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Abstract

We describe and analyze two stochastic methods
for ¢, regularized loss minimization problems,
such as the Lasso. The first method updates the
weight of a single feature at each iteration while
the second method updates the entire weight vec-
tor but only uses a single training example at each
iteration. In both methods, the choice of fea-
ture/example is uniformly at random. Our theo-
retical runtime analysis suggests that the stochas-
tic methods should outperform state-of-the-art
deterministic approaches, including their deter-
ministic counterparts, when the size of the prob-
lem is large. We demonstrate the advantage of
stochastic methods by experimenting with syn-
thetic and natural data sets.

1. Introduction

We present optimization procedures for solving problems
of the form:

R
min — > L({w,x;),5) + Alwl , (1)
=1

where (x1,91),- -, (Xm,Ym) € ([=1,+1]¢ x V)™ is a
sequence of training examples, L : R? x ) — [0,00) is
a non-negative loss function, and A > 0 is a regularization
parameter. This generic problem includes as special cases
the Lasso (Tibshirani, 1996), in which L(a,y) = 3(a —
y)?, and logistic regression, in which L(a,y) = log(1 +
exp(—ya)).

Our methods can also be adapted to deal with additional
boxed constraints of the form w; € [a;, b;], which enables
us to utilize them for solving the dual problem of Support
Vector Machine (Cristianini & Shawe-Taylor, 2000). For
concreteness, and due to the lack of space, we focus on the
formulation given in Eq. (1).
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Throughout the paper, we assume that L is convex w.r.t. its
first argument. This implies that Eq. (1) is a convex opti-
mization problem, and therefore can be solved using stan-
dard optimization techniques, such as interior point meth-
ods. However, standard methods scale poorly with the
size of the problem (i.e. m and d). In recent years, ma-
chine learning methods are proliferating in data-laden do-
mains such as text and web processing in which data sets
of millions of training examples or features are not uncom-
mon. Since traditional methods for solving Eq. (1) gener-
ally scale very poorly with the size of the problem, their us-
age is inappropriate for data-laden domains. In this paper,
we discuss how to overcome this difficulty using stochastic
methods. We describe and analyze two practical methods
for solving Eq. (1) even when the size of the problem is
very large.

The first method we propose is a stochastic version of the
familiar coordinate descent approach. The coordinate de-
scent approach for solving ¢; regularized problems is not
new (as we survey below in Section 1.1). At each itera-
tion of coordinate descent, a single element of w is up-
dated. The only twist we propose here regarding the way
one should choose the next feature to update. We sug-
gest to choose features uniformly at random from the set
[d] = {1,...,d}. This simple modification enables us to
show that the runtime required to achieve e (expected) ac-
curacy is upper bounded by

md 3| w*||3

€

; 2

where [ is a constant which only depends on the loss func-
tion (e.g. 8 = 1 for the quadratic loss function) and w* is
the optimal solution. This bound tells us that the runtime
grows only linearly with the size of the problem. Further-
more, the stochastic method we propose is parameters-free
and is very simple to implement.

Another well known stochastic method, which has been
successfully applied for loss minimization problems, is
stochastic gradient descent (e.g. Bottou & LeCunn, 2005;
Shalev-Shwartz et al., 2007). In stochastic gradient de-
scent, at each iteration we pick one example from the train-
ing set, uniformly at random, and update the weight vec-
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tor based on the chosen example. The attractiveness of
stochastic gradient descent methods is that their runtime do
not depend at all on the number of examples, and can even
sometime decrease with the number of examples (see Bot-
tou & Bousquet, 2008; Shalev-Shwartz & Srebro, 2008).
Regretfully, the stochastic gradient descent method fails to
produce sparse solutions, which makes the algorithm both
slower and less attractive as sparsity is one of the major rea-
sons to use ¢; regularization. To overcome this obstacle,
two variants were recently proposed. First, Duchi et al.,
2008 suggested to replace the /; regularization term with a
constraint of the form ||w||; < B, and then to use stochas-
tic gradient projection procedure. Another solution, which
uses the regularization form given in Eq. (1), has been pro-
posed by Langford et al., 2009 and is called truncated gra-
dient descent. In this approach, the elements of w which
cross 0 after the stochastic gradient step are truncated to
0, hence sparsity is achieved. The disadvantage of both
Duchi et al., 2008 and Langford et al., 2009 methods is
that in some situations, their runtime might grow quadrat-
ically with the dimension d, even if the optimal predictor
w™ is very sparse (see Section 1.1 below for details). This
quadratic dependence on d can be avoided if one uses mir-
ror descent updates (Beck & Teboulle, 2003) such as the
exponentiated gradient approach (Littlestone, 1988; Kivi-
nen & Warmuth, 1997; Beck & Teboulle, 2003). However,
this approach again fails to produce sparse solutions. In
this paper, we combine the idea of truncating the gradient
(Langford et al., 2009) with another variant of stochastic
mirror descent, which is based on p-norm updates (Grove
et al., 2001; Gentile, 2003). The resulting algorithm both
produces sparse solutions and has O(d) dependence on the
dimension. We call the algorithm SMIDAS for “Stochastic
Mlrror Descent Algorithm made Sparse”.

