11)

For A and A, the biggest eigenvalues are used while
the smallest eigenvalues are used for the Laplacian ma-
trices. F)(A) can be used for prediction itself, or
serve as the basis for any of the graph kernels (Sarwar
et al., 2000). In practice, only rank-reduced versions
of graph kernels can be computed for large networks.

Learning Spectral Graph Transformations for Link Prediction

2.4. Path Counting

Another way of predicting links consists of computing
the proximity between nodes, measured by the number
and length of paths between them.

One can exploit the fact that powers A™ of the adja-
cency matrix of an unweighted graph contain the num-
ber of paths of length n connecting all node pairs. On
the basis that nodes connected by many paths should
be considered nearer to each other than nodes con-
nected by few paths, we compute a weighted mean of
powers of A as a link prediction function.

> Al (12)

The result is a matrix polynomial of degree d. The
coefficients «; should be decreasing to reflect the as-
sumption that links are more likely to arise between
nodes that are connected by short paths than nodes
connected by long paths. Thus, such a function takes
both path lengths and path counts into account.

We note that the exponential and von Neumann ker-
nels can be expressed as infinite series of matrix pow-
ers:

exp(aA) = C;—'Ai (13)
=0

(I-aA)"t = io/’Ai (14)
1=0

We discuss polynomials of weighted graphs later.

3. Generalization

We now describe a formalism that generalizes the link
prediction methods of the previous section and in-
troduce an efficient algorithm to choose the optimal
method and to estimate any parameter a.

We note that all these link prediction methods can
be written as F = F(X), where X is one of
{A, AL, L} and F is either a matrix polynomial, ma-
trix (pseudo)inversion, the matrix exponential or a
function derived piecewise linearly from one of these.
Such functions F' have the property that for a sym-
metric matrix A = UAUT, they can be written as
F(A) = UF(A)UT, where F(A) applies the corre-
sponding function on reals to each eigenvalue sepa-
rately. In other words, these link prediction methods
result in prediction matrices that are simultaneously
diagonalizable with the known adjacency matrix. We
will call such functions spectral transformations and
write F' € S.

In the following, we study the problem of finding suit-
able functions F'.

3.1. Finding F

Given a graph G, we want to find a spectral transfor-
mation F' that performs well at link prediction for this
particular graph. To that end, we divide the edge set
of G into a training set and a test set, and then look
for an F' that maps the training set to the test set with
minimal error.

Formally, let A and B be the adjacency matrices of the
training and test set respectively. We will call A the
source matrix and B the target matrix. The solution
to the following optimization problem gives the opti-
mal spectral transformation for the task of predicting
the edges in the test set.

Problem 1 Let A and B be two adjacency matrices
over the same vertex set. A spectral transformation
that maps A to B with minimal error is given by the
solution to

min || F(A) - B |r
s.t. FeS

where || - || denotes the Frobenius norm.

The Frobenius norm corresponds to the root mean
squared error (RMSE) of the mapping from A to B.
While the RMSE is common in link prediction prob-
lems, other error measures exist, but give more com-
plex solutions to our problem. We will thus restrict
ourselves to the Frobenius norm.

Problem 1 can be solved by computing the eigenvalue
decomposition A = UAU7 and using the fact that
the Frobenius norm is invariant under multiplication
by an orthogonal matrix.

| F(A)—B ||r
= | UF(AUT -B|r
| F(A) - U™BU ||p (15)

The Frobenius norm in Expression (15) can be decom-
posed into the sum of squares of off-diagonal entries
of F(A) — UTBU, which is independent of F, and
into the sum of squares of its diagonal entries. This
leads to the following least-squares problem equivalent
to Problem 1:

Problem 2 If UAUT” is the eigenvalue decomposi-
tion of A, then the solution to Problem 1 is given by
F(A)y; = f(Ay), where f(x) is the solution to the fol-

lowing minimization problem.

mfin > (f(Ay) — ULBU,;)?

Learning Spectral Graph Transformations for Link Prediction

Table 1. Link prediction functions and their corresponding real functions. For functions that apply to the adjacency
matrix, we show their odd component used for rectangular matrices, as described in Section 5.

Link prediction function \ Real function

\ Odd component ‘

Fp(A) =3, 0, Al f(z) = Sg i’
Fexp(A) = exp(aA)
Fyxeu(A) = (I—aA)7 !

f(x) = Zi_g o
f(z) = sinh(ax)
fl@) = =35

Feom(L) =L*

Fypar(L) = exp(—al)

f
f
FCOMR(L) = (I + aL)_l f
f
f

Fuy(A) = U Aw U,

This problem is a one-dimensional least-squares curve
fitting problem of size n. Since each function F(A)
corresponds to a function f(x), we can choose a link
prediction function F' and learn its parameters by in-
specting the corresponding curve fitting problem. This
method also allows us to check which graph kernel is
best suited to the underlying link prediction problem.

3.2. Curve Fitting

We have thus reduced the general matrix regression
problem to a one-dimension least-squares curve fitting
problem of size k. In analogy to the various graph
kernels and rank reduction methods of the previous
section we propose the following curve fitting models
to find suitable functions f.

For each link prediction method, we take its matrix
function F(A) and derive the corresponding function
f(z) on reals. For each function on reals, we addition-
ally insert a multiplicative parameter 3 > 0 that is
to be learned along with the other parameters. The
resulting functions are summarized in Table 1.

The normalized Laplacian can be derived from the nor-
malized adjacency matrix by the spectral transforma-
tion £L = F(A) = I — A corresponding to the real
function f(z) = 1—x. Thus, the normalized commute
time kernel reduces to the normalized von Neumann
kernel and the heat diffusion kernel reduces to the nor-
malized exponential kernel. We will therefore restrict
the set of source matrices to {A, A, L}.

Since both A and UTBU are available after having
computed the eigenvalue decomposition of A, the main
computational part of our method lies in the eigen-
value decomposition of A, which is performed for the
usual application of the link prediction methods. Ad-
ditionally, the computation of UTBU takes runtime
O(kr) where r is the number of nonzeroes and the
curve fitting runtime is only dependent on k.

As the target matrix, we may also use A + B instead

of B in the assumption that a link prediction algo-
rithm should return high values for known edges. With
this modification, we compute U”(A + B)U instead
of U'BU.

Finally, the problem of scaling has to be addressed.
Since we only train F' on a source matrix A but in-
tend to apply the learned function to A + B, the func-
tion F would be applied to spectra of different extent.
Therefore, we normalize the spectra we encounter by
dividing all eigenvalues by the largest eigenvalue, re-
placing A by AfllA.

3.3. Illustrative Examples

To illustrate our method, we show four examples of
finding link prediction functions in unweighted graphs.
We use the datasets described in Table 2, with the ad-
jacency matrix, the normalized adjacency matrix and
the Laplacian as source matrices.

4. Weighted Graphs

In this section, we show how our method can be ex-
tended to graphs with weighted edges, including the
case of edges with negative weights.

If edge weights are all positive, the method in the pre-
vious sections applies trivially. In some networks how-
ever, edges have positive as well as negative weights.
Such signed graphs arise for instance in social networks
where negative edges denotes enmity instead of friend-
ship, or in bipartite rating graphs where the two vertex
classes represent users and items, and edges represent
ratings that admit positive and negative values.

The link prediction functions based on the adjacency
matrix can be interpreted as weighted sums of pow-
ers of the adjacency matrix which denote path counts
in the network. If some edges have negative weight,
the total weight of a path is counted as the product of
the edges’ weights. This corresponds to the assump-
tion of multiplicative transitivity, which can be sum-

Learning Spectral Graph Transformations for Link Prediction

(a) advogato(A — B) (b) dblp(A — A + B)

(c) wt10g(A — B)

0 % o w0 20 0

(d) www(L — B)

Figure 1. Graphical representation of the one-dimensional curve fitting problem on a selection of datasets from Table 2.
The plots show the diagonal elements of A (the eigenvalues of the source matrix) on the x-axis and the diagonal elements
of UTBU or UT(A + B)U on the y-axis. The source and target matrices are shown in parentheses. The result of least-
squares curve fitting using several functions f are shown as follows: red: polynomial of degree 4; red dashed: nonnegative
polynomial of degree 7; green: the rational function 1/(1 — ax) in (d) and az/(1 —o?z?) in (b); magenta: the exponential
function in (a) and (c), the hyperbolic sine in (b) and the inverse exponential in (d); black: the linear map ax.

i
o

5
2 o o 70 W % 0005 01 0075 o0z

(a) slashdot(A — A + B) (b) epinions(L — B)

Figure 2. Curve fitting in networks with signed edge
weights. The following functions are estimated: red: poly-
nomial; red dashed: nonnegative polynomial; magenta: ex-
ponential function; cyan: rank reduction.

marized as the enemy of my enemy is my friend (Hage
& Harary, 1983).

