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Abstract

In many real-world domains, undirected
graphical models such as Markov random
fields provide a more natural representation
of the statistical dependency structure than
directed graphical models. Unfortunately,
structure learning of undirected graphs us-
ing likelihood-based scores remains difficult
because of the intractability of computing
the partition function. We describe a new
Markov random field structure learning algo-
rithm, motivated by canonical parameteriza-
tion of Abbeel et al. We provide computa-
tional improvements on their parameteriza-
tion by learning per-variable canonical fac-
tors, which makes our algorithm suitable for
domains with hundreds of nodes. We com-
pare our algorithm against several algorithms
for learning undirected and directed mod-
els on simulated and real datasets from bi-
ology. Our algorithm frequently outperforms
existing algorithms, producing higher-quality
structures, suggesting that enforcing consis-
tency during structure learning is beneficial
for learning undirected graphs.

1. Introduction

Probabilistic graphical models (PGMs) representing
real-world networks capture important structural and
functional aspects of the network by describing a joint
probability distribution of all node measurements.
The structure encodes conditional independence as-
sumptions allowing the joint probability distribution
to be tractably computed. When the structure is un-
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known, likelihood-based structure learning algorithms
are employed to infer the structure from observed data.

Likelihood-based structure learning of directed acyclic
graphs (DAGs), such as Bayesian networks, is widely
used because the likelihood score can be tractably
computed for all candidate DAGs. However, in many
domains such as biology, causal implication of directed
edges is difficult to ascertain without perturbations,
leaving only a correlation implication. In such situa-
tions, undirected graphical models are a more natu-
ral representation of statistical dependencies. Unfor-
tunately, likelihood-based structure learning of these
models is much harder due to the intractability of the
partition function (Abbeel et al., 2006).

To overcome this issue, researchers have opted several
alternatives: learn graphical Gaussian models where
the likelihood can be computed tractably (Li & Yang,
2005); restrict to lower order, often pairwise functions,
(Margolin et al., 2005; Lee et al., 2007); use pseudo-
likelihood as structure score instead of likelihood (Be-
sag, 1977); learn dependency networks (Heckerman
et al., 2000; Schmidt et al., 2007); or learn Markov
blanket canonical factors (Abbeel et al., 2006). Pair-
wise models are scalable, but, approximate higher-
order dependencies by pairwise functions, which is lim-
iting for domains where higher-order dependencies oc-
cur commonly. While dependency networks are scal-
able, each variable neighborhood is estimated indepen-
dently, resulting in inconsistent structures when the
data sample size is small. This is problematic for real-
world data which often lack sufficient samples to guar-
antee a consistent joint probability distribution for the
learned structure. Finally, Markov blanket canonical
parameterization requires exhaustive enumeration of
variable subsets up to a pre-specified size [, which is
not scalable for networks with hundreds of nodes.

We have developed a new algorithm for learning
undirected graphical models, that produces consis-
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tent structures and is scalable to be applicable for
real-world domains. Our algorithm, Markov blanket
search (MBS) is inspired by Abbeel et al.’s Markov
blanket canonical parameterization, which established
an equivalence between global canonical potentials
and local Markov blanket canonical factors (MBCF's)
(Abbeel et al., 2006). We extend Abbeel et al.’s result
to establish further equivalence between MBCF's and
per-variable canonical factors. Because per-variable
canonical factors require learning Markov blankets
per-variable, rather than all subsets up to size [, we
save O(n!~1) computations during structure learning,
where n is the number of variables. The equivalence of
per-variable canonical factors and global canonical fac-
tors has been observed before (Paget, 1999). However,
we are the first to use per-variable canonical factors in
the context of MRF structure learning to learn consis-
tent MRF structures. Enforcing structural consistency
during search, guarantees the structure to be a MRF,
and also the existence of a joint distribution for the in-
dividual conditional distributions. Thus we need not
perform additional post-processing to guarantee con-
sistent structures (Schmidt et al., 2007).

We compare our algorithm against two existing al-
gorithms for learning undirected models: Algorithm
for the Reconstruction of Accurate Cellular Net-
works (ARACNE) (Margolin et al., 2005), and a
Lasso regression based dependency network algorithm
(GGLAS) (Li & Yang, 2005). ARACNE learns pair-
wise dependencies, whereas GGLAS learns both pair-
wise and higher-order dependencies. On simulated
data from networks of known topology, MBS captures
the structure better than ARACNE for the majority
of the datasets. Although GGLAS and MBS are often
tied in performance, GGLAS’s assumption that vari-
able ordering is irrelevant, is true only for the Gaussian
distribution. MBS uses a more general framework of
per-variable canonical factors, which can be used with
any conditional probability distribution family.

We also compare MBS to several algorithms for learn-
ing DAG structures. MBS not only outperforms the
algorithms performing DAG searches, but provides a
better pruning of the structure search space than the
L1 regularization-based Markov blanket and sparse
candidate algorithms (Schmidt et al., 2007; Friedman
et al., 1999). This suggests that learning consistent
structures during structure search is better than post-
processing learned structures to enforce consistency.
We finally apply ARACNE, MBS and the sparse candi-
date algorithm to four real-world microarray data sets.
Subgraphs generated from MBS-inferred networks rep-
resent more biologically meaningful dependencies than
subgraphs from the other algorithms.

To summarize, MBS has the following advantages:
(a) it captures both higher-order and pairwise depen-
dencies, (b) it learns consistent structures ensuring
the existence of a joint distribution, (c) it provides a
tractable implementation of the theoretical framework
of Abbeel et al.. This final property allows MBS to
scale to real-world domains with hundreds of nodes.

2. Markov random fields

A Markov random field (MRF') is an undirected, prob-
abilistic graphical model that represents statistical de-
pendencies among a set of random variables (RVs),
X ={Xy, - -, X,}. AMRF consists of a graph G and
a set of potential functions ¢ = {1, -+ , ¥, }, one for
each clique in G. The graph structure describes the
statistical dependencies, and the potentials describe
the functional relationships between the RVs. The
RVs encode the observed measurements for each node,
X; € R. The joint probability distribution of the MRF
is defined to be: P(X = x) = £ [[\", i(F; = f;),
where x is a joint assignment to X, F; C X is the vari-
able set in the i clique, associated with v;; f; C x is
a joint assignment to F;. Z is the partition function
and is defined as a summation over all possible joint
assignments of X.

Structure learning of MRF's using likelihood is difficult
in general because of Z (Abbeel et al., 2006). This is
because estimating Z requires a sum of exponentially
many joint configurations of the RVs, making it in-
tractable for real-world domains. To overcome this
problem, researchers have proposed approaches that
use pseudolikelihood (Besag, 1977; Heckerman et al.,
2000), or, have used Markov blanket canonical param-
eterization (MBCP) (Abbeel et al., 2006). We use an
approach similar to MBCP, which requires the esti-
mation of optimal Markov blankets for RV subsets,
Y C X, Y| <, where [ is a pre-specified, maximum
subset size. However, we learn local per-variable fac-
tors, requiring estimation of Markov blankets of only
individual RVs. Avoiding Markov blanket estimation
of all subsets, makes our approach scalable to domains
with hundreds of nodes.

2.1. Hammersly-Clifford theorem and
canonical potentials

The Hammersly-Clifford theorem establishes a one-to-
one relationship between MRFs and strictly positive
distributions such as the Gibbs distributions. The
canonical potentials (also called N -potentials (Paget,
1999)) are used together with the Mobius inversion
theorem to prove the Hammersly-Clifford theorem
(Lauritzen, 1996). The canonical potential for a subset
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D C X is defined using a default joint instantiation,
X ={T1, - ,Tx|} to X as:

UH(D=d)=

exp Z (=1)P\VlogP(X = ¢(U, X, d))
UcCD

where (A, B, c) is an assignment function to variables
X} € B such that (A, B, c)[k] = ¢, if X € A and
o(A,B,c)lk] =Ty if Xi ¢ A. o returns an assignment
for all variables in B.

