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Abstract

This work proposes a learning method for
deep architectures that takes advantage of
sequential data, in particular from the tem-
poral coherence that naturally exists in un-
labeled video recordings. That is, two suc-
cessive frames are likely to contain the same
object or objects. This coherence is used as
a supervisory signal over the unlabeled data,
and is used to improve the performance on a
supervised task of interest. We demonstrate
the effectiveness of this method on some pose
invariant object and face recognition tasks.

1. Introduction

With the availability of ever increasing computing
power, large-scale object recognition is slowly be-
coming a reality. Several massive databases have
been introduced for that purpose. Huge hand-labeled
datasets like NORB (LeCun et al., 2004) can be con-
structed e.g. by considering a few objects and varying
the pose (using a rotating platform) as well as lighting
conditions, the presence of clutter and the background.
Scaling to more classes has been shown to be possi-
ble using click-through data from search engines, like
in the recent 80 million tiny images (Torralba et al.,
2008) database. Nevertheless, labeling images remains
expensive, which motivates research into ways of lever-
aging the cheap and basically infinite source of unla-
beled images available in the digital world.

Classical semi-supervised learning (Chapelle et al.,
2006) and transduction (Vapnik, 1995) are machine-
learning classification techniques able to handle la-
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beled and unlabeled data, which assume each unla-
beled example belongs to one of the labeled classes
that are considered. If the unlabeled data is com-
ing from heterogeneous sources then in general no
class membership assumptions can be made (the unla-
beled image might not belong to any of the considered
classes), and one cannot rely on these methods. There
are however cases where unlabeled data has a useful
underlying structure which can be exploited. One ex-
ample is video, a source of images constrained by tem-
poral coherence: two successive frames are very likely
to contain similar contents and represent the same con-
cept classes. Each object in the video is also likely to
be subject to small transformations, such as transla-
tion, rotation or deformation over neighboring frames.
This sequential data thus provides a signal from which
to learn a representation invariant to these changes.
In this paper we propose a learning method that can
leverage temporal coherence in video to boost the per-
formance of object recognition tasks.

We choose a deep convolutional network architec-
ture (LeCun et al., 1998), well suited for large-scale
object recognition. We propose a training objective
with a temporal coherence regularizer added to a typ-
ical training error minimizing objective, resulting in a
modified backpropagation rule. While this paper fo-
cuses on object recognition and the use of video, the
proposed algorithm can be applied to other sequential
data with temporal coherence, and when minimizing
other choices of loss.

We report experimental results on a visual object
recognition task, COIL100 (Nayar et al., 1996), where
the goal is to recognize objects regardless of their pose.
We show that in this case, temporal coherence in video
acts as a very good regularizer, and that, without us-
ing hand-crafted or strongly engineered features one
can produce models that compete with state-of-the-art
hand-designed methods like VTU (Wersing & Körner,
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2003). We then go on to investigate how the choice
of video source can affect this result, i.e. we measure
the relative performance depending on the source of
the video. To do this we recorded our own datasets of
real rotating 3D objects, of differing degrees of similar-
ity to COIL, and show how this unlabeled supplemen-
tary video also improves performance on our super-
vised classification task. We also report experiments
on the ORL face dataset (Samaria & Harter, 1994),
with similar results.

From a biological point of view, several authors (Hin-
ton & Sejnowski, 1999; Becker, 1996a) argue that pure
supervised learning is a poor model of how animals
really learn. Learning from temporal coherence in se-
quence data, e.g. in audio and video, on the other hand
provides a natural, abundant source of data which
seems a more biologically plausible signal than used in
most current machine learning tasks. In this respect,
we believe this is an important direction of research,
and this work proposes a simple and intuitive solution
to this problem.

The rest of the paper is organized as follows. Section 2
describes our neural network architecture for incorpo-
rating temporal coherence for object recognition, and
Section 3 describes previous related work. Section 4
presents experimental results, and Section 5 concludes.

2. Exploiting Video Coherence with
CNNs

Our choice of architecture is a convolutional neural
network (CNN) (LeCun et al., 1998). A CNN per-
forms a chain of filters and resolution reduction steps
as shown in Figure 1. This structure imposes a hard-
wired prior knowledge which is advantageous for vi-
sual recognition tasks compared to fully connected net-
works due to several reasons. First, it takes the topol-
ogy of 2D data into account, as opposed to converting
it to a long 1D vector. Second, the locality of filters
significantly reduces the number of connections and
henceforth parameters to be learned, reducing overfit-
ting problems. