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Abstract

Motivated by causal inference problems, we
propose a novel method for regression that
minimizes the statistical dependence between
regressors and residuals. The key advantage
of this approach to regression is that it does
not assume a particular distribution of the
noise, i.e., it is non-parametric with respect
to the noise distribution. We argue that the
proposed regression method is well suited to
the task of causal inference in additive noise
models. A practical disadvantage is that the
resulting optimization problem is generally
non-convex and can be difficult to solve. Nev-
ertheless, we report good results on one of the
tasks of the NIPS 2008 Causality Challenge,
where the goal is to distinguish causes from
effects in pairs of statistically dependent vari-
ables. In addition, we propose an algorithm
for efficiently inferring causal models from
observational data for more than two vari-
ables. The required number of regressions
and independence tests is quadratic in the
number of variables, which is a significant im-
provement over the simple method that tests
all possible DAGs.

1. Introduction

Most existing methods for learning causal models from
observational data assume that continuous variables
are multivariate Gaussian (Spirtes et al., 1993; Geiger
& Heckerman, 1994; Bollen, 1989). This corresponds
to structural equations where effects are linear func-
tions of their causes up to an additive Gaussian noise
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term that is independent of the causes. Apart from
the fact that those assumptions are often not met in
practice, it has been pointed out recently that they
can actually exacerbate the problem of causal infer-
ence. Indeed, for linear models, non-Gaussianity in
the data can actually aid in distinguishing causal di-
rections (Shimizu et al., 2006); similarly, nonlinearity
of the functional relationships can aid in identifying
the causal structure (Hoyer et al., 2009).

An important class of causal models are additive noise
models. The structure of these models is determined
by a directed acyclic graph (DAG), with a random
variable corresponding to each node, and each ran-
dom variable is assumed to be a (possibly nonlinear)
function of its parents plus an additive noise term,
with the important restriction that all noise terms are
assumed to be jointly independent. For this class of
causal models with additive noise, a causal inference
method has been proposed recently (Hoyer et al., 2009)
that estimates the causal model from a finite sample
by exploiting nonlinearities and non-Gaussianities in
the data. The basic idea of their method is the follow-
ing: for a given candidate DAG, one solves a regres-
sion problem for each node, modelling it as a (possibly
nonlinear) function of its parents. Then, a statisti-
cal independence test is performed to assess whether
all residuals are jointly independent. If that is the
case, the candidate DAG is accepted, otherwise it is
rejected. The two basic ingredients of this method
are regression methods and independence tests; Hoyer
et al. (2009) use Gaussian Process Regression in com-
bination with the Hilbert-Schmidt Independence Cri-
terion (HSIC) independence test (Gretton et al., 2005).

Since the method of Hoyer et al. (2009) benefits from
non-Gaussian noise, we argue that it is not entirely
consistent to use a regression method that assumes
Gaussian noise (as the standard Gaussian Process Re-
gression does). One could use other regression meth-
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ods that assume different noise distributions, but then
the problem becomes how to choose the regression
method if the noise distribution is unknown (which
is usually the case).

The solution we propose here is a novel regression
method that makes no assumptions about the noise
distribution. The basic idea is to simply minimize
the dependence between residuals and regressors, mea-
sured by some dependence measure. The underlying
intuition is that regression tries to model the depen-
dence of the output on the input, and it is successful
when the residuals, i.e., the difference between the ac-
tual and the predicted output, are no longer dependent
on the input. Here we have chosen the empirical HSIC
estimator (Gretton et al., 2005) as a measure of depen-
dence, because of its good performance for scalar and
vector-valued continuous variables. In the context of
causal inference, it also has been successfully applied in
(Hoyer et al., 2009; Zhang & Hyvérinen, 2008). Apart
from making the method nonparametric with respect
to the noise distribution, it can be argued that our so-
lution is more elegant from a theoretical point of view
for the causal inference task discussed above, because
it unifies the regression with the subsequent indepen-
dence test. Indeed, the regression and independence
test now both use the same “loss function”: the statis-
tical dependence between residuals and the regressors
(parent variables), according to the same dependence
measure.

Another contribution of the present work is an efficient
algorithm for inferring DAGs from data. It improves
upon the algorithm proposed by Hoyer et al. (2009)
by reducing the computational complexity from super-
exponential in the number of variables to quadratic.

This paper is organized as follows. In Section 2 we
discuss our novel regression method. In Section 3 we
dicuss the causal inference task and show how the re-
gression method can be applied successfully for distin-
guishing cause and effect in pairs of statistically de-
pendent variables. In Section 4, we propose an effi-
cient method for inferring complete DAGs consisting
of d > 2 variables, which has computational complex-
ity O(d?), and illustrate its performance on a toy ex-
ample.

2. Regression by dependence
minimization

Suppose X is a random variable with values in R™

and Y, F are random variables with values in R. We

assume that ¥ = f(X) 4+ FE for some function f :
R™ — R and that X I E (i.e., X is independent of E).

Now, given an i.i.d. sample D = {(z®, y)},_;
of the pair (X,Y), our goal is to approximate the
function f. Given some estimate f of the function
f and a sample D, we define the residuals {€(i) =
y) — f(x(i))}izl,.“,N- An example of a situation in
which this regression problem occurs is where Y is an
effect of several causes X1,...,X,, (each with values
in R) and of some additional unobserved causes, sum-
marized in an additive noise variable E. We will not
make assumptions about the probability distribution
of E other than that it has mean 0 and is independent
of X.

Regression is an old and important problem and has
been extensively studied. Most regression methods op-
timize some “loss function” over a class of functions,
that is they solve a minimization problem

f= argmin L(f', D),
frer

where F is a set of functions and £ is a loss function
that measures how well a function f' € F fits the
data D = {(z,y)};i=1N. A concrete example
is £o-regularized linear least-squares regression, where
the unknown function f is approximated with a linear
combination of n basis functions ¢, : R™ — R with
weights ., i.e.,

fa(x) = Zar¢r(x)v (1)
r=1

by minimizing the following ¢s-regularized £2-loss func-
tion:

N
& := argmin <Z (y(i) — fa(x(i)))z + )\TN ||04|§> (2)
i=1

acR”

and taking f = fs as the estimate for the function
f. The first term in (2) is the ls-loss of the residu-
als and the second (regularization) term is important
to avoid overfitting. The regularization constant Ay
is often chosen by cross-validation. Other regulariza-
tion terms can be used, but this particular one has the
advantage of mathematical simplicity. We will hence-
forth refer to (2) simply as “least-squares regression”.
Asymptotically, as N — oo, the corresponding esti-
mator fg will (under certain technical conditions, see
e.g., (Gyorfi et al., 2002)) converge to the conditional
mean E(Y | X = z) = f(x).

The ¢5-loss function in (2) is adapted to a Gaussian
distribution of the noise FE, because it corresponds
with the log-likelihood in that case. If E actually has
a non-Gaussian distribution, the estimation procedure
(2) will still converge to the true f asymptotically, but
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for any finite N, other loss functions may achieve bet-
ter approximations to f. For example, the ¢; loss
Zi]\il |y(i) — fa(x(i))‘ may yield better results if the
noise FE has a Laplace distribution. The choice of the
loss function can have a large influence on the result
of the regression for any finite N.

If the distribution of the noise E is unknown, it is
not clear which loss function will give optimal results.
Here we propose a method for regression that does not
assume a particular distribution of the noise F; in-
stead, we minimize the dependence between the resid-
uals Y — f,(X) and the regressor X. A theoretically
well-motivated dependence measure would be the mu-
tual information between X and Y — f,(X). In prac-
tice, however, estimating this mutual information can
be difficult. In this work, we will minimize a mutual-
information like quantity instead—the empirical esti-
mator of the Hilbert Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005). HSIC uses kernels for
measuring dependence and has good uniform conver-
gence guarantees. We continue our exposition with a
short introduction to the HSIC.

2.1. Hilbert-Schmidt Independence Criterion

Let X be a random variable with values in some set
X. Consider a Hilbert space Hyx of functions from
X to R. Then Hx is a reproducing kernel Hilbert
space (see e.g., (Scholkopf & Smola, 2002)) if for each
x € X, the Dirac evaluation operator 6, : Hx — R :
f — f(x) is a bounded linear functional. To each
point € X there corresponds an element ¢x(z) €
Hx such that (¢x(x), dx(2)) = kx(x,z"), where kx :
X? — R is a unique positive definite kernel. Similarly,
for a random variable Y with values in ), let Hy be
a reproducing kernel Hilbert space with kernel ky :
V? — R and feature mapping ¢y : Y — Hy. We
assume throughout the paper that the kernel functions
are bounded and continuous.

In analogy with a covariance matrix, we define a cross-
covariance operator, which is a linear operator Cxy :
Hy — Hx satisfying

Cxy = Exy[(¢x — ux) @ (dy — py)],

where ® is the tensor product and ux = Ex(¢x) €
‘Hx is the mean element corresponding to the proba-
bility distribution of X (and similarly for uy). The
square of the Hilbert-Schmidt norm of the cross-
covariance operator (HSIC),

HSIC(Hx, Hy, Pxy) = |ICxv | Zs (3)

is a measure of the statistical dependence of X and
Y. Gretton et al. (2005) show that whenever the ker-

nels kx, ky are universal on respective compact do-
mains X and Y in the sense of Steinwart (2002), then
HSIC(Hx,Hy,Pxy) = 0 if and only if X and Y are
independent. A universal kernel such as the Gaussian
RBF kernel or the Laplace kernel permits HSIC to de-
tect any dependence between X and Y.

Gretton et al.  (2005) define the following em-
pirical HSIC estimator for an ii.d. sample D =

{(zD,y )} iy, N
_ 1
HSIC(Hx, Hy D) = wtr (KHLH),  (4)

where N is the number of data points, K is the N x N
kernel matrix for X and L for Y, i.e.,

Kij =kx(z,29)), Ly = ky (y@,yV),
and H is the N x N matrix defined by

Hiijf%l’lT, i.e., Hij :51',]‘7%.
Gretton et al. (2005) show that for N — oo, HSIC — 0
if and only if X is independent of Y. Furthermore, the
empirical HSIC estimator (4) has a bias of O(N™1),
but this is negligible with respect to finite sample fluc-
tuations. The empirical estimate (4) converges to the
population value (3) at rate O(N~'/2). Finally, Gret-
ton et al. (2005) propose a statistical test of indepen-
dence based on the empirical HSIC estimator, which
accepts the null hypothesis Hy : X 1LY if p > «, but
rejects it if p < «, for some threshold a.

With some abuse of notation, we will hence-
forth simply write HSIC(X,Y)
HSIC(HX,HY,{(w(i),y(i))}izl’”.’]\/’).

instead  of

2.2. Regression by minimizing the HSIC

To return to our regression problem: we propose to
replace the “log-likelihood” term in the loss-function
by the empirical HSIC estimator. In particular, in (2)
we replace the sum of the squares of the residuals by
the empirical HSIC estimate of the dependence of the
residuals with the regressor:

= argnin (TSTO(X,Y — 1,0 + 22 o).

acR”
(5)
This yields an estimate for the function f, modulo
some additive constant, assuming that the kernel ky
is translation invariant. The missing constant can be
estimated using the assumption that the mean of F is
zero, by using the final estimate

f="tfa+ i\f: (y(i) - fa(x(i))> ;
=1
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with & as in (5). A noteworthy property of the partic-
ular loss function (5) is that it is not a sum over data
points of some quantity.

