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Abstract

Sparsity is a desirable property in high di-
mensional learning. The `1-norm regular-
ization can lead to primal sparsity, while
max-margin methods achieve dual sparsity.
Combining these two methods, an `1-norm
max-margin Markov network (`1-M3N) can
achieve both types of sparsity. This paper
analyzes its connections to the Laplace max-
margin Markov network (LapM3N), which
inherits the dual sparsity of max-margin
models but is pseudo-primal sparse, and to
a novel adaptive M3N (AdapM3N). We show
that the `1-M3N is an extreme case of the
LapM3N, and the `1-M3N is equivalent to an
AdapM3N. Based on this equivalence we de-
velop a robust EM-style algorithm for learn-
ing an `1-M3N. We demonstrate the advan-
tages of the simultaneously (pseudo-) primal
and dual sparse models over the ones which
enjoy either primal or dual sparsity on both
synthetic and real data sets.

1. Introduction

Learning structured prediction models, which explic-
itly explore the structural dependencies among in-
put features (e.g., text sequences, DNA strings) and
structural interpretational outputs (e.g., parsing trees,
gene annotations), has gained substantial popularity
in data mining, machine intelligence, and scientific dis-
covery. Based on different learning paradigms, ma-
jor instances of such models include the conditional
random fields (CRFs) (Lafferty et al., 2001) based on
maximum conditional likelihood estimation, and max-
margin Markov networks (M3Ns) (Taskar et al., 2003)
or structural SVMs (Altun et al., 2003; Tsochantaridis
et al., 2004) based on max-margin learning.
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For domains with complex feature spaces, it is of-
ten desirable to pursue a sparse representation of the
model that leaves out irrelevant features. We say a
model enjoys primal sparsity, if only very few fea-
tures in the original model have non-zero weights. The
term “primal” stems from a convention in the op-
timization literature, which generally refers to (con-
strained) problems pertaining to the original model.
Primal sparsity is important for selecting significant
features and for reducing the risk of over-fitting. The
bet-on-sparsity principle (Friedman et al., 2004) sug-
gests that one should prefer the model that does well
in sparse problems. In likelihood-based estimation,
sparse model fitting has been extensively studied. A
common strategy is to add an `1-penalty of feature
weights to the log-likelihood function. Due to the sin-
gularity of `1-norm at the origin (Tibshirani, 1996),
`1-norm regularization can lead to primal sparse esti-
mates. Recent work on structure learning of graphical
models (Lee et al., 2006; Wainwright et al., 2006) falls
into this paradigm.

Another type of sparsity, as enjoyed by large mar-
gin models, like the unstructured SVM and the struc-
tured M3N, is the dual sparsity, which refers to a phe-
nomenon that only a few Lagrangian multipliers in the
dual form of the original model turn out to be non-
zero. When a model is dual sparse, its decision bound-
ary depends only on a few number of support vectors,
which in principle leads to a robust decision bound-
ary. Moreover, the dual sparsity provides a theoretical
motivation of the cutting-plane algorithms (Tsochan-
taridis et al., 2004) and the bundle methods (Smola
et al., 2007), which generally explore the fact that in
max-margin models only very few (e.g., polynomial)
number of constraints are sufficient to achieve a good
enough solution. Unfortunately, although both pri-
mal and dual sparsity can benefit structured predic-
tion models, they usually do not co-exist. For exam-
ple, the powerful M3N is not primal sparse, because it
employs an `2-norm penalty that cannot automatically
select significant features.

One natural way to bring these two types of spar-
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sity together is to build an `1-norm regularized large
margin model. In the structured learning setting, `1-
norm regularized max-margin Markov networks (`1-
M3N) can be formulated, following the same spirit
of the unstructured 1-norm SVM (Zhu et al., 2004).
Another approach that attempts to achieve both pri-
mal and dual sparsity is the recently proposed Laplace
max-margin Markov networks (LapM3N) (Zhu et al.,
2008b), which inherit the dual sparseness of max-
margin models. However, since the posterior shrink-
age effect as shown in (Zhu et al., 2008b) is smooth,
LapM3N is pseudo-primal sparse (i.e., only very few
input features have large weights) and does not explic-
itly select features by setting the weights of irrelevant
features to zeros.