The joint probability distribution for a MRF using
canonical potentials is defined to be: P(X = x) =
P(X) [Ipec ¥ where C is the set of maximal cliques
in the graph. This is true by an application of the
Mébius inversion and setting 5y = 0 for all D ¢ C
(Lauritzen, 1996; Paget, 1999).

2.2. Markov blanket canonical
parameterization

The computation of the canonical potentials is not fea-
sible for real-world domains as they require the es-
timation of the full joint distribution (Abbeel et al.,
2006). Markov Blanket canonical parameterization,
developed by Abbeel et al., allows the computation of
global canonical potentials over X, using local condi-
tional functions called Markov blanket canonical fac-
tors (MBCFs).

The MBCF, {/}v for a set D C X is estimated using
D and its Markov blanket (MB). The MB, M, of a
variable X, is the set of immediate neighbors of X; in

G and renders X; conditionally independent of other
variables, i.e., P(X;|X\ {X;}) = P(X;|M;). The MB,

Mp of a set D, is (U, M;) \ D for all X; € D. The

MBCEF, zz for D is also defined using the default joint
instantiation, X = {71, -, Tx|} as:

(D =d) = exp< S (-1)P\WlogP(D = 0(U, D, d)|

Mbp =o(U, MD,d))>, (1)

For MRF's of unknown structure, MBCF's are identi-

fied by searching exhaustively among all subsets F; C
X, up to size | and finding MBs for each F;. Unfor-
tunately, exhaustive enumeration of variable subsets
becomes impractical for moderately sized networks
(Abbeel et al., 2006). We show that the MBCF's can be
further reduced to smaller per-variable canonical fac-
tors, which are computed using an RV and its Markov
blanket.

2.3. Per-variable MB canonical factors

We now show that the MBCFs can be replaced by
smaller, local functions: per-variable MB canonical
factors, which does not require enumeration of all sub-
sets up to size [. Specifically, for every MB canonical
factor 7,/; there exists an equivalent per-variable canon-
ical factor 1. To illustrate how the per-variable fac-
tors are derived from MBCFs, we first consider a spe-
cific case of D = {X;,X;} in Eq 1 (Section 2.3.1),
followed by a proof for the general case (Section 2.3.2).

2.3.1. SPECIAL CASE OF TWO VARIABLES
Let D = {X;,X;} and d = {z;,z;}. Note, because
DNMp =0, 0(U,Mp,d) = mgq, the default instan-

tiation to Mp from X. We first expand the sum inside
the exponential of Eq 1 with D = {X;, X, }:

> (-

UcD
o(U,{Xi, X;},

)P\ ogP({X4, X} =

d)/Mp = mgq4
= (- 1)I{X X HlogP(
+(—1) Xt hogP(X,; = a4,
(-1 XM NogP(X; = 7,
+(71)|mlogP(Xi =z,

Xi =7, Xj :fj‘MD =mgq

)
)
X; =%;|Mp =ma)
Xj = z;|Mp = ma)
)

w.¢ :x]-\MD = mgq

(2)

where the first term corresponds to U = (), the second
term corresponds to U = {X;} and so on. Applying
the chain rule to every term in the RHS:

= log[P(Xi = filXj =Ty, Mp = ﬁd)

P(X; =7;|Mp =maq)|

—log[P(Xi = ]JilXj =Ty, Mp = ﬁd)

P(X; =z;|Mp =maq)]

—log[P(Xi = filXj = xj, Mp = ﬁd)

P(X; = zj|Mp =maq)]

+10g[P(Xi = J,'ilXj = xj, Mp = ﬁd)

P(X; = z;|Mp =ma)]

We find that all logP(X;|Mp) terms cancel produc-

ing:

=logP(X; =7;,|X; =T;, Mp = mq)
—logP(X; = z;|X; =7;, Mp = maq)
—logP(X; =7Z;|X; = z;, Mp = maq)

+10gP(X = a:¢|Xj = :L']',MD = md)

This allows 7; to be rewritten as:

JD(D =d)= exp( Z (—l)lD\U‘logP(X, =
UCD
o(U, {X.},d)[{X;} UMb = o(U, {X;} UMb, d))) (4)

We assert further independence in Eq 4 because X;
is independent of all variables other than M;. This
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allows us to write the original MBCF for {X;, X,} as
the per-variable canonical factor:

Yh(D=d) = exp( Z (—1)IP\YlogP(X; =
ucD

o (U, (X}, d)|M; = a(U,Mi,d») (5)

Thus we have equivalent the per-variable canonical
factor, ¢* from the original MBCF v in Eq 1.

