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Abstract

Uncertainty arises in reinforcement learning
from various sources, and therefore it is nec-
essary to consider statistics based on sev-
eral roll-outs for evaluating behavioral poli-
cies. We add an adaptive uncertainty han-
dling based on Hoeffding and empirical Bern-
stein races to the CMA-ES, a variable met-
ric evolution strategy proposed for direct pol-
icy search. The uncertainty handling ad-
justs individually the number of episodes con-
sidered for the evaluation of a policy. The
performance estimation is kept just accurate
enough for a sufficiently good ranking of can-
didate policies, which is in turn sufficient for
the CMA-ES to find better solutions. This
increases the learning speed as well as the ro-
bustness of the algorithm.

1. Introduction

Dealing with uncertainty is one of the major issues in
reinforcement learning (RL). When solving (partially
observable) Markov decision processes solely based on
observations and interactions with the environment,
uncertainty and randomness arise from several sources.
The initial state usually varies, state-transitions and
reward signals can be stochastic, and the state obser-
vations may be noisy. We consider RL methods that
search in a parametrized policy space, in which the
search direction can be determined using estimates of
the performance of behavioral policies or estimates of
performance gradients. Uncertainty and randomness
require that these estimates are based on a sample of
several episodes (roll-outs). The sample size is a cru-
cial parameter. If too few episodes are considered, the
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estimates are not reliable enough to allow for learn-
ing. If too many episodes are considered, the learning
process gets too slow. Unfortunately, it is usually not
possible to determine an appropriate sample size for
a given problem a priori (in practice we just make it
“large enough”). The optimal number may vary in
the course of learning and between candidate policies
(e.g., really bad behaviors can be detected after just a
few roll-outs).

We employ the covariance matrix evolution strategy
(CMA-ES, Hansen et al., 2003; Suttorp et al., 2009) for
direct policy search, which gives striking results on RL
benchmark problems (Gomez et al., 2008; Heidrich-
Meisner and Igel 2008). The CMA-ES adapts the
policy as well as parameters of its own search strat-
egy (such as a variable metric) based on ranking poli-
cies. This is already much less susceptible to noise
than estimating absolute performances or performance
gradients (Heidrich-Meisner & Igel, 2008). Still, the
ranking must be sufficiently accurate to evolve better
policies, and the accuracy of the ranking depends on
the degree of uncertainty as well as on the number
of roll-outs considered per performance estimation of
each candidate solution. We propose to augment the
CMA-ES for RL with an adaptive uncertainty han-
dling scheme based on Hoeffding or empirical Bern-
stein races (Maron & Moore, 1994; Maron & Moore,
1997; Audibert et al., 2007; Mnih et al., 2008), which
dynamically adapts the number of episodes for evalu-
ating a policy such that the ranking of new candidate
solutions is just reliable enough to drive the learning
process. All individuals participate in a selection race,
in which their performances are sampled. A policy re-
mains in the race as long as one cannot be sure with an
a priori fixed probability whether the policy is promis-
ing or not, i.e., as long as the confidence interval for
the estimated performance based on Hoeffding or em-
pirical Bernstein bounds does not clearly distinguish
it from the other candidates. The selection race is
finished when a complete and accurate ranking is ob-
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tained.

In the next section, we describe the CMA-ES for direct
policy search. In section 3 we introduce our new un-
certainty handling scheme based on racing algorithms.
Then we present some empirical results before we end
with our conclusions.

2. Evolutionary direct policy search

Evolution strategies (ESs) are random search methods,
which iteratively sample a set of candidate solutions
from a probability distribution over the search space
(here a parametrized space of policies), evaluate these
potential solutions, and construct a new probability
distribution over the search space based on the gath-
ered information (Beyer, 2007). In ESs, this search
distribution is parametrized by a set of candidate so-
lutions, the parent population with size µ, and by pa-
rameters of the variation operators that are used to
create new candidate solutions (the offspring popula-
tion with size λ) from the parent population.