This paper presents the `1-M3N and a novel adap-
tive M3N, and analyzes their close connections to the
LapM3N from both theoretical and algorithmic per-
spectives. In the theoretical aspect, we show that `1-
M3N is an extreme case of LapM3N when the regu-
larization constant of the entropic regularizer goes to
infinity and LapM3N is a smooth relaxation of `1-M3N.
We also show that `1-M3N is equivalent to an adaptive
M3N. In the algorithmic aspect, based on the equiva-
lence between `1-M3N and an adaptive M3N, we de-
velop a novel EM-style algorithm to learn an `1-M3N.
The robust algorithm has the same structure as the
variational algorithm of LapM3N (Zhu et al., 2008b)
and helps uncover the difference between `1-M3N and
LapM3N. Finally, we present empirical studies com-
paring `1-M3N and LapM3N with competing models,
which enjoy either primal or dual sparsity but not
both, on both synthetic and real data sets.

The rest of the paper is structured as follows. Sec. 2
presents problem formulations, including the `1-M3N
and an adaptive M3N. Sec. 3 presents the theoretical
connections, while Sec. 4 discusses the algorithmic
connection. Sec. 5 presents our empirical studies, and
Sec. 6 concludes this paper.

2. Problem Formulation

Structured output classification aims to learn a predic-
tive function h : X → Y, where X is the subspace of
inputs and Y = Y1 × · · · × Yl is the space of outputs,
which are multivariate and structured. For part-of-
speech (POS) tagging, Yi consists of all the POS tags,
and each input x is a word sequence and each label
y = (y1, · · · , yl) is a sequence of POS tags. We assume
a finite number of feasible outputs for any input.

In supervised learning, where input-output pairs (x,y)
are drawn i.i.d. from a distribution P (X,Y), the goal
is to find an h from a hypothesis space that minimizes

the risk: R(h) = E(x,y)∼P [∆`(h(x),y)], where ∆` is
a non-negative loss function, e.g., the hamming loss:
∆`(ŷ,y) =

∑l
j=1 I(ŷj 6= yj), where I(·) is an indica-

tor function that equals one if the argument holds and
zero otherwise. ∆`(ŷ,y) measures the loss of the pre-
diction ŷ when the true prediction is y. Since the true
distribution P is unknown, empirical risk is used as
an approximation of the risk. Given a set of training
data D = {(xi,yi)}N

i=1, drawn i.i.d from P , the em-
pirical risk is: Remp(h) = 1

N

∑N
i=1 ∆`(h(xi),yi). To

avoid over-fitting, one method is to minimize the reg-
ularized empirical risk: λΩ(h) +Remp(h), where Ω(h)
is a regularizer, and λ is a regularization parameter.

2.1. `2-norm Max-Margin Markov networks

Let F ( . ;w) : X × Y → R be a parametric dis-
criminant function over the input-output pairs. The
max-margin Markov networks define a predictive rule
as an optimization problem:

h0(x;w) = arg max
y∈Y

F (x,y;w). (1)

A common choice of F is a linear model, where F is
defined by a set of K feature functions fk : X ×Y → R
and their weights wk: F (x,y;w) = w>f(x,y).

Consider the general case where errors are allowed in
the training data. To learn such a prediction rule h0,
the “margin re-scaling” `2-norm M3N (Taskar et al.,
2003) minimizes a regularized structured hinge loss:

min
w

λ‖w‖2
2 +Rhinge(w), (2)

where Rhinge(w) , 1
N

∑
i maxy∈Y [∆`i(y) −

w>∆fi(y)], of which ∆`i(y) = ∆`(y,yi) and
∆fi(y) = f(xi,yi) − f(xi,y). w>∆fi(y) is the “mar-
gin” favored by the true label yi over a prediction y.
Since maxy∈Y [∆`i(y) − w>∆fi(y)] ≥ ∆`(y,yi) for
w>∆fi(y) ≤ 0, Rhinge(w) is an upper bound of the
empirical risk of the prediction rule (1).

The problem (2) can be equivalently formulated as a
constrained optimization problem:

P0 (M3N) : min
w,ξ

1

2
‖w‖2

2 + C

N∑
i=1

ξi

s.t. ∀i,∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

where ξi is a slack variable absorbing errors in train-
ing data and C is a positive constant. P0 is a con-
vex program and satisfies the Slater’s condition. Due
to the KKT condition, `2-norm M3N enjoys the dual
sparsity, i.e., only a few lagrange multipliers are non-
zero, which correspond to the active constraints whose
equality holds, analogous to the support vectors in
SVM. However, due to the differentiability of `2-norm,
the `2-norm M3N is not primal sparse.
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Exploring sparse dependencies among individual la-
bels in y, efficient optimization algorithms based on
cutting-plane (Tsochantaridis et al., 2004), message-
passing (Taskar et al., 2003), or gradient de-
scent (Bartlett et al., 2004; Ratliff et al., 2007) have
been proposed to (approximately) solve P0.