We provide runtime guarantees for SMIDAS as well. In
particular, for the logistic-loss and the squared-loss we ob-
tain the following upper bound on the runtime to achieving
€ expected accuracy:

* |2
o (s It 5

€

Comparing the above with the runtime bound of the
stochastic coordinate descent method given in Eq. (2) we
note three major differences. First, while the bound in
Eq. (2) depends on the number of examples, m, the runtime
of SMIDAS does not depend on m at all. On the flip side,
the dependence of stochastic coordinate descent on the di-
mension is better both because the lack of the term log(d)
and because ||w*||3 is always smaller than ||w*||? (the ratio
is at most d). Last, the dependence on % is linear in Eq. (2)
and quadratic in Eq. (3). If € is the same order as the objec-
tive value at w* it is possible to improve the dependence
on 1/e. We omit the better bound due to lack of space. Fi-
nally, we would like to point out that while the stochastic

coordinate descent method is parameters-free, the success
of SMIDAS and of the method of Langford et al., 2009,
depends on a careful tuning of a learning rate parameter.

1.1. Related Work

We now survey several existing methods and in particular
show how our stochastic twist enables us to give superior
runtime guarantees.

Coordinate descent methods for /; regularization Fol-
lowing the Gauss-Siedel approach of Zhang & Oles, 2001,
Genkin et al., 2007 described a coordinate descent method
(called BBR) for minimizing ¢; regularized objectives.
This approach is similar to our method, with three main
differences. First, and most important, at each iteration we
choose a coordinate uniformly at random. This allows us
to provide theoretical runtime guarantees. We note that no
theoretical guarantees are provided by Zhang & Oles, 2001;
Genkin et al., 2007. Second, we solely use gradient infor-
mation which makes our algorithm parameters-free and ex-
tremely simple to implement. In contrast, the Gauss-Siedel
approach is more complicated and involves second order
information, or a line search procedure, or a trusted region
Newton step. Last, the generality of our derivation allows
us to tackle a more general problem. For example, it is
easy to deal with additional boxed constraints. Friedman
et al., 2008 generalized the approach of Genkin et al., 2007
to include the case of elastic-net regularization. In a series
of experiments, they observed that cyclical coordinate de-
scent outperforms many alternative popular methods such
as LARS (Efron et al., 2004), an interior point method
called 111ognet (Koh et al., 2007), and the Lasso Penal-
ized Logistic (LPL) program (Wu & Lange, 2008). How-
ever, no theoretical guarantees are provided in Friedman
et al., 2008 as well. Our analysis can partially explain the
experimental result of Friedman et al., 2008 since updating
the coordinates in a cyclical order can in practice be very
similar to stochastic updates.