Arguably the most elaborate ES for real-valued op-
timization is the covariance matrix adaptation ES
(CMA-ES, Hansen et al., 2003; Suttorp et al., 2009), in
which the main variation operator is additive Gaussian
perturbation. The CMA-ES is a variable metric algo-
rithm adapting shape and strength of its search distri-
bution, and it is regarded as one of the most efficient
evolutionary algorithms for real-valued optimization
(Beyer, 2007). The CMA-ES is robust in the sense that
it does not rely on tweaking of hyperparameters, see
below. In a recent study, the CMA-ES (without rank-
µ update, i.e., an outdated version) was compared to
8–12 (depending on the task) other RL algorithms in-
cluding value-function and policy gradient approaches
(Gomez et al., 2008). On the four test problems where
the CMA-ES was considered, it ranked first, second
(twice), and third. For further examples of successful
applications of the CMA-ES for RL (Pellecchia et al.,
2005; Siebel & Sommer, 2007) and additional compar-
isons on RL benchmarks (Heidrich-Meisner and Igel
2008; 2009) we refer to the literature.

In each generation k of the CMA-ES, which is shown
in Algorithm 1, the lth offspring x(k+1)

l ∈ Rn,
l ∈ {1, . . . , λ}, is generated by additive multi-variate
Gaussian mutation and weighted global intermediate
recombination, i.e., x(k+1)

l ← m(k)+σ(k)z(k)
l with mu-

tation σ(k)z(k)
l ∼ σ(k)N (0, C(k)) and recombination

m(k) ←
∑µ

l=1 wlx
(k)
l:λ . Here x(k)

l:λ denotes the lth best
individual of the λ offspring. Ranking the λ candi-
dates (policies) requires their evaluation, which is dis-
cussed in detail in section 3. Considering the best µ

Algorithm 1: rank-µ CMA-ES
initialize m(0) = xinit, σ(0), evolution paths1

p(0)
σ = p(0)

c = 0 and covariance matrix C(0) = I
(unity matrix), t(0)limit = 3
// k counts number of generations
for k = 0, . . . do2

// create new offspring

for l = 1, . . . , λ do x(k+1)
l ∼ N(m(k), σ(k)2C(k))3

// evaluate new offspring, see section 3

// X̂(k+1)
l reflects quality of x(k+1)

l , l = 1, . . . , λ

({X̂(k+1)
1 , . . . , X̂(k+1)

µ }, t(k+1)
limit ) ←4

selectRace5

({x(k+1)
1 , . . . , x(k+1)

λ }, µ, a, b, t(k)
limit, δ)

// recombination and selection

m(k+1) ←
Pµ

i=1 wix
(k+1)
i:λ6

// step size control

p(k+1)
σ ← (1 − cσ)p(k)

σ +7
p

cσ(2 − cσ)µeffC(k)−
1
2 m(k+1)−m(k)

σ(k)

σ(k+1) ← σ(k) exp

„
cσ
dσ

„
‖p

(k+1)
σ ‖

E[‖N (0,I)‖] − 1

««

8

// covariance matrix update

p(k+1)
c ←9

(1 − cc)p
(k)
c +

p
cc(2 − cc)µeff

m(k+1)−m(k)

σ(k)

C(k+1) ← (1 − ccov)C
(k) + ccov

µcov
p(k+1)

c p(k+1)
c

T +10

ccov

“
1 − 1

µcov

” Pµ
i=1 wiz

(k)
i:λz(k)

i:λ

T

of the offspring in the recombination implements non-
elitist, rank-based selection. For the equal recombina-
tion used here A common choice for the recombination
weights is wl ∝ ln(µ + 1) − ln(l), ‖w‖1 = 1, w ∈ Rµ.

The CMA-ES adapts both the n-dimensional covari-
ance matrix C(k) of the normal mutation distribution
as well as the global step size σ(k) ∈ R+. The covari-
ance matrix update has two parts, the rank-1 update
considering the change of the population mean over
time and the rank-µ update considering the successful
variations in the last generation. The rank-1 update
is based on a low-pass filtered evolution path p(k) of
successful (i.e., selected) steps

p(k+1)
c ← (1−cc)p(k)

c +
√

cc(2 − cc)µeff
m(k+1) − m(k)