2.2.1. IMPLEMENTATION DETAILS

Note that H/Sﬁ(X,Y — fa(X)) can easily be com-
puted in O(N?), since only the kernel matrices K
and L are needed. For regression, K is fixed through
the whole process, so it can be precomputed and
stored for speedup if needed. The resulting opti-
mization problem is in general non-convex (assum-
ing the kernels are nonlinear). We used 1ibLBFGS
(Okazaki & Nocedal, 2008), a C implementation of
the L-BFGS method (Liu & Nocedal, 1989), to min-
imize the regularized HSIC loss function in (5). We
chose Gaussian RBF kernels for both X and Y, i.e.,
kx(z,2') = exp(— Ha:f:z:’Hza)_(z), and similarly for
ky. Further, we used Gaussian RBF functions with
centers {m(i)}izlw,N and the same width ox for the
basis functions in the expansion of the function f in
(1). For convenience, the kernel width ox is fixed
as the median distance between points in the sample
(Scholkopf & Smola, 2002). The kernel width oy is
chosen in the same way, but based on an initial rough
estimate of the residuals. We chose the regularization
constant Ay by 2-fold cross-validation, using the av-
erage empirical HSIC over the folds as optimization
criterion for Ay. Note that we take a small number
of folds, because the empirical HSIC estimator is not
an additive function of the data points; indeed, if one
would take the number of folds equal to the number
of data points (“leave-one-out cross-validation”), one
would evaluate the empirical HSIC of a single data
point, which obviously makes no sense. For the inde-
pendence tests, we use the permutation test for esti-
mating the p-value of the HSIC as described in (Gret-
ton et al., 2005).

3. Application: causal inference

The regression method discussed in the previous sec-
tion was motivated by an application to causal infer-
ence. In this Section, we discuss the causal inference
problem and how the proposed regression method nat-
urally applies to it.

A causal model (Pearl, 2000) is defined as follows.
Given a directed acyclic graph (DAG) G = (V,€) with
nodes ¥V = {1,...,d} and directed edges &, we de-
note the parents of node ¢ € V as pa(i). Each node
i € V has a corresponding (observed) random variable
X; and an (unobserved) random variable E;. We will
assume that these random variables have values in R.
For each node ¢ € V, the corresponding random vari-

able X; (“effect”) is a function X; = fi(Xpaq), Es) of
the random variables X ,,;) (“causes”) associated with
the parents pa(i) of ¢ and an independent noise source
E;. The causal inference problem we consider here is
to estimate the causal model, given only a finite sample
of observational data D = {(Xfl)7 . ,X{gz))}izl,_”’N.
A causal model with additive noise is a special case,
where the functions are of the form f;(Xpa.), Ei) =
9i(Xpa(i)) + Ei. An example of a causal model with
additive noise is shown in Figure 2(a), with the corre-
sponding DAG in panel (b).

Hoyer et al. (2009) showed for the case of additive
noise that the causal structure is generically identi-
fiable in the two-variable case (with one of the few
exceptions being the case where the function is linear
and the distribution of the cause and of the noise is
Gaussian). They proposed a method for inferring the
causal structure from a finite sample of observations,
which basically works as follows. Given a candidate
DAG G, for each node i € V one performs regression
of X; as a function of its parents X;,(;) to obtain an
estimate of the (hypothetical) function §;. The cor-
responding residuals €; should be independent of the
parents X,,(;). However, this independence condition
is not enough: in fact, all residuals {€;}i=1,....q should
be jointly independent, in order for the candidate DAG
G to be accepted as a possible model for the data. An
independence test is employed to test if at least one of
the residuals €; is not independent of one of the others
(in practice, if the corresponding p-value exceeds some
threshold); if this is the case, the candidate DAG is
rejected, otherwise it is accepted.

Hoyer et al. (2009) show that their method works in
the two-variable case (which is theoretically justified
by their identifiability theorem) and give some empiri-
cal evidence that it also works for more than two vari-
ables, where they simply enumerate all DAGs and test
for each DAG whether it fits the data. However, since
the number of DAGs grows super-exponential in the
number of variables, this method is only feasible for a
few variables.

3.1. Experimental results

In this Subsection, we illustrate the advantage of the
HSIC regression method over two standard regression
methods for a simple toy example. Then, we apply
the method to a dataset from the NIPS 2008 Causality
Competition.

We will compare three different regression methods:
regularized HSIC regression as discussed in Subsec-
tion 2.2.1, regularized linear least-squares regression
as in (2) and Gaussian Process regression (Rasmussen
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& Williams, 2006), using the implementation in (Ras-
mussen & Williams, 2007), with a Gaussian covariance
function. We use the same kernels for the HSIC inde-
pendence test as for the HSIC regression (with kernel
widths set to the median distance between points in
the sample), and also for the basis functions used in
the least-squares regression.

3.1.1. TOY EXAMPLE

We start with a simple toy example, which illustrates
the benefits of minimizing the HSIC dependence mea-
sure for the purposes of causal model selection in com-
parison with more traditional loss functions.