Luo & Tseng, 1992 established a linear convergence result
for coordinate descent algorithms. This convergence re-
sult tells us that after an unspecified number of iterations,
the algorithm converges very fast to the optimal solution.
However, this analysis is useless in data laden domains as
it can be shown that the initial unspecified number of itera-
tions depends at least quadratically on the number of train-
ing examples. In an attempt to improve the dependence
on the size of the problem, Tseng & Yun, 2009 recently
studied other variants of block coordinate descent for op-
timizing ‘smooth plus separable’ objectives. In particular,
¢ regularized loss minimization (Eq. (1)) is of this form,
provided that the loss function is smooth. The algorithm
proposed by Tseng & Yun, 2009 is not stochastic. Trans-
lated to our notation, the runtime bound given in Tseng &
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2 * (|2
Yun, 2009 is of order’ - FI™7Iz This bound is infe-
rior to our runtime bound for stochastic coordinate descent
given in Eq. (2) by a factor of the dimension d.

Coordinate descent methods for /; domain constraints
A different, but related, optimization problem is to min-
imize the loss, L 3. L({w,X;),y;), subject to a domain
constraint of the form ||wl|j; < B. Many authors pre-
sented a forward greedy selection algorithm (a.k.a. Boost-
ing) for this problem. We refer the reader to (Frank &
Wolfe, 1956; Zhang, 2003; Clarkson, 2008). These authors
derived the upper bound O (3 ||w*||3/€) on the number of
iterations required by this algorithm to find an e-accurate
solution. Since at each iteration of the algorithm, one needs
to calculate the gradient of the loss at w, the runtime of
each iteration is m d. Therefore, the total runtime becomes
O (md 3 ||w*||3/€). Note that this bound is better than the
bound given by Tseng & Yun, 2009, since for any vector
in R? we have ||w|; < v/d|w|2. However, the boost-
ing bound given above is still inferior to our bound given
in Eq. (2) since ||w*||; > ||w*||2. Furthermore, in the ex-
treme case we have |[w*||? = d||w*||3, thus our bound
can be better than the boosting bound by a factor of d. It
is possible to show (proof is omitted due to lack of space)
that the iteration bound (not runtime) of any algorithm can-
not be smaller than Q(||w*||?/¢). This seems to imply that
any deterministic method, which goes over the entire data
at each iteration, will induce a runtime which is inferior to
the runtime we derive for stochastic coordinate descent.

Stochastic Gradient Descent and Mirror Descent
Stochastic gradient descent (SGD) is considered to be one
of the best methods for large scale loss minimization, when
we measure how fast a method achieves a certain general-
ization error. This has been observed in experiments (Bot-
tou, Web Page) and also has been analyzed theoretically by
Bottou & Bousquet, 2008; Shalev-Shwartz & Srebro, 2008.

As mentioned before, one can apply SGD for solving
Eq. (1), however, SGD fails to produce sparse solutions.
Langford et al., 2009 proposed an elegant simple modifi-
cation of the SGD update rule, which yields a variant of
SGD with sparse intermediate solutions. They also provide
bounds on the runtime of the resulting algorithm. In the
general case (i.e. without assuming low objective relative
to €), their analysis implies the following runtime bound

d llw* 2X2
o (4wIixs). “
€
where X2 = L3 ||x;3 is the average squared norm

of an instance. Comparing this bound with our bound in

"To see this, note that the iterations bound in Equation (21)
* 112
of Tseng & Yun, 2009 is: w, and using Equation (25) in
Section 6, we can set the value of v to be v = 1/d (since in our
case there are no linear constraints). The complexity bound now
follows from the fact that the cost of each iteration is O(dm).

Eq. (3) we observe that none of the bounds dominates the
other, and their relative performance depends on properties
of the training set and the optimal solution w*. Specifi-
cally, if w* has only k& < d non-zero elements and each
x; is dense (say x; € {—1,+1}%), then the ratio between
the above bound of SGD and the bound in Eq. (3) becomes
#g(d) > 1. On the other hand, if x; has only £ non-
zeros while w* is dense, then the ratio between the bounds
can be ﬁg(d) < 1. Although the relative performance is
data dependent, in most applications if one prefers ¢; regu-
larization over /5 regularization, he should also believe that
w* is sparse, and thus our runtime bound in Eq. (3) is likely

to be superior?.