2.3.2. GENERAL CASE

We now state the equivalence between per-variable and
MB canonical factors more formally:

Theorem 2.1 Every MBCP, @D, of the form in
Eq 1 possesses an equivalent per-variable factor,

1b]J:r)(D =4d) = emp(ZUCD(—l)D\UUogP(Xi =

o(U,{X;},d)|M; = O'(U,Mi,d))>, where X; € D.

Proof The proof of this equivalence involves two
steps: (a) deriving 9™ from ¢ for any general D, and
(b) identifying neighbors of an RV and making inde-
pendence assertions described by the graph structure.

To prove (a) we select an arbitrary X; € D. We re-
place each logP(D|Mp) in ¥ by log(P(X;|D\ {X;}U
Mp)P(D \ {X;}|Mp)). We have 2/P! number of
logP(D \ {X;}|Mp) terms, one for each U C D. X;
does not occur in these terms, as we have conditioned
on it. These terms can be grouped into two sets, Syq
and S, , where S,q and S, correspond to subsets of D
with odd and even number of elements, respectively.
Assuming |D]| is even, all elements in S,q have a —ve
sign and all elements in S, have a +ve sign. Further,
for every t € S, corresponding to U C D there exists
t' € 8,4 corresponding to U’ C D, such that U and
U’ differ only in X;. Because X; does not occur in
either ¢ or t/, these two terms cancel. Applying this
to all elements of S,q and S.,, the two subsets cancel
each other, thus proving (a). If |D| is odd, elements
of Syq and S, have +ve and —ve signs, respectively,
and the rest of the argument follows.

The final step is to identify the neighbors of X; and
using the local Markov property, P(X;/D \ {X;} U
Mp) = P(X;|M;), for strictly positive distributions
(Lauritzen, 1996) O.

The equivalence of the per-variable factors and
MBCFs implies that, instead of searching over all size
[ subsets of X, we can estimate canonical factors by
searching for MBs of individual RVs. Assuming that
the MBs are estimated correctly, Eq 5 will produce the

same canonical factors as Eq 1. Our structure learn-
ing algorithm therefore requires the estimation of MBs
of each RV. We only need to ensure structural consis-
tency (Section 2.4). Searching for n MBs, as opposed
to n! MBs in MBCF, saves us O(n!~!) computations.

The per-variable canonical factors and MBCF's do not
deny the hardness of computing likelihood in MRF's
(Abbeel et al., 2006). This is because computing
P(X =X) is equivalent to computing %

Algorithm 1 Markov Blanket Search

Input:
Random variable set, X = {X1, -+, X|x|}
maximum neighborhood sizes, kmaz, khard
Output:
Inferred graph structure G
for k = 1;k < kmaz; k+ + do
for X; € X do {Add stage}
Find best new MB variable X; that maximizes AS;;
s.t. |M;| < k (Eq 6)
end for
for X; € X do {Swap stage}
for X; € 1\//L}C do
for X, € X\ (M;" U{X;}) and [M,"| < knara
and X, ¢ tabulist(X;) do
Delete {X;,X;}, add {X;, X4}, add X; to
tabulist(X;) if swapping X, for X; gives max-
imal score improvement.
end for
end for
end for
end for

2.4. Markov blanket search (MBS) algorithm

The MBS algorithm learns the structure of a MRF
by finding the best neighborhood or Markov blan-
ket (MB) for each RV. To identify the best MB, we
need to optimize a score, S(X;|M;) per RV X;, which
quantifies dependence between a RV and its MB. Ex-
amples of such scores include pseudolikelihood (de-
pendency networks) or conditional entropy (MBCP)
(Cover & Thomas, 1991). For example, the best MB
identified via conditional entropy, H (X;|M;) is: M; =
arg ming; H(Xl|ﬁl) Best MB via pseudolikelihood,

i

PLL(X;|M;), is: M; = arg maxg; PLL(X;|M,)