The Laplacian graph kernels can also be applied to
signed graphs by using the absolute diagonal degree
matrix Dy; = >, |Ay;| (Hou, 2005). As the un-
signed Laplacian, the signed Laplacian is positive-
semidefinite. Unlike the unsigned Laplacian, the
signed Laplacian can be positive-definite. This is the
case when each connected component of the graph
contains a cycle with an odd number of negatively
weighted edges.

We also use this alternative definition of D to define
the signed normalized adjacency matrix, giving again
L =1— A This definition of the signed normal-
ized adjacency matrix is also justified by interpreting
each edge as a vote and giving each node’s votes equal
weight. Figure 2 shows examples of curve fitting for
networks with negative edge weights.

5. Bipartite Graphs

In this section, we extend the method of the previous
sections to bipartite networks, and show that in such
networks we can restrict our curve fitting problem to
odd functions.

The adjacency matrix A of a bipartite graph can be
written in block form as A = [0R; R” 0] where R is
rectangular. Observing that even powers of A can be
written as A?" = [(RRT)"0;0 (RTR)"], we see that
they result in predictions of zero for edges connect-
ing the two vertex classes. Therefore, we only need
to consider odd powers, having the form A2"T! =
[0 (RRT)"R; RT(RRT)"0]. It follows that to predict
(bipartite) edges in a bipartite graph, we have to com-
pute F(RRT)R. for a matrix function F. Using the
singular value decomposition R = UAVT this can be
written as
FRRMR F(UAVTVAUT)UAVT
UF(A?)AVT (16)

where F(A%)A corresponds to an odd function in A.

We can therefore restrict the least-squares regression
problem to odd functions, as summarized in Table 1.
The exponential function is replaced by the hyperbolic
sine and 1/(1 — az) is replaced by az/(1 — az?).

The use of odd functions can also be justified by noting
that if {A;} is the set of (positive) singular values of R,
then A has the eigenvalues {+)\;}. By symmetry, the
function f(A) has to fulfill f(—\) = —f(A) and thus be
odd. Yet another interpretation is given by the obser-
vation that in bipartite graphs, paths connecting two
vertices in different partitions are necessarily of odd
length, and therefore the coefficients of even powers of
A can be ignored in any matrix polynomial used for

Learning Spectral Graph Transformations for Link Prediction

°
co—o0— oo

/

(a) jester(A — A + B)

(b) movielens(A — B)

£

(c) jester(A — B)

o1 05

(d) advogato(A — A + B)

Figure 3. Fitting of curves in several bipartite datasets. The curves fitted are: red: odd polynomial; red dashed: nonneg-
ative odd polynomial; magenta: the hyperbolic sine; green: the rational function az/(1 — o®z?); cyan: rank reduction.

link prediction.

The method for bipartite graphs cannot be used with
the Laplacian L, because the Laplacian has nonzero
diagonal entries, and thus its eigenvalues do not cor-
respond to the singular values of R.

Figure 3 illustrates the case of bipartite networks us-
ing several example datasets from Table 2. We make
the following observations. The plots (b) and (c) com-
puted by using only B as the target matrix (without
A) map many eigenvalues to negative values, and the
best curve fitting is attained by a polynomial with neg-
ative coefficients. This suggests that the search for
link prediction methods should not be reduced to ker-
nels, these being positive-semidefinite. Plot (b) can
be interpreted as suggesting to ignore all eigenvalues
smaller than a certain threshold, justifying the use of
reduction to a smaller rank than would be possible
computationally. The advogato dataset in (d) provides
an example that justifies the von Neumann kernel.

6. Experimental Evaluation

We investigate eight network datasets and study two
separate link prediction tasks: for unweighted net-
works, we study the task of link prediction and for
weighted graphs, the task of predicting the edge
weights. The network datasets we inspected are sum-
marized in Table 2. DBLP! is a citation graph.
Hep-th is the citation graph of Arxiv’s high energy
physics/theory section (Newman, 2001). Advogato is
a trust network with three levels of trust (Stewart,
2005). Slashdot is a social network where users tag
each other as friends and foes (Kunegis et al., 2009).
Epinions is an opinion site where users can agree or
disagree with each other (Guha et al., 2004). WWW
and WT10G are hyperlink network datasets extracted
from a subset of the World Wide Web (Albert et al.,
1999; Bailey et al., 2003). Eowiki is the bipartite user-

"http://dblp.uni-trier.de/

article authorship graph of the Esperanto Wikipedia?.
Jester is a dataset of rated jokes (Goldberg et al.,
2001). MovieLens is a dataset of movie ratings?.