The reader familiar with the online learning and mirror
descent literature will not be surprised by the above dis-
cussion. Bounds that involved ||w*||; and ||X;||o0, as in
Eq. (3), are well known and the relative performance dis-
cussed above was pointed out in the context of additive
vs. multiplicative updates (see e.g. Kivinen & Warmuth,
1997). However, the most popular algorithm for obtaining
bounds of the form given in Eq. (3) is the EG approach
(Kivinen & Warmuth, 1997), which involves the exponen-
tial potential, and this algorithm cannot yield intermediate
sparse solutions. One of the contributions of this paper is
to show that with a different potential, which is called the
p-norm potential, one can obtain the bound given in Eq. (3)
while still enjoying sparse intermediate solutions.

2. Stochastic Coordinate Descent

In this section we describe and analyze a simple stochas-
tic coordinate descent algorithm for solving ¢; regularized
problems of the form given in Eq. (1). We first present the
following equivalent optimization problem:

m 2d
1
i —_ L 7Ai7i A i s.t. >0,6
wrélﬁ%dm;:li ({w, %), i) + le st.ow 5)

where X; = [x; ; —x;]. It is easy to verify that if v* € R2¢
minimizes Eq. (5) then w* € R? defined by w} = v}, —
vy minimizes Eq. (1). Furthermore, if the objective of
Eq. (5) at v is at most € away from the optimum of Eq. (5),
then the objective of Eq. (1) at w, s.t. w; = vg4+; — v;, 18
at most € away from the optimum of Eq. (1). Therefore, it
suffices to present an algorithm for approximately solving
Eq. (5) and the output of the algorithm immediately trans-
lates to an approximate solution of Eq. (1).

To further simplify the presentation and for the purpose of
generality, we derive and analyze the algorithm for opti-

2One important exception is the large scale text processing ap-
plication described in Langford et al., 2009 where the dimension
is so large and /¢; is used simply because we cannot store a dense
weight vector in memory.
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mization problems of the form:

min R(w) st. w>0, (6)
wcR2d
where R : R2¢ — R. If convenient, one may think about
R as being the function

1 m 2d
R(w) = m ZL“W,&%%) + A sz -
=1 i=1

We are now ready to present the stochastic coordinate de-
scent algorithm. The algorithm initializes w to be 0. At
each iteration, we pick a coordinate j uniformly at ran-
dom from [2d]. Then, the derivative of R(w) w.r.t. the
jth element of w, g; = (VR(w));, is calculated. For
example, if R(w) is as defined in Eq. (7) then g; =
LS L'((w,%;),yi)#;; + A, where L' is the deriva-
tive of the loss function w.r.t. its first argument. Simple
calculus yields

—4 for logistic-loss

L(ary) = {(a —v) for squared-loss ®)
1+exp(ay)

Next, a step size is determined based on the value of g; and
a parameter of the loss function denoted 3. This parame-
ter is an upper bound on the second derivative of the loss.
Again, for our running examples we have

1
ﬁ:{1/4

The step size is trimmed so as to ensure that after perform-
ing the update, the constraint w; > 0 will not be violated.
Finally, we update w; according to the calculated step size.

Algorithm 1 Stochastic Coordinate Descent (SCD)

for squared-loss
a ©)

for logistic-loss

letw =0
fort=1,2,...
sample j uniformly at random from {1, ..., 2d}

let gj = (VR(wW));
let n = max{—w;, —g;/8}
letw; = w; +n

end

2.1. Efficient Implementation

We now present an efficient implementation of Algo-
rithm 1, assuming that R is of the form given in Eq. (7).
The simple idea is to maintain a vector z € R such that
z; = (W, x;). Once we have this vector, calculating g; on
average requires O(sm) iterations, where
i,g) : #4570

s = |{(?])mldﬁ’é H (10)
is the average number of non-zeros in our training set. Con-
cretely, we obtain the following procedure for logistic-loss
and squared-loss.

Algorithm 2 SCD for Logistic-loss and squared-loss

letw=0cR2 z=0cR™

fort=1,2,...
sample j uniformly at random from {1,...,2d}
let L’ and 3 be as defined in Eq. (8) and Eq. (9)
letg; = % Zi:ii_ﬁéo L' (zi,yi) 25 + A
let n = max{—w;, —g;/8}
letw; = w; +n
Vi s.t. Zi’i’j 75 0 let Z2i = 2; + n"i'i,j

end

2.2. Runtime Guarantee

Theorem 1 Let R(w) : R?? — R be a convex objective
function and assume that there exists 3 > 0 such that for
all vector w, scalar n and index j we have

R(w +ne’) < R(w) + n(VR(w)); + 22 .