We consider the simple model Y = X? + E. with
X ~ U(-1,1) uniformly distributed. First we con-
sider Gaussian noise E ~ AN(0,12?). We apply three
different regression methods on a sample of N = 300
data points of the distribution; the results are shown
in the top row of Figure 1. For the naked eye, it is dif-
ficult to decide which regression method gives the best
result. Note that each regression method has its own
definition of “best”: the least-squares regression tries
to minimize the fo-norm of the residuals, whereas the
HSIC regression tries to minimize the HSIC measure
of dependence between residuals and X. Applying the
HSIC independence test to the residuals and X yields
the following p-values (from left to right): 0.96, 0.66
and 0.87, each of which is clearly larger than o = 0.01.
Therefore, according to the HSIC measure, the resid-
uals are indeed independent of X for each regression
method, as we would expect them to be.

Now let us look at non-Gaussian noise; we alter the dis-
tribution of E to be E ~ Exp(1) — 1, i.e., an exponen-
tial distributed with mean 1 shifted so that it has mean
0. The bottom row of Figure 1 shows the results of the
three regression methods. Again, to the naked eye, it
is difficult to decide which regression method gives the
best fit. However, the HSIC independence test now
yields the following p-values: 0.55, 0.0010 and 0.0028.
This means that independence of the residuals and X
is only accepted for the HSIC regression, and rejected
for the least-squares regression and the Gaussian Pro-
cess regression methods. Note that the true noise F
is actually independent of X because this is how the
data were generated; this is verified by the HSIC in-
dependence test for £ and X, which gives a p-value
of 0.24. The failure of the least-squares and Gaussian
Process regression methods in this case is not surpris-
ing when one considers that they incorrectly assume
that the noise is Gaussian.

(@) (b) (©

(d) (e)

= o = N W & O o
= o = N W & 0 o

1 0 1

o

Figure 1. Regression results for the toy model X ~
U(-1,1),Y = X? + E. Top row: E ~ N(0,1%); bottom
row: E ~ Exp(1)—1. From left to right: regularized HSIC
regression, regularized least-squares regression, Gaussian
Process regression. Black line is Y = X2, blue points are
samples and red line is regression result.

3.1.2. REAL-WORLD DATASETS

We also tested our method on the datasets of the
Cause-effect pairs task for the NIPS 2008 Causal-
ity Competition (Mooij et al., 2008). Each dataset
consists of a sample of two statistically dependent
random variables, say X and Y, where one variable
is known to causally influence the other (e.g., alti-
tude and average temperature of weather stations).
The task is to infer from the sample which variable
is the cause and which one the effect. We use the ap-
proach proposed by (Hoyer et al., 2009), i.e., we test
whether the causal model Y = fy (X) + By, Ey 1L X
(“X — Y7) fits the data best, or the alternative model
X =fxY)+ Ex, Ex LY (Y — X7). The func-
tions fx, fy are estimated by regression and the in-
dependence of the residuals is tested using the HSIC
independence test, which yields a small p-value if the
data does not support the null hypothesis of indepen-
dence, in which case the model is rejected.

Using at most 1000 data points from each dataset,
we obtain the results shown in Table 1. Note that
the HSIC regression yields the highest p-values (as one
would expect) and that it correctly infers the causal
direction in 6 out of 8 cases (using @ = 0.01). In
one case it infers the wrong direction (which seems to
be due to overfitting), in another case it rejects both
directions (which may be due to a non-additive noise
distribution, or a strong confounder). Qualitatively,
the other regression methods yield similar decisions,
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Algorithm 1 Find a DAG consistent with the data
input data matrix X of size N x d, critical value «
S—A{1,...,d}
for j = d downto 1 do
for all i € S do
éi — Residuals(XS\{i}, Xi)
pi < TestIndependence(Xg f:}, €;)
end for
1* «— argmax p;
if p;+ < a then
return no consistent DAGs
end if
o5 — "
S—S\{i"}
end for
for j =1toddo
14+ 0j
pa(i) « {o1,...,0j_1}
for k=1toj—1do
€; — Residuals(Xpa(,;)\{qk}, Xi)
if TestIndependence(Xya(;), €;) > a then
pa(i) < pa(i) \ {ox}
end if
end for
end for
output parent sets (pa(i))iecy

but their p-values are much lower. For this binary
decision case, this is not so important, but if one has
more than two variables or has a third possible decision
(“neither variable causes the other”), the absolute p-
values are important.