Dependency networks and MBCP identify the best
MB per RV by optimizing S(X;|M;) per RV!. How-
ever, optimizing S(X;|M;) per RV independently, may
result in inconsistent MBs. In particular, we cannot
guarantee that if X; € M,, then X; € M;. This

inconsistency can be handled as a post-processing of

In MBCP estimation, MBs of variable sets are iden-
tified independently. MBCP requires an additional subset
consistency check: if X C Y, then Mx € (My U (Y \ X))
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the learned MBs (Schmidt et al., 2007). However, our
experiments suggest that a post-processing approach
produces lower quality MBs (Section 3.2).

We propose a different approach that finds consistent
MBs during the search process. To find consistent
MBs, we search MBs, not only using the improvement
in S(X;|M;) on adding X, but also the score change
in S(X;|M;) if X; was added to M. This is done by
computing the net score gain per candidate MB for
X;. Let M\ik ' denote the best MB for X; obtained
so far. Then the score gain is:

AS; = SCGIMLT ) — S(GIML T UG +
— k-1 — k-1
S(X;IM; ) = S(X; M, U{X;}). (6)

Our approach is similar to Hofmann & Tresp’s edge-
based score for guaranteeing consistency (Hofmann &
Tresp, 1998). However, their search strategy starts
from a fully connected network and removes edges,
whereas we add and replace edges starting with a com-
pletely disconnected network. For real-world domains,
growing larger neighborhoods from smaller neighbor-
hoods is more feasible than shrinking large neighbor-
hoods, because we may not have enough data for reli-
ably learning large neighborhoods.

The MBS structure learning algorithm uses Eq 6
to greedily identify the best MB for each variable
(Algo. 1). Each iteration uses a combination of add
and swap operations to learn the best structure. In the
add stage of the k" iteration, we make one variable

k-1
extensions to the current IM; of each X;, restricting
to at most k < k4. RVs per MB.

K
In the swap stage, we revisit all variables X; € M; for

&
each X;, and consider other RVs, X, ¢ ({X;} UM, ),
which if swapped in instead of Xj, gives a score im-
provement. If so, we replace X; by X, with the max-

imal score improvement, in 1\//1\7 , and store X in the
tabu list of X;. This prevents X; from being included
in X;’s MB in subsequent iterations. In the swap stage,
a variable can be present in > k.. MBs. However, no
variable can be in more than kj,.q = 20 MBs. Thus,
nodes in our inferred networks have degrees > kjqrq,
which reasonably models hub nodes in most domains.

The per-variable canonical factor equivalence ex-
ploited by MBS to identify the MRF structure does
not make any specific assumptions of the parametric
form of the conditional probability distributions. MBS
only requires that the candidate MBs be scored us-
ing the conditional probability distributions. So MBS
can potentially be instantiated with any probability

distribution and choice of score. For empirical evalu-
ation of our framework, we selected P(X;|M;) to be
conditional Gaussians and S(X;|M;) to be the regu-
larized conditional entropy for each X;: S(X;|M;) =
H(X;M;) + Mog(|M;|). Alog(|M;|) penalizes large
MBs and 0 < A <1 is a regularization coefficient.

3. Results

We compared our Markov Blanket Search (MBS) al-
gorithm against existing algorithms for undirected and
directed graphs on both simulated and real data. Our
test data is from biology. The simulated data are from
networks of known structure, enabling a direct val-
idation of the inferred structures. The real data is
from microarray experiments. However, as the true
network for the real data is not known, we use biolog-
ical literature to validate the inferred structures. This
test framework is common in bioinformatics (Margolin
et al., 2005; Li & Yang, 2005).