Let w* be a minimizer of Eq. (6) and let w,, be the output
of Algorithm 1 after performing T iterations. Then,

o 4 (BIw*]3 +2R(0))
E[R(w,)] — R(w*) < T .

Proof Sketch We define the following ‘double po-
tential’: ¥(w) = 2|lw — w*|3 + R(w). The main
component of the proof is to show that for any vector
w and index j, if n is defined as in Algorithm 1 we
have ¥(w) — U(w + ne’) > (w; — w})g;. We show
this using the assumption on the smoothness of R and
algebraic manipulations. Denote by w; the value of w
at iteration ¢ of the algorithm. Taking expectation of the
aforementioned inequality w.r.t. the choice of 7 we obtain
that E[U(w;) — ¥(wy11)] > 1E[(w, — w*, VR(W,))].
But since R is convex, the right-hand side of the above
upper bounds E[e;|/d, where e, = R(w;) — R(w"*) is the
sub-optimality at iteration . Summing over ¢ and using the
fact that €; is a monotonically non-increasing sequence we
obtain TE[er 1] < E[} ", ] < d(¥(w1) — ¥(Wry1)),
which concludes our proof. |

Next, we specify the runtime bound for the case of ¢; reg-
ularized logistic-regression and squared-loss. First, it is
easy to show that for R as defined in Eq. (7), if the sec-
ond derivative of L is bounded by ( then the condition on
R given in Theorem 1 holds. Additionally, for the logistic-
loss we have R(0) < 1. Therefore, for logistic-loss, af-

a3 Iw* 13+2)
ter performing —4——2—— iterations of Algorithm 2 we

have that E[R(w,)] — R(w*) < e. Since the average cost
of each iteration is s m, where s is as defined in Eq. (10),

1 * (12
. : a5
we end up with the total runtime w . For
the squared-loss we have R(0) = L3 42 Assuming
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that the targets are normalized so that R(0) < 1, and us-

ing similar derivation we obtain the total runtime bound
smd([w*[5+2)
. .

3. Stochastic Mirror Descent made Sparse

In this section we describe our mirror descent approach for
¢4 regularized loss minimization, which maintains interme-
diate sparse solutions. To simplify the notation throughout
this section, we rewrite the problem in Eq. (1) using the

notation
=P(w)

S\H

min
weRa

Z (w,xi),g:) +Allwlly . (AD

=C(w)

Mirror descent algorithms maintain two weight vectors:
primal w and dual 6. The connection between the two
vectors is via a link function & = f(w), where f
RY — R<, The link function is invertible, and there-
fore w = f~!(6). In our mirror descent variant, we
use the p-norm link function. That is, the jth element
of fis fi(w) = (sign(w;) |w;[=")/[[w][2 , where
Iwlly = (32, [w;|9)/? and ¢ = p/(p — 1). The inverse
function is (see e.g. Gentile, 2003)

i : |p—1
f7ie) = S
We first describe how mirror descerZ;t algorithms can be ap-
plied to the objective C'(w) without the ¢; regularization
term. At each iteration of the algorithm, we first sample a
training example ¢ uniformly at random from {1, ..., m}.
We then estimate the gradient of C'(w) by calculating the
vector: v = L'({w,x;),y;)%; . Note that the expecta-
tion of v over the random choice of i is E[v] = VC(w).
That is, v is an unbiased estimator of the gradient of C'(w).
Next, we update the dual vector accordingto @ = 6 — nv.
If the link function is the identity mapping, this step is iden-
tical to the update of stochastic gradient descent. However,
in our case f is not the identity function and it is important
to distinguish between € and w. The above update of
translates to an update of w by applying the link function
w = f71(@). So far, we ignored the additional /; reg-
ularization term. The simplest way to take this term into
account is by also subtracting from 6 the gradient of the
term \ ||w||;. (More precisely, since the ¢; norm is not dif-
ferentiable, we will use any subgradient of ||w||; instead,
e.g. the vector whose jth element is sign(w;), where we
interpret sign(0) = 0.) Therefore, we could have redefined
the update of @ to be §; = 6; —n(v;+ Asign(w;)). Regret-
fully, as noted in Langford et al., 2009, this update leads to
a dense vector 6, which in turn leads to a dense vector w.
The solution proposed in Langford et al., 2009 breaks the
update into three phases. First, we let @ = 8 —7v. Second,
we let @ = @ — ) Asign(@). Last, if in the second step we