2.2. Laplace Max-Margin Markov Networks

Unlike the M3N, which performs point-estimate to
predict based on a single rule F ( . ;w), the Laplace
max-margin Markov networks (LapM3N) (Zhu et al.,
2008b) approach the structured prediction problem
by performing Bayesian-style learning under the
general structured maximum entropy discrimination
formalism (Zhu et al., 2008b), which facilitates a
Bayes-style prediction by averaging F ( . ;w) over a
posterior distribution of rules p(w):

h1(x) = arg max
y∈Y

∫
p(w)F (x,y;w) dw , (3)

where p(w) is estimated by learning a maximum en-
tropy discrimination Markov network (MaxEnDNet,
or MEDN) (Zhu & Xing, 2009).

In the same spirit of the structured hinge loss of
M3N, the empirical risk of the averaging model (3)
is upper bounded by the expected structured hinge loss:

Rhinge(p(w)) =
1

N

∑
i

max
y∈Y

∫
p(w)[∆`i(y)−∆Fi(y;w)] dw .

MaxEnDNet minimizes a regularized structured hinge
loss as in (2) and uses the KL-divergence with a prior
to regularize p(w), i.e., Ω(p(w)) = KL(p(w)‖p0(w)).
Similar to (2), the MaxEnDNet can be equivalently
formulated as a constrained optimization problem:

P1 (MEDN) : min
p(w),ξ

KL(p(w)||p0(w)) + U(ξ)

s.t. ∀i,y :

∫
p(w)[∆Fi(y;w)−∆`i(y)] dw ≥ −ξi; ξi ≥ 0,

where U(ξ) is a closed proper convex function over
slack variables ξ, e.g., U(ξ) = C

∑
i ξi. U is also known

as a potential term in the maximum entropy principle.

The problem P1 is a convex program, and satisfies the
Slater’s condition. As showin in (Zhu et al., 2008b),
the optimum solution of P1 is:

p(w) =
1

Z(α)
p0(w) exp{

∑
i,y

αi(y)[∆Fi(y;w)−∆`i(y)]},

where Z(α) is a normalization factor and the lagrange
multipliers αi(y) (corresponding to constraints in P1)
can be obtained by solving the following dual problem:

D1 : max
α

− log Z(α)− U?(α)

s.t. αi(y) ≥ 0, ∀i, ∀y,

where U?(·) is the conjugate of the slack function U(·),
i.e., U?(α) = supξ

( ∑
i,y αi(y)ξi − U(ξ)

)
.

Due to the KKT condition, the above solution enjoys
the dual sparsity as in M3N. Thus, MaxEnDNet en-
joys a similar generalization property as the M3N and
SVM due to the small “effective size” of the margin
constraints. In fact, as shown in (Zhu et al., 2008b),
`2-norm M3N is a Gaussian MaxEnDNet where the
prior is standard normal and U(ξ) = C

∑
i ξi.

The Laplace max-margin Markov network (LapM3N)
is a Laplace MaxEnDNet by using a heavy tailed
Laplace prior, which encodes the prior belief that the
distribution of w is strongly peaked around zero. Since
the KL-divergence is differentiable, the resulting pos-
terior shrinkage effect in LapM3N, as shown in (Zhu
et al., 2008b), is smooth. Thus, in the input feature
space, LapM3N is pseudo-primal sparse, i.e., only a few
elements in w have large values. This pseudo-primal
sparsity makes LapM3N enjoy nice robust properties
and in many cases as we shall see LapM3N can perform
as well as a primal sparse M3N, as presented below.
The robustness of KL-regularization is also demon-
strated in sparse coding (Bradley & Bagnell, 2008).

Below, we introduce two novel formulations of sparse
M3Ns and then analyze their connections.