4. Efficient causal inference algorithm

In this Section, we propose a more efficient al-
gorithm to find a causal model fitting the data
than the algorithm that simply tests all possible
DAGs. See Algorithm 1. It invokes two subrou-
tines: Residuals(X,Y’), which fits Y as a function
of X and returns the residuals (if X is empty, it
should just return Y itself as the residuals); and
TestIndependence(X,Y’), which tests independence
of X and Y, returning the p-value corresponding to
the null hypothesis of independence.

In the first sweep, a possible causal ordering o € Sy of
the variables is inferred (where Sy denotes the symmet-
ric group consisting of all permutations of {1,...,d}).
In the second sweep, unnecessary arrows are removed.
The result is a minimal DAG consistent with the data.
The time complexity of the algorithm is O(d?) if we
count regression and independence tests as atomic op-

X = sin(Xg) + X% + cos(X7) + Eq
Xo = X2+ B>

E1 ~ U(-0.1,0.1)
Ey ~ U(—0.5,0.5)

X3 = Es E3 ~ U(—1.0,1.0)
X4 = sin(Xg) + sin(2X3) + E4 E4 ~ U(—-0.5,0.5)
X5 = tanh(Xg + X7 + X2) + Es Es ~ U(—0.2,0.2)
X6 = sin(X2) + cos(2X4) + Eg Eg ~ U(—0.5,0.5)
X7 = cos(Xg + X3) + Ev E7 ~ U(—0.3,0.3)

(b) Ground truth DAG (¢) Reconstructed DAG
Figure 2. Toy example consisting of 7 variables: (a) ground
truth causal model; (b) DAG corresponding to the ground

truth causal model; (c) reconstructed DAG based on a sam-
ple of N = 300 datapoints.

erations. This should be compared with the super-
exponential number of DAGs with d variables which
have to be tested for the enumeration algorithm pro-
posed in (Hoyer et al., 2009).

We show that Algorithm 1 is asymptotically consistent
under the following assumptions:

(1) whenever {Xy,...,X;} contains all the parents
of Y and none of its descendants, the residuals
Residuals({Xi,...,X;},Y) are independent of
every set that contains no descendants of Y.

(2) whenever {X1,...,X;} contains a child of Y, in-
dependence of Residuals({Xy,...,X;},Y) and
{X1,..., X} is rejected.

(3) whenever there is a parent X of ¥ with X ¢
{X1,..., X} then Residuals({Xy,..., X;},Y) is
not independent of X.

Assumption (1) is satisfied if the joint distribution
is generated by an additive noise model, because the
noise of a variable is only relevant for the variable itself
and its descendants. We conjecture that assumption
(2) is satisfied in the generic case. This is suggested
by (Hoyer et al., 2009, Theorem 1) regarding the two-
variable case: generic additive noise models X — Y
generate distributions that do not admit additive noise
models Y — X. Assumption (3) follows from causal
faithfulness (Spirtes et al., 1993) because indepen-
dence of the residual would imply X 1L Y | Xy,..., X,
but conditional independence can only hold true for
non-adjacent X,Y.
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Table 1. Results on datasets of the Cause-effect pairs task for the NIPS 2008 Causality Competition (Mooij et al.,
2008), using various regression methods. We report the empirical HSIC estimates for regression residuals and regressor
values and their corresponding p-values. Two models are considered: X; — X (i.e., Xo = f2(X1) + E2 with Ep 1L X)
where X, causes X2, and the backwards model Xo — X7 (i.e., X1 = f1(X2) + E1 with E7 1L X5) where X5 causes X;. If
P12 > p2—1, the model X1 — X» gives the best fit to the data, which we interpret as “X; causes X2” (and vice versa).