σ(k)

and aims at changing C(k) to make steps in the promis-
ing direction p(k+1) more likely by morphing the co-

variance towards
[
p(k+1)

c

] [
p(k+1)

c

]T
. The backward

time horizon of the cumulation process is approxi-
mately c−1

c , where cc = 4/(n + 4) is roughly inversely
linear in the dimension of the path vector. The vari-
ance effective selection mass µeff =

(∑µ
l=1 w2

l

)−1 is
a normalization constant. The rank-µ update aims
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at making the single steps that were selected in the
last iteration more likely by morphing C(k) towards[
z(k)

i:λ

] [
z(k)

i:λ

]T
. Putting both updates together, we

have

C(k+1) ← (1 − ccov)C(k) +
ccov

µcov
p(k+1)

c p(k+1)
c

T

+ ccov

(
1 − 1

µcov

) µ∑

i=1

wiz
(k)
i:λz(k)

i:λ

T
.

The constants ccov and µcov are fixed learning rates.
The learning rate of the covariance matrix update
ccov = 2

(n+
√

2)2
is roughly inversely proportional to

the degrees of freedom of the covariance matrix. The
parameter µcov mediates between the rank-µ update
(µcov → ∞) and the rank-one update (µcov = 1). The
default value is µcov = µeff.

The global step size σ(k) is adapted on a faster
timescale. It is increased if the selected steps are larger
and/or more correlated than expected and decreased
if they are smaller and/or more anticorrelated than
expected:

σ(k+1) ← σ(k) exp

(
cσ

dσ

(
‖p(k+1)

σ ‖
E[‖N (0, I)‖] − 1

))
,

where the (conjugate) evolution path is

p(k+1)
σ ← (1 − cσ)p(k)

σ

+
√

cσ(2 − cσ)µeff C(k)−
1
2 m(k+1) − m(k)

σ(k)
.

Again, cσ = µeff+2
n+µeff+3 is a fixed learning rate and

dσ = 1 + 2 max
(
0,

√
µeff−1
n+1

)
+ cσ is a damping fac-

tor. The matrix C− 1
2 is defined as BD−1BT , where

BD2BT is an eigendecomposition of C (B is an or-
thogonal matrix with the eigenvectors of C and D a di-
agonal matrix with the corresponding eigenvalues) and
sampling N (0, C) is done by sampling BDN (0, I).

The values of the learning rates and the damping fac-
tor are well considered and have been validated by ex-
periments on many basic test functions (Hansen et al.,
2003). They need not be adjusted dependent on the
problem and are therefore no hyperparameters of the
algorithm. Also the population sizes can be set to de-
fault values, which are λ = max(4 + )3 lnn*, 5) and
µ = )λ

2 * for offspring and parent population, respec-
tively. If we fix C(0) = I, the only hyperparameter
to be chosen problem dependent is the initial global
step size σ(0) (apart from the parameters controlling
sample size and uncertainty handling, see section 3).

3. Selection races

Due to uncertainty and randomness, the performance
estimates, which are required for selecting policies,
should be based on samples of several episodes (roll-
outs). Our goal is to ensure with a given confidence
that the µ selected policies have indeed the best mean
performances while using as few roll-outs as possible.
To this end, we want to systematically control in each
iteration of our direct policy search (i) the overall num-
ber of roll-outs, and (ii) the distribution of roll-outs
among the candidate policies. This can be achieved
by adopting racing algorithms (Maron & Moore, 1994;
Maron & Moore, 1997) for selection.

We view the performance of the policy encoded by
xi, i ∈ {1, . . . , λ}, as a real-valued random variable
Xi. The return (accumulated reward) Xi,t of the tth
episode corresponds to a realization of Xi. We as-
sume that the returns are almost surely bounded with
known bounds a and b, Pr(Xi,t ∈ [a, b]) = 1, and de-
fine R = |a − b|. Further, we assume an a priori fixed
confidence level 1− δ and a maximum number of eval-
uations per individual tlimit (alternatively, we may fix
a maximum number of evaluations per iteration). If
we consider the empirical mean X̂i,t = 1

t

∑t
t′=1 Xi,t′

of t realizations (i.e., a performance estimate based
on t episodes), Hoeffding’s inequality bounds the de-
viation of the empirical mean from the true expecta-
tion E[Xi]. With probability of at least 1− δ we have∣∣∣X̂i,t − E[Xi]

∣∣∣ ≤ R
√

log 2
δ

2t . This rather loose bound
may be improved by applying Bernstein’s inequality
instead, which requires the usually unknown standard
deviation of Xi. However, the recently derived empiri-
cal Bernstein bound (Audibert et al., 2007; Mnih et al.,
2008) depends only on the empirical standard devia-
tion σ̂2

i,t = 1
t

∑t
t′=1(Xi,t′ − X̂i,t)2. With probability of

at least 1 − δ it holds

∣∣∣X̂i,t − E[Xi]
∣∣∣ ≤ σ̂i,t

√
2 log 3

δ

t
+

3R log 3
δ

t
.

The dependency on R decreases linearly with the sam-
ple size t and not just with its square root, but now
the bound depends also on σ̂i,t/

√
t. If the standard de-

viation is small compared to R, this bound is tighter
than the Hoeffding bound.

Racing algorithms are iterative methods trying to
identify with a high probability the best among sev-
eral options. In each iteration, a couple of options
are sampled. In their standard formulation, which we
adopt here, there is an upper bound on the number of
iterations.
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Procedure selectRace({x1, . . . , xλ}, µ, a, b, t(k)
limit, δ).

S = ∅ // set of selected individuals1

D = ∅ // set of discarded individuals2

U = {xi | i = 1, . . . , λ} // set of undecided individuals3

t ← 14

forall xi ∈ U do5

Xi,t ← performance(xi) // evaluate individual6

LBi ← a, UBi ← b // init lower and upper7

bounds

ut = |U|8

while t < t(k)
limit ∧ |S| < µ do9

t ← t + 110

ut = |U| // needed for confidence intervals11

// reevaluate undecided individuals
forall xi ∈ U do12

Xi,t ← performance(xi)13

X̂i ← 1
t

Pt
t′=1 Xi,t′ // recompute mean14

compute new confidence interval15 h
X̂i,t − ci,t, X̂i + ci,t

i

using Hoeffding or empirical Bernstein16

bound
// update lower and upper bounds

LBi ← max
n

LBi, X̂i − ci,t

o
17

UBi ← min
n

UBi, X̂i + ci,t

o
18

forall xi ∈ U do19

if
˛̨˘

xj ∈ U
˛̨
LBi > UBj

¯˛̨
≥ λ − µ − |D|20

then
// probably among the best µ
S ← S ∪ {xi} // select21

U ← U \ {xi}22

if
˛̨˘

xj ∈ U
˛̨
UBi < LBj

¯˛̨
≥ µ − |S| then23

// probably not among the best µ
D ← D ∪ {xi} // discard24

U ← U \ {xi}25

// adapt t(k+1)
limit depending on whether t(k)

limit was large
enough for selection with confidence 1 − δ or not

if |S| = µ then t(k+1)
limit = max{3, 1

α t(k)
limit}26

else t(k+1)
limit = min{αt(k)

limit, tmax}27

return {X̂1, . . . , X̂λ}, t(k+1)
limit28

Our algorithm is described in the procedure
selectRace. For the rank-based selection procedure
used in the ES, we need to know the best µ from λ poli-
cies. Initially, all policies are evaluated (line 6) and
then labelled undecided (line 3). In every following
iteration or racing step, all policies tagged undecided
are reevaluated (line 11). The estimated mean perfor-
mance (line 14) and confidence interval (lines 17 and
18) are updated for each resampled policy (see below).
If the lower bound of a policy is better than the upper
bounds of at least λ−µ other candidates, it is selected
(lines 20–22). Figure 1 illustrates this idea. If the up-
per bound of a policy is worse than the lower bounds

of at least µ other candidates, it is discarded (lines
23–25). If µ individuals are selected or the number of
iterations exceeds tlimit, the race is finished.

candidate policies

av
er

ag
ed

 re
tu

rn

undecided: race!

selected

unselected

Figure 1. Example of a selection race for µ = 2 and λ = 6.