2.3. `1-norm Max-Margin Markov Networks

To introduce the primal sparsity in max-margin
Markov networks in a more direct way, we propose
to use the `1-norm of the model parameters in the
regularized hinge loss minimization framework (2).
Therefore, the `1-M3N is formulated as follows,

P2 (`1-M
3N) : min

w,ξ

1

2
‖w‖1 + C

N∑
i=1

ξi

s.t. ∀i, ∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

where ‖.‖1 is the `1-norm. Another equivalent formu-
lation1, which is useful in the subsequent analysis and
algorithm development, is as follows:

P2′ : min
w

Rhinge(w)

s.t. ‖w‖1 ≤ λ

Unlike `2-norm, the `1-norm is not differentiable at
the origin. This singularity property ensures that the
`1-M3N is able to remove noise features by estimat-
ing their weights to be exactly zero. When the feature
space is high dimensional and has many noise features,
the `2-norm M3N will suffer a poor generalization abil-
ity caused by these noise features. Thus, the `1-norm
M3N, or the closely related pseudo-sparse LapM3N,
would be a better choice in this scenario. Moreover,
the primal sparse `1-M3N is of great interest itself like
the 1-norm SVM because it can automatically select
significant features in max-margin Markov networks.

1See (Taskar et al., 2006) for transformation techniques.
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To learn an `1-M3N, various methods can be applied,
such as the sub-gradient method (Ratliff et al., 2007)
with a projection to an `1-ball (Duchi et al., 2008)
based on the P2′ formulation, and the cutting-plane
method (Tsochantaridis et al., 2004) with an LP solver
to solve the generated LP sub-problems based the for-
mulation P2. Our empirical studies show that both
of these algorithms are sensitive to their regulariza-
tion constants. We will develop a novel EM-style algo-
rithm, which is robust and helps uncover the connec-
tion and difference between `1-M3N and LapM3N.

2.4. Adaptive Max-Margin Markov Networks

Our EM-style algorithm for the `1-M3N is developed
based on an equivalence between the `1-M3N and an
adaptive M3N, which is defined as follows:

P3 (AdapM3N) : min
w,τ,ξ

w>Σ−1w + C

N∑
i=1

ξi,

s.t. ∀i, ∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0

∀k :
1

K

K∑
k=1

τk =
1

λ
; τk ≥ 0.

where Σ = diag(τ).

The rationale behind P3 is that: by adaptively penaliz-
ing different components, the coefficients of irrelevant
features can be shrunk to zero, i.e., the corresponding
τ go to zero. The same idea have been explored in
Automatic Relevance Determination (Qi et al., 2004)
and sparse Bayesian learning (Tipping, 2001). The
mathematical intuition is from a two-layer interpreta-
tion of the Laplace prior (Figueiredo, 2003), namely,
a univariate Laplace distribution p(w) =

√
λ

2 e−
√

λ|w|

is equivalent to a Gaussian-exponential model, where
w is a zero-mean normal p(w|τ) = N (w|0, τ) and the
variance τ has an exponential hyper-prior: p(τ |λ) =
λ
2 exp{−λ

2 τ}, for τ ≥ 0. Therefore, the quadratic term
of w>Σ−1w in P3 is from the first layer Gaussian dis-
tribution, and the constraint 1

K

∑
k τk = 1

λ is from the
second-layer hyper-prior, because the mean of the ex-
ponential hyper-prior is E[τ ] = 1

λ and 1
K

∑K
k=1 τk is

an empirical estimate of E[τ ]. Thus, the first-order
constraint 1

K

∑K
k=1 τk = 1

λ can be seen as a relaxation
of the exponential hyper-prior.

3. Theoretical Connections

In this section, we show the theoretical connections of
three variants of sparse max-margin Markov networks.
We show that LapM3N is a smooth relaxation of `1-
M3N; `1-M3N is an extreme case of LapM3N; and `1-
M3N is equivalent to an adaptive M3N. Due to space
limitation, the proofs are deferred to a longer version.

We begin with the special case of Gaussian MaxEnD-
Net, for which we have the following corollary:

Corollary 1 Assuming F (x,y;w) = w>f(x,y),
U(ξ) = C

∑
i ξi, and p0(w) = N (0, I), the mean µ of

the posterior distribution p(w) under the MaxEnDNet
is achieved by solving the following problem:

min
µ,ξ

1

2
µ>µ + C

N∑
i=1

ξi

s.t. ∀i, ∀y 6= yi : µ>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0.

Since in linear models the averaging prediction rule h1

is determined by the posterior mean, the above corol-
lary shows a reduction of MaxEnDNet to M3N. This
result is complementary to the reduction theorem in
(Zhu et al., 2008b), which considers dual problems.

3.1. LapM3N v.s. `1-M3N

By using the Laplace prior in MaxEnDNet, we can
get the following theorem for LapM3N.

Theorem 2 Assuming F (x,y;w) = w>f(x,y),
U(ξ) = C

∑
i ξi, and p0(w) =

(√
λ

2

)K
e−

√
λ‖w‖, the

mean µ of the posterior distribution p(w) under
the MaxEnDNet is obtained by solving the following
primal problem:

min
µ,ξ

√
λ

K∑
k=1

(

√
µ2

k +
1

λ
− 1√

λ
log

√
λµ2

k + 1 + 1

2
) + C

N∑
i=1

ξi

s.t. µ>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0, ∀i, ∀y 6= yi.

Since the term
∑K

k=1(
√

µ2
k + 1

λ − 1√
λ

log
√

λµ2
k+1+1

2 )
corresponds to the KL-divergence between p(w) and
p0(w) under a Laplace MaxEnDNet, we will refer to it
as a KL-norm2 and denote it by ‖µ‖KL in the sequel.
This KL-norm is different from the `2-norm, but is
closely related to the `1-norm, which encourages a
sparse estimator due to its singularity at the origin.
Specifically, we have the following corollary:

Corollary 3 The LapM3N yields the same estimate
as the `1-M3N when λ →∞.

To prove Corollary 3, we note that as λ goes to infinity,
the logarithm terms in ‖µ‖KL disappear because of the
fact that log x

x → 0 when x →∞. Thus, the KL-norm
‖µ‖KL approaches ‖µ‖1, i.e., the `1-norm, as λ →∞.
This means that the LapM3N will be (nearly) the same
as the `1-M3N if the regularization constant λ is large
enough. In (Zhu et al., 2008b), a posterior shrinkage
effect is shown based on the exact computation of the

2This is not exactly a norm because the positive scala-
bility does not hold. However, by using the inequality ex ≥
1 + x, we can show: ∀k, (

√
µ2

k + 1
λ
− 1√

λ
log

√
λµ2

k
+1+1

2
) is

monotonically increasing with respect to µ2
k and ‖µ‖KL ≥

K/
√

λ, where the equality holds only when µ = 0. Thus,
‖µ‖KL penalizes large weights. For convenient comparison
with the popular `2 and `1 norms, we call it a KL-norm.
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Figure 1. (Left) `2-norm (solid line) and `1-norm (dashed
line); (Right) KL-norm with different Laplace priors.

normalization factor. Theorem 2 and Corollary 3 offer
another perspective of how the pseudo-primal sparse
LapM3N relates to the primal sparse `1-M3N.

A more explicit illustration of the entropic regulariza-
tion under a LapM3N, comparing to the `1 and `2 regu-
larization over an M3N, can be seen in Figure 1, where
the feasible regions due to the three different norms
used in the regularizer are plotted in a two dimensional
space. Specifically, it shows (1) `2-norm: w2

1 +w2
2 ≤ 1;

(2) `1-norm: |w1| + |w2| ≤ 1; and (2) KL-norm3:√
w2

1 + 1/λ+
√

w2
2 + 1/λ− (1/

√
λ) log(

√
λw2

1 + 1/2+
1/2) − (1/

√
λ) log(

√
λw2

1 + 1/2 + 1/2) ≤ b, where
b is a parameter to make the boundary pass the
(0, 1) point for easy comparison with the `2 and
`1 curves. It is easy to show that b equals to√

1/λ +
√

1 + 1/λ − (1/
√

λ) log(
√

λ + 1/2 + 1/2). It
can be seen that the `1-norm boundary has sharp
turning points when it passes the axes, whereas the
`2 and KL-norm boundaries turn smoothly at those
points. This is the intuitive explanation of why the
`1-norm directly gives sparse estimators, whereas the
`2-norm and KL-norm due to a Laplace prior do not.
But as shown in Figure 1, when the λ gets larger
and larger, the KL-norm boundary moves closer and
closer to the `1-norm boundary. When λ → ∞,√

w2
1 + 1/λ+

√
w2

2 + 1/λ− (1/
√

λ) log(
√

λw2
1 + 1/2+

1/2) − (1/
√

λ) log(
√

λw2
1 + 1/2 + 1/2) → |w1| + |w2|

and b → 1, which yields exactly the `1-norm in the
two dimensional space. Thus, under the linear model
assumption of the discriminant functions F ( · ;w), the
MaxEnDNet with a Laplace prior (i.e., the LapM3N)
can be seen as a smooth relaxation of the `1-M3N.

3.2. `1-M3N is an Adaptive M3N

For the `1-M3N and adaptive M3N, we have the
following equivalence theorem:

Theorem 4 The AdapM3N yields the same estimate
as the `1-M3N.