6.1. Setup

For each network dataset, we split the set of edges
into a test and a training set, with the test set con-
taining a third of all edges. For the bipartite datasets
where edge weights correspond to ratings (MovieLens,
Jester), we then subtract the mean of all ratings in the
training set from the edge weights in the training set.
We then reduce the training set of edges to its biggest
connected component, and then split the resulting set
into source and target adjacency matrices A and B,
where B contains one third of all edges in the reduced
training set. We then use our method to find functions
F that minimize the Frobenius norm of the difference
between F'(A) and B. For the rank-reduced decompo-
sition of A, we use a reduced rank k dependent on the
size of the dataset, as given in Table 2. We apply the
curve fitting methods described in the previous sec-
tions to learn several link prediction kernels for each
network. We then use these link prediction functions
to compute predictions for the edges in the test set.

As a measure of performance for the link prediction
methods, we choose to compute the Pearson correla-
tion coefficient between the predicted and known rat-
ings in the test set. We choose the correlation because
it represents a trade-off between the root mean squared
error that we minimize and more dataset-dependent
measures such as precision and recall, which cannot be
applied to all datasets. For the unweighted datasets,
we add to the test set a set of non-edges of equal size
with weight zero. The results of our evaluation are
shown in Table 3.

http://eo.wikipedia.org/
3http://www.grouplens.org/node/73

Learning Spectral Graph Transformations for Link Prediction

Table 2. Summary of network datasets we used in our experiments and examples.

’ Name H Vertices \ Edges \ Weights \ k \ Description
dblp 12,563 49,779 {1} | 126 | Citation graph
hep-th 27,766 352,807 {1} | 54 | Citation graph
advogato 7,385 57,627 | {0.6,0.8,1.0} | 192 | Trust network
slashdot 71,523 488,440 {=1,41} | 24 | Friend/foe network
epinions 131,828 841,372 {-=1,+1} | 14 | Trust/distrust network
WWW 325,729 | 1,497,135 {1} | 49 | Hyperlink graph
wt10g 1,601,787 | 8,063,026 {1} | 49 | Hyperlink graph
eowiki 2,827+168,320 803,383 {1} | 26 | Authorship graph
jester 24,938+100 616,912 [-10,+10] | 100 | Joke ratings
movielens 6,040+3,706 | 1,000,209 {1,2,3,4,5} | 202 | Movie ratings

6.2. Observations

We observe that the biggest accuracy is generally
achieved by source matrices having a more “spread”
spectrum: the singular values are further apart rela-
tively, making the curve fitting algorithms more accu-
rate. In some cases however, the curves fit well to a
tight spectrum. This is the case for the normalized
adjacency matrix of the Advogato dataset.

We also observe that there is not a single graph ker-
nel that performs best for all datasets. Comparing the
performance of the various link prediction methods to
the curve fitting precision in Figures 1, 2 and 3 we ob-
serve that the best link prediction algorithms are those
that provide a well-fitting curve. We interpret this as
an indication that inspecting the curve fitting plots vi-
sually can provide useful insight into each dataset by
observing what model for f fits best.

The analysis of bipartite networks, in particular the
MovieLens rating dataset, suggests that the matrix
hyperbolic sine may be used for collaborative filtering.

7. Related Work

Graph kernels and other link prediction methods are
usually defined with parameters, and the choice of any
parameter is left to the implementation.

Simultaneously diagonalizable matrices have been con-
sidered in the context of joint diagonalization, where
given a set of matrices {A;}, a matrix U is searched
that makes the matrices {UA; U7} as diagonal as pos-
sible according to a given matrix norm. See for in-
stance (Wax & Sheinvald, 1997). In that context,
the task consists of finding an orthogonal matrix U,
whereas our approach consists of optimizing the fit by
varying the spectrum.

8. Conclusion and Discussion

We have presented a method for learning link and rat-
ing prediction functions in large networks. We have
shown that a certain number of graph kernels and
other link prediction algorithms can be interpreted as
the spectral transformation of the underlying graph’s
adjacency or Laplacian matrix. Restricting our search
of accurate link prediction methods to kernels of this
form we derived a minimization problem that can be
reduced to a one-dimensional least-squares regression
problem. This formalism makes it possible to estimate
the parameters of the various graph kernels and allows
one to compare graph kernels visually using curve fit-
ting.

Although the normalized adjacency matrices have
eigenvalues all less than one and very near to each
other and one could expect curve fitting to be less
precise, the prediction functions learned from the nor-
malized adjacency matrix perform well in many cases,
and even very well in a few cases. By applying the
exponential graph kernel, we arrived at the matrix hy-
perbolic sine, which our results suggest performs well
for collaborative rating prediction.