(12)

crossed the zero value, i.e. sign(éj) # sign(6;), then we
truncate the jth element to be zero. Intuitively, the goal of
the first step is to decrease the value of C'(w) and this is
done by a (mirror) gradient step, while the goal of the sec-
ond and third steps is to decrease the value of A ||w||;. So,
by truncating € at zero we make the value of A |[w||; even
smaller.

Algorithm 3 Stochastic Mirror Descent Algorithm made
Sparse (SMIDAS)

parameter: 7 > 0
let p = 2 In(d) and let f~! be as in Eq. (12)
let@ =0
fort=1,2,...
letw = f~1(0)
sample ¢ uniformly at random from {1, ..., m}
letv =L ({w,x;),yi) X;
(L' is the derivative of L. See e.g. Eq. (8))
letd =60 —nv
let V5,0, = = sign(f
end

;) max{0, |6 —nA}

3.1. Efficient Implementation

A naive implementation of Algorithm 3 leads to an O(d)
runtime for each iteration. We now present two improve-
ments for two specific scenarios. First, assume that the data
is sparse, that is x; contains only s non-zero elements on
average (see Eq. (10)). In this case, we can implement
each iteration of Algorithm 3 in time O(s). The idea is
to maintain two additional scalars, «; and «s, such that
ap = ) 10;” and az = al %P Since w; = f71(0),
we can then rewrite w; = [0;|P~!/as. Therefore, in-
stead of maintaining w we can maintain a vector z, where
zj = |9j|p*1, and the scalar ap. Clearly, we can calculate
(w,x;) based on z and as by making a single pass over
the non-zero elements of x;. Additionally, we can update
0.z and a; by making an additional single pass over the
non-zeros elements of x;. Finally, we calculate s from o
using O(1) operations. Therefore, each iteration of Algo-
rithm 3 requires two passes over the non-zero elements of
x;, and the total runtime is O(s).

Next, we describe a different scenario in which the main
bottleneck is to calculate the values of the features. In this
case, when calculating (w, x;) we only need to calculate
the features of x; for which w; # 0. Since the algorithm
maintains sparse intermediate solutions, this can be much
faster than calculating all the features of x;. Next, when up-
dating 6, we note that if ||x;||cc < 1 and L'({w,x;),y;) <
A, then any element of 6; which is currently zero will re-
main zero also after the update. So, again, in this case we
do not need to calculate all the features of x;.
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3.2. Runtime Guarantee

We now provide runtime guarantees for Algorithm 3. We
introduce two types of assumptions on the loss function:

IL'(a,y)] < »p (13)
IL(a,y)” < pL(a,y) (14)

In the above, L’ is the derivative w.r.t. the first argument
and can also be a sub-gradient of L if L is not differentiable.
It is easy to verify that Eq. (14) holds for the squared-loss
with p = 4 and that Eq. (13) holds for the hinge-loss,
L(a,y) = max{0,1 — ya}, with p = 1. Interestingly,
for the logistic-loss, both Eq. (13) holds with p = 1 and
Eq. (14) holds with p = 1/2.

Theorem 2 Let w* be a minimizer of Eq. (11) and let L
satisfy Eq. (13) or Eq. (14). Then, if Algorithm 3 is run with
n = pllw*|l1v/2(p — 1)e/T for T iterations and w, = w,

Sor r chosen uniformly at random from [T, we have

BlPw)] - Pv) <0 (plwl /252 )

Proof Sketch Due to lack of space, we only sketch the
proof for the case that Eq. (13) holds. Let 6:,0, be
the values of 6,0 at iteration ¢ of the algorithm. Let
w, = f71(8,) and W, = f~1(8,). Define the Bregman
divergence potential U(w) = 3||w*[|2 — J|wl|? —
(f(w),w* — w). We first rewrite ¥(w;) — U(wiy1) =
(U(wy) — (W) + (P(Wy) — U(weyr)).  Standard
analysis of mirror descent yields W(wy) — U(W;) >