3The curves are drawn with a symbolic computational
package to solve an equation of the form: 2x − log x = a,
where x is the variable to be solved and a is a constant.

Basically, our proof follows a similar technique as
in (Grandvalet, 1998), where an equivalence between
adaptive regression and the `1-regularized least square
regression (LASSO) (Tibshirani, 1996) is proved.

4. EM-Style Learning of `1-M
3N

Based on the theorem 4, we develop a novel algo-
rithm to approximately solve the `1-M3N. As we shall
see, this algorithm provides another perspective on
the connection and difference between the `1-M3N and
LapM3N. The algorithm iteratively solves the follow-
ing two steps until a local optimum is arrived:

Step 1: keep τ fixed, optimize P3 over (w, ξ). This
is an `2-norm M3N problem:

min
w,ξ

w>Σ−1w + C

N∑
i=1

ξi

s.t. ∀i, ∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

Step 2: keep (w, ξ) fixed, optimize P3 over τ . The
problem reduces to:

min
τ

w>Σ−1w,

s.t. ∀k :
1

K

K∑
k=1

τk =
1

λ
; τk ≥ 0.

By forming a Lagrangian and doing some algebra, it
is easy to show that the solution is:

∀k : τk =
K|wk|

λ
∑

k |wk|
(4)

Note that when wk = 0, τk = 0 and the corresponding
feature will be discarded in the final estimate.

4.1. Connection to the Variational LapM3N

As shown in (Zhu et al., 2008b), exact calculation leads
to a normalization factor of LapM3N that couples all
the dual variables. Thus, the problem of LapM3N is
hard to be directly optimized. In (Zhu et al., 2008b),
an efficient variational algorithm was developed to
learn the LapM3N, as recaped below.

Let p(w|τ) =
∏K

k=1 p(wk|τk), p(τ |λ) =
∏K

k=1 p(τk|λ)
and dτ , dτ1 · · ·dτK , then the multivariate indepen-
dent Laplace prior is p0(w) =

∫
p(w|τ)p(τ |λ) dτ by

the two-layer interpretation of a Laplace distribution.
By applying the Jensen’s inequality, an upper bound
of the KL-divergence in LapM3N is achieved,

L(p(w), q(τ)) = −H(p)− 〈
∫

q(τ) log
p(w|τ)p(τ |λ)

q(τ)
dτ 〉p,

where q(τ) is a variational distribution to approxi-
mate p(τ |λ). Substituting this upper bound for the
KL in LapM3N, the variational method alternatively
optimizes over (p(w), ξ) and q(τ) in two steps:
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Step 1: solve the following problem to get the
posterior mean µ of w:

min
µ,ξ

1

2
µ>Σ−1µ + C

N∑
i=1

ξi

s.t. ∀i, ∀y 6= yi : µ>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

where Σ = diag(〈τ−1
k 〉−1

q ) = 〈ww>〉p − µµ> is a diag-
onal matrix.

Step 2: update the expectations 〈τ−1
k 〉q as follows,

∀k : 〈 1

τk
〉new
q =

√
λ

〈w2
k〉p

=

√
λ

µ2
k + 1/〈τ−1

k 〉(old)
q

. (5)

It is obvious that the difference between the EM-style
learning of the `1-M3N and the variational learning
of the LapM3N is the second step in updating the
adaptive parameters, i.e., τ in `1-M3N and 〈τ−1〉−1

q in
LapM3N. The different update rules reflet the essen-
tial difference between the `1-M3N and the LapM3N.
In Eq. (4), if wk = 0, then τk = 0. That means
the corresponding feature will be discarded in the final
estimate. However, in the LapM3N, the update rule
(5) ensures that 〈τ−1

k 〉−1
q are always positive. There-

fore, LapM3N does not explicitly discard features even
though the variances can be very small. This observa-
tion (approximately) explains why the `1-M3N is pri-
mal sparse, while LapM3N is pseudo-primal sparse.

Figure 2. Relationships.

Figure 2 summa-
rizes the relation-
ships among the
three variants of
sparse M3N. Ba-
sically, (1) the `1-
M3N is equiva-
lent to the adaptive M3N; (2) `1-M3N is an extreme
case of LapM3N when λ → ∞; (3) LapM3N is a
smooth relaxation of `1-M3N; and (4) LapM3N and
adaptive M3N share a similar EM-style algorithm.