By experimenting with various types of network
datasets, we found that the various link prediction
methods in current use are justified in specific cases.
We hope that the method presented here can help
make an informed choice as to the right method.

For future work, we intend to use other matrix decom-
positions, with the constraint that the decomposition
include a diagonal matrix that can be transformed. By
using another norm than the Frobenius norm, we may
extend the method to cases where other norms could
be more accurate measures of the prediction error. Fi-
nally, other graph kernels and link prediction methods
not covered in this paper could be inspected as we did
here with the more common ones.

Learning Spectral Graph Transformations for Link Prediction

Table 3. The results of our experimental evaluation. For each dataset, we show the source and target matrices, the curve

fitting model and the link prediction method that perform best.

’ Dataset H Best transformation \ Best fitting curve \ Best graph kernel \ Correlation
dblp L—-B Polynomial Sum of powers 0.563
hep-th A—B Exponential Heat diffusion 0.453
advogato || L — B Rational Commute time 0.554
slashdot A—-B Nonnegative odd polynomial | Sum of powers 0.263
epinions A—-A+B Nonnegative odd polynomial | Sum of powers 0.354
WWW L—-A+B Polynomial Sum of powers 0.739
wt10g A—-B Linear function Rank reduction 0.293
eowiki A—A+B Nonnegative odd polynomial | Sum of powers 0.482
jester A— A 0Odd polynomial Sum of powers 0.528
movielens | A — A+ B Hyperbolic sine Hyperbolic sine 0.549

References Kandola, J., Shawe-taylor, J., & Cristianini, N. (2002).

Albert, R., Jeong, H., & Barabdsi, A.-L. (1999). The
diameter of the World Wide Web. Nature, 401, 130.

Bailey, P., Craswell, N., & Hawking, D. (2003). En-
gineering a multi-purpose test collection for Web
retrieval experiments. Information Processing and
Management, 39, 853-871.

Chebotarev, P., & Shamis, E. (1997). The matrix-
forest theorem and measuring relations in small so-
cial groups. Automation and Remote Control, 58,
1505-1514.

Fouss, F., Pirotte, A., Renders, J.-M., & Saerens, M.
(2007). Random-walk computation of similarities
between nodes of a graph with application to col-
laborative recommendation. Trans. on Knowledge
and Data Engineering, 19, 355-369.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C.
(2001). Eigentaste: A constant time collaborative
filtering algorithm. Information Retrieval, 4, 133—
151.

Guha, R., Kumar, R., Raghavan, P., & Tomkins, A.
(2004). Propagation of trust and distrust. Proc. Int.
Conf. on World Wide Web (pp. 403-412).

Hage, P., & Harary, F. (1983). Structural models in
anthropology. Cambridge University Press.

Hou, Y. (2005). Bounds for the least Laplacian eigen-
value of a signed graph. Acta Mathematica Sinica,
21, 955-960.

Ito, T., Shimbo, M., Kudo, T., & Matsumoto, Y.
(2005). Application of kernels to link analysis. Proc.
Int. Conf. on Knowledge Discovery in Data Mining
(pp. 586-592).

Learning semantic similarity. Advances in Neural
Information Processing Systems (pp. 657-664).

Kondor, R., & Lafferty, J. (2002). Diffusion kernels
on graphs and other discrete structures. Proc. Int.
Conf. on Machine Learning (pp. 315-322).

Kunegis, J., Lommatzsch, A., & Bauckhage, C. (2009).
The Slashdot Zoo: Mining a social network with
negative edges. Proc. Int. Conf. on World Wide
Web (pp. 741-750).

Liben-Nowell, D., & Kleinberg, J. (2003). The link
prediction problem for social networks. Proc. Int.
Conf. on Information and Knowledge Management
(pp. 556-559).

Newman, M. E. J. (2001). The structure of scientific
collaboration networks. Proc. National Academy of
Sciences, 98, 404-409.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.
(2000). Application of dimensionality reduction in
recommender systems—a case study. Proc. ACM
WebKDD Workshop.

Smola, A., & Kondor, R. (2003). Kernels and regular-
ization on graphs. Proc. Conf. on Learning Theory
and Kernel Machines (pp. 144-158).

Stewart, D. (2005). Social status in an open-source
community. American Sociological Review, 70, 823—
842.

Wax, M., & Sheinvald, J. (1997). A least-squares ap-
proach to joint diagonalization. IEEFE Signal Pro-
cessing Letters, 4, 52-53.

Wu, Y., & Chang, E. Y. (2004). Distance-function de-
sign and fusion for sequence data. Proc. Int. Conf.
on Information and Knowledge Management (pp.
324-333).