We compute the confidence intervals using the Hoeff-
ding or empirical Bernstein bound. If a confidence
interval is recomputed, the highest lower and lowest
upper bounds determined so far are stored. If we want
our final decision to be correct with probability of at
least 1 − δ, all computed bounds must be valid with
probability of at least 1− δ. By the union bound, this
holds if each single bound holds with probability of
at least 1 − δ/nb, where nb is the maximum number
of considered bounds. In our setting, nb can be upper
bounded by λtlimit, because we have at most tlimit iter-
ations and at most λ evaluations per iteration. Thus,
after t evaluations of policy xi we get a confidence
interval

[
X̂i,t − ci,t, X̂i + ci,t

]
with

cHoeffding
i,t = R

√
log (2nb) − log δ

2t

using the Hoeffding and

cBernstein
i,t = σ̂i,t

√
2
log(3nb) − log δ

t
+3R

log(3n) − log δ

t

using the empirical Bernstein bound. The approxima-
tion nb = λtlimit is much too loose because it does not
consider that already selected or discarded individuals
are not reevaluated. Therefore we use in iteration t

nb,t =
t−1∑

k=1

uk + (tlimit − t + 1)ut ,

where ut is the number of individuals labeled unde-
cided in iteration t.

We combine this selection algorithm based on racing
with the CMA-ES and call the resulting algorithms
Hoeffding- and Bernstein-Race-CMA-ES depending on
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the way we compute the confidence intervals. By con-
struction, our selection algorithm has the following
property:

Proposition 1 Let {x1, . . . , xλ} be a set of individu-
als with fitness values almost surely between a and b,
µ < λ, tlimit ≥ 3, and δ ∈]0, 1]. If the above procedure
selectRace selects a set S of policies, then with prob-
ability of at least 1−δ these elements belong to the best
µ out of {x1, . . . , xλ} in terms of mean performance.

If after tlimit iterations less than µ individuals were
selected, the – according to their estimated mean –
best of the not yet discarded policies are considered
in the CMA-ES. If this happens tlimit was too small,
and therefore the maximum number of iterations is
increased by a factor of α > 1 in the next generation
upper bounded by a threshold tmax (line 27). If tlimit

iterations were sufficient, tlimit is reduced by a factor of
α−1 (line 26), which has a positive effect on the bounds
and therefore can speed up future races. Thus, the
selection procedure adapts the overall budget of policy
evaluations and distributes the available evaluations
among the candidate policies.

Related work. Stagge (1998) and Schmidt et al.
(2006) propose methods for uncertainty handling in
rank-based evolution strategies for noisy function op-
timization. However, both heuristics assume a particu-
lar distribution of the performance samples. Heidrich-
Meisner and Igel (2009) use the uncertainty han-
dling CMA-ES (UH-CMA-ES) developed by Hansen
et al. (2009) for reliably ranking policies in RL. How-
ever, this heuristic only adjusts globally in each gener-
ation the number of roll-outs considered for evaluation.
Racing algorithms have been proposed in the domain
of evolutionary computation for the empirical evalua-
tion of different evolutionary algorithms (e.g., different
external strategy parameter configurations) (Birattari
et al., 2002; Yuan & Gallagher, 2004), but to the best
of our knowledge not yet for selection.

4. Experiments

Benchmark problems. We consider RL bench-
marks taken from the literature. The mountain car
task serves as a minimal example. Here an under-
powered car has to be driven out a valley to the goal
state at the hilltop (Sutton & Barto, 1998). The state
s = [x, ẋ]T of the system is given by the position
x ∈ [−1.2, 0.6] of the car and by its current velocity
ẋ ∈ [−0.07, 0.07]. Actions are discrete forces applied
to the car a ∈ {−amax, 0, amax}. In every time step a
reward of −1 is given to the agent. The initial state is
uniformly drawn from [−1.2, 0.6] × [−0.07, 0.07]. In a

second scenario we add Gaussian noise N (0, 0.01) to
the state observation (Heidrich-Meisner & Igel, 2008),
making the underlying Markov decision process par-
tially observable. A trial is successful if the final pol-
icy allows the car to reach the hilltop in less than 100
time steps on average for the fully observable task and
in less than 120 time steps on average for the partially
observable task.

As a higher dimensional and more challenging task
we consider the swimmer problem (Coulom, 2002).
The swimmer consists of nc compartments floating
on a liquid surface. The swimmer is supposed to
move its center of gravity as fast as possible in a
predefined direction. The state description s =
[A0, ζ1, . . . , ζnc , Ȧ0, ζ̇1, . . . , ζ̇nc ]T includes the position
of the end point of the first compartment A0 (mark-
ing the “head” of the swimmer), the angle of the
ith part (i = 1, . . . , nc) with respect to the x-axis,
the corresponding velocity of the “head” Ȧ0, and the
angular velocities for each part ζ̇1, . . . , ζ̇nc . Actions
a = [a1, . . . , anc−1]T are torques applied between body
parts. The reward given to the swimmer is the velocity
component of the swimmer’s center of gravity paral-
lel to the x-axis. We considered two swimmers with
nc ∈ {3, 4}. The swimmer’s initial position is set to 0
and the initial angular velocities are each drawn uni-
formly from [0, π]. A swimmer trial is called success-
ful if the average velocity of the swimmer’s center of
gravity is larger than 3nc

40
m
s , i.e., the swimmer covers a

distance of at least one and a half of its length in the
desired direction in the simulated time span of 20 s.

Baseline algorithms. In order to judge the perfor-
mance of the CMA-ES and the two Race-CMA-ESs
for RL, we consider two alternative methods for com-
parison. First, we use simple random search (random
weight guessing, RWG) as a baseline for evaluation.
In every iteration new policy parameters are drawn
uniformly from an interval [−xmax, xmax]n, where n
is the number of policy parameters, and the best so-
lution is maintained. Second, we apply the efficient
episodic natural actor-critic algorithm (NAC) accord-
ing to Peters and Schaal (2008), a state-of-the-art pol-
icy gradient method. The NAC is, like the CMA-ES,
a variable metric algorithm operating on a predefined
policy class.

Experimental setup. In all four benchmark prob-
lems uncertainty arises from random start states. In
the second of the two mountain car tasks we addi-
tionally have to cope with noisy observations. We al-
ways consider the same type of linear policies in or-
der to allow for a fair comparison. The linear poli-
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cies examined here are typically used with the NAC
(Peters & Schaal, 2008). More sophisticated choices
of policy classes certainly improve the performance of
the CMA-ES, which for instance works fine with non-
linear neural networks (Pellecchia et al., 2005; Siebel
& Sommer, 2007; Gomez et al., 2008). Thus all meth-
ods operate on the same policy class πdeter

x (s) = xT s
with s, x ∈ Rn. For learning, the NAC uses the
stochastic policy πstoch

x (s, a) = N (πdeter
x (s), σNAC),

where the standard deviation σNAC is considered as
an additional adaptive parameter of the policy gra-
dient method. The NAC is evaluated on the corre-
sponding deterministic policy. The policy parameters
(except the exploration parameter σNAC for the NAC)
are always initialized with zero. For the swimmer task
the action consists of nc − 1 continuous values and
we apply an independent linear policy for each ac-
tion component, thus the search space is 2(n2

c − 1)-
dimensional. For the independent evaluation of the
algorithms (e.g., in the following plots), we deter-
mine the median of 50 roll-out for the mountain car
tasks and of 10 roll-outs for the swimmer tasks. For
the mountain car problems we test for the CMA-
ES all combinations of initial global step size σ(0) ∈
{0.1, 1, 5, 10, 15, 25, 50, 100} and sample size neval ∈
{1, 10, 20, 30}, and for the NAC all combinations of ini-
tial exploration σNAC ∈ {0.1, 1, 5, 10, 15, 25, 50, 100},
learning rate αNAC ∈ {0.1, 0.01, 0.001, 0.0001}, and
sample size neval ∈ {n+2, 2(n+2), 3(n+2) (the NAC
needs a minimum of n+2 roll outs per policy update).
Since the swimmer problem is the more computational
demanding we restricted σ(0) and σNAC to {1, 10, 50}
for this task.

For the Hoeffding- and Bernstein-Race-CMA-ES we
always test all combinations of confidence δ ∈
{0.01, 0.05, 0.1} and σ(0) ∈ {1, 10, 50}. In each trial
we initialize tlimit = 3 (at least three roll-outs are nec-
essary to compute the empirical Bernstein bounds),
and we use α = 1.5 and tmax = 50 as upper bound on
tlimit.