2 DYl 112 -
(LW, i), 51) = LW, x1), y) — T see
e.g., Beck & Teboulle, 2003. From Eq. (13) we obtain
that ||v:[|2 < p? d?/? = p%e. Thus, U(w;) — U(Wy) >

n(L(<Wt7XL>7yl) - L(<W*7Xi>7yi)) - %'
The more involved part of the proof is to show
that U(Ww,) — U(wie) > pA(lwerl — [[w*]h).
To show this, we use the definition of ¥ and the
non-negativity of Bregman divergence to get that
V(W) — U(wip) 2> (W — w1, 00010 — 6y).
Using the defmition of 0;y1 and wy;; we have
(Wit1,0041 — 0y) = n\||wypr |12 In addition, Holder in-
equality implies that (w*, 0,11 — ;) < n\||w*||;. Com-
bining all the above together and taking expectation w.r.t. ¢
we get E[P(wy)] — P(w*) < AE[[[willy — [[wisi]li] +
%E[\Il(wt) —WU(wye)] + %. Summing over t,
rearranging, and optimizing over 7 concludes our proof. B

The bound in the above theorem can be improved if
Eq. (14) holds and the desired accuracy is the same order
as P(w*). We omit the details due to lack of space.

3Note that this equality does not hold for the Bregman poten-
tial corresponding to exponentiated gradient.

4. Experiments

We consider 4 datasets for our experiments: REUTERS,
ARCENE, MAGIC04S, and MAGIC04D. REUTERS is a
dataset obtained from the Reuters RCV1 collection. Ex-
amples in this collection can have more than 1 label. We
created a binary classification dataset out of this by treating
any example that was labelled CCAT as having label +1.
Rest were assigned the label —1. This gave us a 378,452
dimensional dataset with 806,791 examples. There were
9.8 x 107 non-zero entries in the example matrix corre-
sponding to a sparsity level of 0.03%. ARCENE is a dataset
from the UCI Machine Learning repository where the task
is to distinguish cancer patterns from normal ones based
on 10,000 mass-spectrometric features. Out of these, 3,000
features are synthetic features as this dataset was designed
for the NIPS 2003 variable selection workshop. There are
100 examples in this dataset and the example matrix con-
tains 5.4 x 10° non-zero entries corresponding to a spar-
sity level of 54%. The datasets MAGIC04S and MAGIC04D
were obtained by adding 1,000 random features to the
MAGIC Gamma Telescope dataset from the UCI Machine
Learning repository. The original dataset has 19,020 exam-
ples with 10 features. This is also a binary classification
dataset and the task is to distinguish high-energy gamma
particles from background using a gamma telescope. Fol-
lowing the experimental setup of Langford et al., 2009, we
added 1,000 random features, each of which takes value O
with probability 0.95 or 1 with probability 0.05, to create a
sparse dataset, MAGIC04s. We also created a dense dataset,
MAGIC04D, in which the random features took value —1 or
+1, each with probability 0.5. MAGIC04S and MAGIC04D
has sparsity levels of 5.81% and 100% respectively.

We ran 4 algorithms on these datasets: SCD, DETCD,
SMIDAS, and TRUNCGRAD. SCD is the stochastic
coordinate descent algorithm given in Section 2 above.
DETCD is the corresponding deterministic version of the
same algorithm. The coordinate to be updated at each it-
eration is chosen in a deterministic manner to maximize a
lower bound on the guaranteed decrease in the objective
function. This type of deterministic criterion for choosing
features is common in Boosting approaches. Since choos-
ing a coordinate (or feature in our case) in a deterministic
manner involves significant computation in case of large
datasets, we expect that the deterministic algorithm will
converge much slower than the stochastic algorithm. We
also tried using a deterministic coordinate descent algo-
rithm that works with the domain constraint formulation as
discussed in Section 1.1. It was also slower than SCD al-
though we do not report its results here as it does not work
directly with the regularized loss. SMIDAS is the mirror
descent algorithm given in Section 3 above. TRUNCGRAD
is the truncated gradient algorithm of Langford et al., 2009
(In fact, Langford et al., 2009 suggests another way to trun-
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Figure 1. Performance of SCD, DETCD, SMIDAS, and TRUNCGRAD on 4 datasets (see Section 4 for details)