3.1. Comparison on simulated datasets

We compared MBS to two undirected algorithms:
ARACNE (Margolin et al., 2005), and a Lasso
regression-based Graphical Gaussian model (GGLAS)
(Li & Yang, 2005). We also compared MBS against
several directed models provided in the DAGLearn
software: full DAG search (FULLDAG), LARs based
order search (ORDLAS), DAG search using Sparse
candidate for pruning (SPCAND), and DAG search
using L1 regularization based Markov blanket estima-
tion (L1MB) (Schmidt et al., 2007). Because LIMB
does not learn consistent Markov blankets, a post-
processing step is required to make the structures con-
sistent. The AND post-processing removes X; from
M; if X; ¢ M,;, where M; and M, are X;’s and
X;’s MB, respectively. The OR post-processing in-
cludes X; in M; if X; € M;. We refer to LIMB
with AND and OR post-processing as MBAND and
MBOR, respectively. We also included an imple-
mentation of order MCMC (ORDMC) for Bayes net
search (http://www.bioss.ac.uk/staff/.adriano/
comparison/comparison.html).

The simulated datasets were generated by a gene reg-
ulatory network simulator using differential equations
for describing gene and protein expression dynamics
(Roy et al., 2008). We generated four datasets: G50,
G75, ECOLI1 and ECOLI2 with n = 100,150,188
and 188 nodes, respectively. Each sample consists of
steady-state expressions reached after perturbing the
kinetic constants of the genes. Networks for G50 and
G75 were generated de novo by the simulator. The
network for both ECOLI1 and 2 belong to the bac-
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Table 1. Algorithm comparison on two datasets. Rows give different structure scores; columns are different structure
learning algorithms; each entry is an E or V score. Bold™ and italics indicate that MBS performs significantly better or
worse than the algorithm compared. SPN: shortest path neighborhood, 1N, 2N: r = 1 and r = 2 neighborhood, 3C, 4C:

cycles of size 3 or 4.

MBS ARACNE ORDER SPCAND MBOR GGLAS

SPN  0.550 0.418" 0.533 0.516" 0.417° 0.463"

1IN  0.661 0.440" 0.587" 0.560" 0.432" 0.836

3| E| 2N 0.589 0.444" 0.532" 0.510" 0.438* 0.562"
O 3C  0.800 0.400 0.792 0.784 0.250" 0.866
4C  0.645 0.440" 0.630 0.580" 0.367" 0.721

SPN  0.308 0.345 0.2647 0.2627 0.292 0.379

IN  0.352 0.426 0.285" 0.276" 0.416 0.231

V| 2N 0.335 0.361 0.273" 0.261" 0.353 0.340
3C  0.328 0.251" 0.284" 0.287" 0.233" 0.271

4C  0.324 0.246" 0.281" 0.275" 0.230" 0.260

SPN  0.747 0.753 0.703 0.759 0.729" 0.729"

= | E IN  0.751 0.776 0.690 0.778 0.705*  0.700*
S 2N 0.726 0.752 0.679 0.749 0.724 0.719
@) SPN  0.514 0.567 0.3037 0.3547 0.520 0.522
BlV| IN 0.608 0.667 0.326" 0.396" 0.627 0.639
2N 0.591 0.622 0.308" 0.376" 0.585 0.594

Table 2. Number of times MBS loses/beats statistically significantly another algorithm. Rows are for different datasets.

GGLAS did not complete on ECOLI2.

DATA [ARACNE ORDMC FULLDAG ORDLAS SPCAND MBAND MBOR GGLAS
G50 3/6 0/4 0/5 2/5 0/9 2/3 37 2/2
GT75 0/3 0/6 0/5 0/5 0/5 0/5  0/10  3/4

ECOLIL| 3/0 1/2 0/3 0/3 2/3 1/1 2/2  2/2

ECOLI2|  0/0 0/1 0/6 0/6 0/6 0/6 0/6 -

teria, E. coli. In ECOLI2 only a subset of the genes
(regulators) are perturbed, whereas in ECOLI1, G50
and G75 all genes are perturbed.