REGULARIZED HSIC-REGRESSION

DATASET P1—2 P12 H/SI\Clﬂz H/SI\Clez DECISION GROUND TRUTH
1 0.289823 < 107 0.0012 0.0060 — —
2 0.037262 0.014491  0.0020 0.0021 — —
3 0.044745 0.002767  0.0019 0.0026 — —
4 0.375563 0.011721  0.0011 0.0023 - —
5 <107%  0.159925  0.0028 0.0005 — —
6 <1076 <1076 0.0032 0.0026 ? -
7 <107% 0.271836  0.0021 0.0005 — —
8 0.000002 < 107¢ 0.0015 0.0017 - N
REGULARIZED LINEAR LEAST-SQUARES REGRESSION
DATASET P12 Pr—2 ﬁSI\Cl_,g ﬁSI\Ch_Q DEecisioN  GROUND TRUTH
1 0.034679 < 10°¢ 0.0020 0.0067 — —
2 <1076 <1076 0.0074 0.0075 ? —
3 0.008914  0.000589  0.0023 0.0029 — -
4 0.000011 0.002146  0.0040 0.0028 — —
5 <107%  0.024624  0.0047 0.0007 — —
6 <107 <10°¢ 0.0059 0.0053 ? —
7 <107%  0.019524  0.0050 0.0008 — —
8 <1076 <1076 0.0096 0.0029 ? -
GAUSSIAN PROCESS REGRESSION
DATASET P1—2 P1—2 H/SI\Clﬂz H/SEh;z DECISION GROUND TRUTH
1 0.016375 < 107 0.0022 0.0077 — —
2 <1076 <1076 0.0078 0.0074 ? -
3 0.007889  0.000702  0.0023 0.0029 - N
4 0.000055 0.010831  0.0036 0.0023 — —
5 <107%  0.014970  0.0048 0.0008 — —
6 <1076 <1076 0.0057 0.0052 ? N
7 <107°  0.012321  0.0053 0.0008 - —
8 <1076 <1076 0.0097 0.0032 ? —

To obtain a causal ordering, we search for a variable same procedure with d—1 variables and so on, until we

X; for which the regression on the remaining d—1 vari-
ables (i.e., on Xg\ ;) yields a residual that is indepen-
dent of Xg\ ;3. Every childless node will be accepted
by assumption (1), which shows that our search cannot
fail. Conversely, X; is childless by assumption (2), and
is thus the last variable with respect to an appropriate
ordering of nodes. Since X; is therefore causally ir-
relevant for the remaining variables we can repeat the

have identified the first node. Induction over d shows
that we have indeed found an allowed causal ordering.
The corresponding complete DAG G’ differs from the
true graph G only by unnecessary links.

To remove irrelevant parents, we use the following it-
erative method. For every X;, let pa(i) be the set of
parents with respect to the current preliminary graph.
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For every Y € pa(i), compute the regression of X; on
pa(i)\{Y} and check whether the residual is still inde-
pendent of pa(i). If Y is a true parent, independence
will be rejected by assumption (3). Otherwise it will
be accepted by assumption (1). Hence we keep exactly
the links that are also present in G.

To complete the consistency proof, the conjecture (as-
sumption (2)) has to be proven. We consider this be-
yond the scope of the current work. In the next Sub-
section we give some empirical evidence that supports
the conjecture.

4.1. Experimental results

We consider a toy example consisting of seven vari-
ables, specified in Figure 2(a). We applied Algorithm 1
to a sample of N variables, using regularized HSIC re-
gression as the regression method in combination with
the HSIC independence test. The number of regres-
sions needed is reduced from 448 for the naive algo-
rithm reported in (Hoyer et al., 2009) to 48 for Algo-
rithm 1; moreover, we only need to perform 48 inde-
pendence tests, instead of at least one for each of the
approximately 1 billion DAGs of 7 variables. Using
300 data points, a few errors are made, as shown in
Figure 2(c), but the resulting DAG is already close to
the ground truth, and becomes closer for larger N.

5. Conclusions

We introduced a novel regression method that mini-
mizes the dependence of the residuals and the regres-
sors. We successfully applied the method, using the
HSIC independence measure, to causal inference tasks.
We expect that the regression method may prove to be
more generally useful, in particular whenever the noise
distribution is unknown.
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