5. Experiments

This section presents some empirical studies of the `1-
M3N and LapM3N, compared with competing meth-
ods, including the primal sparse `1-norm regularized
CRFs and the dual sparse `2-norm M3N.

5.1. Evaluation on Synthetic Data

We follow the method as described in (Zhu et al.,
2008b) to do the experiments. We generate sequence
data sets, i.e., each input x is a sequence (x1, · · · , xL),
and each component xl is a d-dimensional vector of
input features. The synthetic data are generated from
pre-specified CRF models with either i.i.d. instantia-
tions of the input features or correlated instantiations
of the input features, from which samples of the struc-
tured output y, i.e., a sequence (y1, · · · , yL), can be

drawn from the conditional distribution p(y|x) defined
by the CRF based on a Gibbs sampler.

Due to space limitation, we only report the results on
the data sets with correlated input features. Conclu-
sions in the i.i.d case are the same. Specifically, we
set d = 100 and 30 input features are relevant to the
output. The 30 relevant features are partitioned into
10 groups. For the features in each group, we first
draw a real-value from a standard normal distribution
and then corrupt the feature with a random Gaussian
noise (zero mean and standard variance 0.05) to get
3 correlated features. Then, we generate 10 linear-
chain CRFs with 8 binary states (i.e., L = 8 and
Yl = {0, 1}). The feature functions include: 200 real
valued state-feature functions, of which each is over a
one-dimensional input feature and a class label; and 4
(2× 2) transition feature functions capturing pairwise
label dependencies. Each CRF is used to generate a
data set that contains 1000 instances.

We do K-fold cross-validation on each data set and
take the average over the 10 data sets as the final re-
sults. In each run we choose one part to do training
and test on the rest K−1 parts. K is changed from 20,
10, 7, 5, to 4. In other words, we use 50, 100, about
150, 200, and 250 samples during the training. Fig-
ure 3(a) shows the performance. We can see that the
primal sparse models (i.e., `1-M3N and `1-CRFs) out-
perform the M3N, which is only dual sparse, when the
underlying model is primal sparse. As we have shown,
the pseudo-sparse LapM3N is a smooth relaxation of
the `1-M3N. If we choose a large regularization con-
stant, LapM3N will shrink the weights of irrelevant
features to be extremely small. Thus, the LapM3N
performs similarly to the primal-sparse models.

Figure 3(b) shows the average weights of different
models doing 10-fold CV on the first data set and the
weights of the CRF model (first plot) that generates
this data set. For LapM3N and M3N, all the weights
are non-zero, although the weights of LapM3N are gen-
erally much smaller than those of M3N because of a
shrinkage effect (Zhu et al., 2008b). For `1-M3N and
`1-CRFs, the estimates are sparse. Both of them can
discard all the noise features when choosing an ap-
propriate regularization constant. As shown in (Zhu
et al., 2008b), `1-CRFs are very sensitive to the regu-
larization constant. As we shall see the `1-M3N with
the EM-style algorithm is very robust. Note that all
the models have quite different average weights from
the model that generates the data. This is because
we use a stochastic procedure (i.e., Gibbs sampler) to
assign labels to the generated data samples. In fact,
if we use the model that generates the data to pre-
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Figure 3. (a) Error rates and (b) average weights of differ-
ent models.
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Figure 4. Error rates and training time of different algo-
rithms for `1-M

3N on the first generated data set.

dict on its generated data, the error rate is about 0.5.
Thus, the learned models, which get higher accuracy,
are different from the model that generates the data.

Figure 4 shows the error rate and training time of three
algorithms for `1-M3N: projected sub-gradient (Ratliff
et al., 2007) (based on P2′), cutting plane (Tsochan-
taridis et al., 2004) (based on P2), and our EM al-
gorithm (based on P3, where C is kept fixed), doing
10-fold CV on the first data set. Since the regular-
ization constants for different algorithms are generally
incomparable, we select a set of values around the best
one we have tried for each method (exact values shown
in Table 1). We can see that both the sub-gradient
and cutting plane methods are sensitive to their reg-
ularization constants. For the sub-gradient method, a
projection to `1-ball (Duchi et al., 2008) is performed
in each iteration, and the time depends largely on the
`1-ball’s radius. For larger balls, the projection is eas-
ier. So, the training time decreases as λ increases.
For the cutting plane method, the time is mainly de-
pendent on the LP solver (e.g., MOSEK as we use)
and increases very fast as C gets larger. For the EM-
algorithm, both the error rate and training time are
stable as λ changes. We use 15 EM-iterations in these
experiments and each iteration takes about 3.7 cpu-
seconds, less than the time of the sub-gradient method.

Table 1 shows the number of non-zero average weights

Table 1. The number of non-zero average weights by dif-
ferent algorithms doing 10-fold CV on the first data set.

√
λ 0.5 0.7 0.87 1 1.41 1.73 2 3 4

Proj-Subgradient Irrelevant 138 136 140 140 140 140 140 140 140
Total 198 196 200 200 200 200 200 200 200√

C 0.5 0.7 0.87 1 1.41 1.73 2 3 4
Cutting Plane Irrelevant 0 0 2 16 103 122 134 139 140

Total 13 21 26 44 145 169 184 186 189
λ

14000 0.036 0.069 0.14 0.21 0.35 0.5 0.64 0.78 0.93
EM Alg. Irrelevant 140 140 128 108 48 18 2 0 0

Total 200 198 182 158 90 54 34 32 28

of (Total) all the state-feature functions and (Irrele-
vant) the state-feature functions based on irrelevant
input features. In EM, we set τ = 0 if it is less
than 10−4. We can see the EM algorithm has simi-
lar numbers of non-zero weights as the cutting-plane
method. However, the projected sub-gradient method
keeps many features, whose weights are small but not
exactly zero, and truncating the feature weights with
the same threshold as in EM doesn’t change the sparse
pattern much. Maybe tuning the learning rate could
make this tail of very small features disappear.

5.2. Web Data Extraction
Web data extraction is a task to identify interested
information from web pages. Each sample is a data
record or an entire web page which is represented as
a set of HTML elements. One striking characteristic
of web data extraction is that various types of struc-
tural dependencies between HTML elements exist, e.g.
the HTML tag tree is itself hierarchical. In (Zhu
et al., 2008a), hierarchical CRFs are shown to achieve
better performance than flat models like linear-chain
CRFs (Lafferty et al., 2001). One method to construct
a hierarchical model is to first use a parser to construct
a so called vision tree. Then, based on the vision tree,
a hierarchical model can be constructed accordingly
to extract the interested attributes. See (Zhu et al.,
2008a) for an example of the vision tree and the cor-
responding hierarchical model.

We use the data set that is built with web pages gener-
ated by 37 different templates (Zhu et al., 2008a) and
extract the Name, Image, Price, and Description for
each product. For each template, there are 5 pages for
training and 10 for testing. Here, we assume that data
records are given, and compare different hierarchical
models on extracting attributes in the given records.
There are 1585 and 3391 data records in the training
and testing pages, respectively. We use the two com-
prehensive evaluation measures, i.e. average F1 and
block instance accuracy (Zhu et al., 2008a). Average
F1 is the average value of the F1 scores of the four
attributes, and block instance accuracy is the percent
of data records whose Name, Image, and Price are all
correctly identified. On this data set, the cutting-plane
method is too slow, and both the sub-gradient and EM
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Figure 5. Average F1 and block instance accuracy on web
data extraction with different number of training data.

algorithms are efficient and have similar performance.

We randomly select m (5, 10, 15, 20, 30, 40, or, 50)
percent of the training records for training and test on
all the testing records. For each m, 10 independent ex-
periments are conducted and the average performance
is summarized in Figure 5. We can see that: LapM3N
performs comparably with `1-M3N, which enjoys both
dual and primal sparsity, and outperforms the other
models which enjoy either dual sparsity (i.e., M3N)
or primal sparsity (i.e., `1-CRFs), especially when the
number of training data is small. The better perfor-
mance of `1-M3N compared to `1-CRFs demonstrates
the promise of primal-sparse max-margin models.

6. Conclusion

We have presented the `1-norm max-margin Markov
network (`1-M3N) and a novel adaptive M3N
(AdapM3N), which enjoy both primal and dual spar-
sity, and analyzed their close connections to the
Laplace M3N (LapM3N), which is pseudo-primal
sparse due to a smooth shrinkage effect. We show
that `1-M3N is an extreme case of LapM3N, and `1-
M3N is equivalent to an AdapM3N. We also develop a
robust EM-style algorithm to learn an `1-M3N. The al-
gorithm helps uncover the difference between `1-M3N
and LapM3N. On both synthetic and real web data,
we show the promise of simultaneously (pseudo-) pri-
mal and dual sparse models over the competing ones
which enjoy either dual or primal sparsity.
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