As the true network topologies for these data are
known, we compared the algorithms using the match
between the inferred and true network structures. Be-
cause we are interested in higher-order dependencies,
we matched subgraphs rather than edges. Briefly, we
extracted subgraphs of different types (e.g. cycles,
neighborhood) from the true network and used an F-
score measure to match the vertex neighborhood and
edge set per subgraph. We refer to the scores for vertex
neighborhood as V-scores and for edge set as FE-scores.
We use shortest path neighborhoods (SPN), r-radius
neighborhoods comprising a vertex and its neighbors
< r steps away (r € {1,2}, denoted by 1IN and 2N),
and cycles of size r (r € {3,4}, denoted by 3C and 4C).
ECOLI1 and 2 did not have any cycles. We moralize
the inferred DAGs prior to comparison.

Our comparison used E and V-scores averaged over
four runs per algorithm corresponding to different set-
tings of an algorithm-specific parameter. This param-
eter is A in MBS (Section 2.4), data processing inequal-
ity d in ARACNE, and hyper-prior parameter for the
variance in GGLAS. For all DAG searches other than
ORDMC, we used different random restart probabil-

ities to generate different candidate graphs. In our
experiments, A € {le — 5,3e — 5,5e — 5,7e — 5} and
d € {0,0.3,0.5,0.7}. All simulated experiments used
1 < kpar < 11. For ORDMC, we varied the edge
posterior probability. For each parameter setting, the
graph with the highest average of E and V score is
used. We compare the best graph per algorithm across
different parameter settings.

We show results on two of the four datasets, G50 and
ECOLI1 (Table 1). Our complete results are summa-
rized in Table 2. For all datasets other than ECOLI1,
MBS significantly beats all algorithms at least as often
as it is beaten (Student’s t-test, p-value < 0.05). On
ECOLI1, ARACNE outperforms all algorithms, sug-
gesting that ECOLI1 likely does not contain many
higher-order dependencies. There is no significant
difference between MBS and ARACNE on ECOLI2,
which is generated from the same network as ECOLI1
using different perturbations.

We find that the performance margin between MBS
and the DAG learning models is greater than undi-
rected learning algorithms, suggesting undirected
graphs may be better representations for this domain.
Overall, MBS does a better job of learning the network
structures compared to both directed and undirected
algorithms for majority of the datasets.
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Table 3. Comparison of MBS pruning against Sparse candidate and L1 MB regularization. Legend same as Table 1.

G50 GT75

SPCAND MBOR MBS || SPCAND MBOR MBS

SPN 0.48 0.458 0.504 0.349 0.404 0.435

1IN 0.516 0.523 0.561 0.467" 0.523"  0.567

E | 2N 0.466 0.485" 0.538 0.424 0.474* 0.486
3C 0.465 0.414 0.556 0.498 0.481* 0.612

4C 0.508 0.463* 0.532 0.458 0.447*  0.595

SPN 0.27" 0.27* 0.348 0.269 0.299  0.257

1IN 0.295" 0.328" 0.413 0.288 0.331 0.256

V| 2N 0.274" 0.296" 0.367 0.27 0.287 0.247
3C 0.274 0.316 0.318 0.247 0.241 0.241

4C 0.256 0.276 0.327 0.274 0.22" 0.279

Table 4. Number of GO terms MBS has worse/better en-
richment than other algorithms.
Q1 Q2 NQ1 NQ2
ARACNE 556/641 471/734 409/685 518/487
SPCAND 434/570 278/784 325/809 567/762

Locality

Sensitivity

Q1 Q2 NQ1 NQ2 Q1

Q2 NQ1 NQ2

Figure 1. Enrichment sensitivity and locality for signifi-
cance p < 1073, Higher values are better.

3.2. Structural consistency for pruning DAGs

To assess the value of enforcing consistency during
learning, rather than as a post-processing step, we
used the MBS-learned Markov blankets as family con-
straints in DAG search algorithms. We compared the
DAG structures constrained using MBS Markov blan-
kets against those constrained by Sparse candidate
(SPCAND) and L1 MB regularization (L1MB). LIMB
uses either an OR or AND of the Markov blankets to
generate consistent Markov blankets.