Results. In Figs. 2 and 3 the performances of RWG,
CMA-ES, NAC, and Bernstein- and Hoeffding-Race-
CMA-ES are shown for the four test scenarios. For all
methods the performance for the best respective pa-
rameter configuration is plotted. The race based selec-
tions clearly increased the learning speed. RWG, NAC,
and CMA-ES performed best for large but not too
large sample sizes neval. Among the methods without
uncertainty handling the CMA-ES was more robust
against uncertainty than NAC and RWG when look-
ing at the best respective parameter configurations. In
the fully observable mountain car problem the NAC
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Figure 2. Median of performance over 500 trials for RWG,
NAC, CMA-ES, Bernstein-Race-CMA-ES, and Hoeffding-
Race-CMA-ES in the a) fully observable and b) partially
observable mountain car task. The respective best param-
eter configuration is plotted.
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Figure 3. Median of performance over 20 trials for RWG,
NAC, CMA-ES, Bernstein-Race-CMA-ES, and Hoeffding-
Race-CMA-ES for swimmers with a) 3 and b) 4 segments.
The respective best parameter configuration is plotted.

performed exceptionally well because it benefits from
a policy initialization close to an optimum (Heidrich-
Meisner & Igel, 2008). However, in the partially ob-
servable mountain car problem the Race-CMA-ESs
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Figure 4. Median of the performance over 20 trials for the
Bernstein-Race-CMA-ES with δ = 0.05 and σ(0) = 1 for
different maximal race lengths tmax ∈ {25, 50, 100} in the
swimmer task with nc = 4.
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Figure 5. Median of performance over 500 trials for the
Hoeffding-Race-CMA-ES with σ(0) = 50 in the partially
observable mountain car task for different confidence levels
δ ∈ {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The race length
tlimit selected by the Hoeffding-Race-CMA-ES with λ = 5,
tmax = 50 and δ = 0.05 for four selected trials is plotted in
the inset.

outperformed all other methods. For both mountain
car tasks the Hoeffding-Race-CMA-ES performed bet-
ter than the Bernstein-Race-CMA-ES. Initializing the
start state of the mountain car randomly led to a large
standard deviation σ̂i,t compared to the range R and
therefore the Hoeffding bound was tighter than the
empirical Bernstein bound. In the swimmer tasks the
empirical Bernstein bound was tighter than the Ho-
effding bound, and the Bernstein-Race-CMA-ES out-
performed the Hoeffding-Race-CMA-ES. The perfor-
mance of both Race-CMA-ESs depended on the upper
bound tmax of the race length tlimit as shown in Fig. 4
for the Bernstein-Race-CMA-ES. Choosing tmax too
large results in very costly policy updates and unnec-
essary slow learning. This can be seen in the swimmer
task with nc = 4, where both Race-CMA-ESs per-
formed poorly even though they initially improve the
learning speed. The inset in Fig. 5 shows the values of
tlimit chosen by the Bernstein-Race-CMA-ES for single
trials. At the beginning small sample sizes were used,
and when the accuracy was no longer sufficient the
sample size was increased. Finally for fine tuning the

maximal allowed sample size of tmax = 50 was used
most of the time. As can be seen in Fig. 5, a lower
confidence improved the performance in our experi-
ments, because in the initial learning phase, which is
crucial for the overall performance in simple mountain
car task, a high confidence is not needed.