cate the gradient. Here, we refer to the variant correspond-
ing to SMIDAS.) Of these 4, the first two are parameter-
free algorithms while the latter two require a parameter 7).
In our experiments, we ran SMIDAS and TRUNCGRAD
for a range of different values of 1 and chose the one that
yielded the minimum value of the objective function (i.e.
the regularized loss).

The top-left plot in Figure 1 is for the REUTERS dataset.
It shows the regularized loss objective achieved by the 4
algorithms as a function of the number of times they ac-
cess the data matrix (z; ;) of the REUTERS dataset. We
choose to use this as opposed to, say CPU time, as this is
an implementation independent quantity. Moreover, the ac-
tual time taken by these algorithms will be roughly propor-
tional to this quantity. The regularization parameter A was
set to 107 (but similar results hold for other values of A
as well). The ) parameter of SMIDAS and TRUNCGRAD
was searched over the range 1075 to 10~ in exponentially
increasing step sizes. It is clear that SCD outperforms the
other three algorithms. DETCD is much slower compared
to SCD because, as we mentioned above, it spends a lot
of time in finding the best coordinate to update. The two
algorithms having a tunable parameter 77 do much worse
here. The situation is even worse if we add up the time to
perform several runs of these algorithms for tuning 7. This
illustrates a problem practitioners have to deal with when
faced with large datasets. A parameter-free algorithm that
is also quicker to decrease the objective function is clearly
preferred in such situations.

The bottom-left and top-middle plots in Figure 1 are for
the ARCENE dataset. We have plotted the regularized loss
objective against the number of data matrix accesses for

a small and a large value of A (10~ and 10~2 respec-
tively). SMIDAS does much better than TRUNCGRAD for
the large value and is worse, but still competitive, for the
small value. Note that SCD does well and DETCD is quite
slow in both scenarios.

For the MAGIC datasets, SMIDAS does much better than
TRUNCGRAD for the MAGIC04D dataset (where the exam-
ple vectors are dense). TRUNCGRAD is competitive for the
MAGIC04s dataset (where the example vectors are sparse).
This is illustrated in the bottom-middle and bottom-right
plots in Figure 1. Note that this behavior is consistent with
the bounds Eq. (3) and Eq. (4) given above. These bounds
suggest that if the true solution has low ¢; norm, SMIDAS
will require fewer iterations than TRUNCGRAD when the
examples are dense.

For MAGIC04D, we also plotted the density (or the ¢j
norm) of the weight vector w as a function of number of
accesses to the data matrix for all 4 algorithms. This is
shown in the top-right plot in Figure 1. It is interesting
to note that SCD not only minimizes the objective quickly
but it also maintains sparsity along the way. If we compare
SCD with TRUNCGRAD in the two plots on the right, we
find that TRUNCGRAD is better at minimizing the objec-
tive while SCD finds slightly sparser w’s. All plots for the
MAGIC datasets are for A = 1073,

S. Discussion

Focusing on the problem of ¢; regularized loss minimiza-
tion, we showed how stochastic approaches can yield sim-
ple and practical methods for large data sets. Furthermore,
the stochastic methods described in this paper outperform
their corresponding deterministic approaches. To the best
of our knowledge, the only known provably correct deter-
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ministic coordinate method for ¢; regularization is that of
Tseng & Yun, 2009, which both has worse runtime and is
much more complicated to implement.*

There are several possible extension to this work. For ex-
ample, the p-norm algorithm has been originally suggested
as an interpolation between additive and multiplicative up-
dates. Naturally, one can use the SMIDAS algorithm with
different values of p, yielding an interpolation between
Langford et al., 2009 and SMIDAS. Another possible ex-
tension of this work is the usage of our analysis for better
understanding stochastic coordinate descent methods for
optimizing the dual of Support Vector Machines.
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