We used the maximum size of LIMB AND and OR
Markov blankets as the neighborhood size, k, for MBS
and SPCAND. We first compared L1IMB with OR
post-processing (MBOR) using & = 11 for both G50
and G75 (Table 3). We found the DAGs constrained
by MBS-learned Markov blankets to significantly out-
perform both SPCAND or L1MB-constrained DAGs
more often than being outperformed. Using L1MB
AND (k = 4,6 for G50 and G75, respectively) MBS
outperformed SPCAND or L1MB with a greater mar-
gin. This indicates that enforcing consistency, dur-
ing structure learning produces higher-quality Markov
blankets, than as a post-processing step.

3.3. Comparison on real biological data

We compared MBS against ARACNE and SPCAND
on real-world biological data. GGLAS did not com-
plete within 48 hrs on this data, so is omitted. Each
dataset measures the gene expression response of two
different populations of yeast cells, Quiescent (Q) and
Non-quiescent (NQ), to genetic perturbations (Aragon
et al., 2008). Each dataset had a biological repli-
cate, resulting in four datasets: Q1, Q2, NQI1 and
NQ2. We pre-processed these data to include n = 1808
genes with < 80% missing data. We used MBS with
A = 107% kpnas = 4, ARACNE with dpi = 0.3 and
SPCAND with 4 parents. A relatively large value of
A, compared to that in simulated networks was used
because of the large number of nodes in this data.

As the true network is not known, we used statisti-
cal enrichment of subgraphs generated from the in-
ferred networks, in biological processes from Gene on-
tology (GO), to assess the quality of the networks.
For each inferred network, we generated neighborhood
subgraphs of radius » = 1. For each subgraph g and
term ¢, we computed a hyper-geometric p-value, assess-
ing the statistical significance of observing g’s genes to
be annotated with t. The lower the p-value the better
is the statistical enrichment. We first computed the
number of GO terms MBS had better (lower p-value)
or worse enrichment compared to other algorithms
(Table 4). We found that MBS had more terms with
better enrichment in all except one case (ARACNE,
NQ2). This suggests that networks identified via MBS
capture more significant biological dependencies.

We also compared the algorithms using two other mea-
sures (Fig 1). Enrichment sensitivity is the ratio of the
min(no. of subgraphs, no. of enriched terms) to the
total number of subgraphs. Enrichment locality is the
correlation between average p-value of a term and the
number of subgraphs enriched in that term. A positive
correlation suggests that terms with higher p-values
(less enriched) are associated with many subgraphs,
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whereas terms with lower p-values (more enriched) are
associated with fewer subgraphs. Ideally, an algorithm
should identify good enrichment for the majority of
subgraphs (high sensitivity), and also associate highly
enriched terms with a few subgraphs (high locality).

We used different stringency levels of enrichment (p-
value € {1073,107%,1075,107°}) to assess the enrich-
ment sensitivity and locality of the algorithms on all
four datasets (Fig. 3.2 shows the sensitivity and lo-
cality for p-value< 1073). At p-value < 1073 and
< 107%, ARACNE and SPCAND had significantly
higher sensitivity, but significantly lower locality than
MBS (Wilcoxon rank sum, p < 0.05). However, there
was no statistical difference for higher stringency of en-
richment. These results suggest that there is a trade off
between different algorithms for biological data. MBS
identifies subgraphs that are locally coherent at the
cost of having fewer subgraphs that are enriched in a
term. On the other hand, ARACNE and SPCAND
identify more subgraphs with enrichment, but may
overly fragment coherent gene groups. Finally, there is
no significant difference between algorithms at higher
stringency, suggesting that the algorithms agree on the
GO terms that are the most significant.

4. Conclusion

We have described a new algorithm for inferring
undirected graphs that yields structurally consistent
graphs, guaranteeing a joint probability distribution
for the RVs. We compared our algorithm to several
algorithms for learning undirected and directed mod-
els. On simulated data, we show that enforcing consis-
tency during structure learning more accurately cap-
tures the graph structure. Our approach also produces
higher-quality Markov blankets, that when used to
prune DAG searches, yields better structures. On real
data, MBS identifies more significant ontology terms
associated with functionally coherent gene groups.
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