But the Race-CMA-ESs not only improved the learn-
ing speed. They also proved to be very robust against
changes in their hyperparameter values. For the moun-
tain car task both the Bernstein- and the Hoeffding-
Race-CMA-ES were successful in more than 80% of
the 500 trials for 9 out of 9 tested parameter configu-
rations, while the standard CMA-ES was successful in
more than 80% of the trials in only 18 of 32 cases, the
NAC in 60 of 96 cases and RWG in 7 of 28 cases. In the
partially observable mountain car task, the Bernstein-
and the Hoeffding-Race-CMA-ES were again success-
ful in more than 80% of the trials for 9 out of 9 tested
parameter configurations. CMA-ES, NAC, and RWG
achieved a success level of 80% in 3 of 3, 6 of 12, and
0 of 28 cases, respectively. (In this case only the most
effective fixed sample size was tested for the CMA-ES
and the NAC.) For swimmers with 3 compartments
the Race-CMA-ESs were also robust. The Bernstein-
Race-CMA-ES was successful in more than 50% of all
trials for 6 of 9 and the Hoeffding-Race-CMA-ES was
successful in more than 50% of all trials for 5 of 9 and
parameter configurations. For swimmers with nc = 4
both Race-CMA-ESs were not successful because pre-
sumably the value of tmax was too large. The CMA-ES
achieved successes in more than 50% of the trials in 11
of 12 and 5 of 12 cases for nc∈ {3, 4}, while the NAC
and RWG reached this success level in none of the
configurations. Thus, uncertainty handling through
selection races remarkably sped up learning and im-
proved at the same time the robustness compared to
the CMA-ES without uncertainty handing, which is
already much more robust than the policy gradient
method.

5. Discussion and Conclusion

Evolution strategies (ESs) are powerful direct policy
search methods. One of their main advantages is their
ability to cope with uncertainty and noise. Still, ran-
dom elements in the environment require gathering
statistics over several episodes for the evaluation of
candidate policies. We added a new adaptive uncer-
tainty handling to evolutionary reinforcement learn-
ing. It adjusts the number of roll-outs per evaluation
of a policy such that the signal to noise ratio is just
high enough for a sufficiently good ranking of candi-
date policies, which in turn suffices for the ES to find
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better solutions. The uncertainty handling exploits
the advantage of small sample sizes in the beginning
and increases the sample size when a higher accuracy is
necessary. It balances the trade-off between fast learn-
ing and sufficient accuracy. This significantly increases
both learning speed and robustness.

The statistically sound uncertainty handling scheme is
independent of the CMA-ES and could be combined
with other RL approaches (e.g., for evolutionary online
RL, Whiteson & Stone, 2006). Moreover, it is not
limited to RL and may also be adopted for general
noisy function approximation tasks.
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Tuning bandit algorithms in stochastic environ-
ments. 18th International Conference on Algo-
rithmic Learning Theory (ALT) (pp. 150–165).
Springer-Verlag.

Beyer, H.-G. (2007). Evolution strategies. Scholarpe-
dia, 2, 1965.

Birattari, M., Stutzle, T., Paquete, L., & Varrentrapp,
K. (2002). A racing algorithm for configuring meta-
heuristics. Genetic and Evolutionary Computation
Conference (GECCO 2002) (pp. 11–18). Morgan
Kaufmann Publishers.

Coulom, R. (2002). Apprentissage par renforcement
utilisant des reseaux de neurones, avec des applica-
tions au controle moteur. These de doctorat, Institut
National Polytechnique de Grenoble.

Gomez, F., Schmidhuber, J., & Miikkulainen, R.
(2008). Accelerated neural evolution through co-
operatively coevolved synapses. Journal of Machine
Learning Research, 9, 937–965.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003).
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adapta-
tion (CMA-ES). Evolutionary Computation, 11, 1–
18.

Hansen, N., Niederberger, A. S. P., Guzzella, L.,
& Koumoutsakos, P. (2009). A method for han-
dling uncertainty in evolutionary optimization with
an application to feedback control of combustion.
IEEE Transactions on Evolutionary Computation,
13, 180–197.

Heidrich-Meisner, V., & Igel, C. (2008). Variable met-
ric reinforcement learning methods applied to the
noisy mountain car problem. European Workshop

on Reinforcement Learning (EWRL 2008) (pp. 136–
150). Springer-Verlag.

Heidrich-Meisner, V., & Igel, C. (2009). Uncer-
tainty handling CMA-ES for reinforcement learning.
Genetic and Evolutionary Computation Conference
(GECCO 2009). ACM Press.

Maron, O., & Moore, A. W. (1994). Hoeffding races:
Accelerating model selection search for classification
and function approximation. Advances in Neural In-
formation Processing Systems (pp. 59–66). Morgan
Kaufmann Publishers.

Maron, O., & Moore, A. W. (1997). The racing algo-
rithm: Model selection for lazy learners. Artificial
Intelligence Review, 11, 193–225.
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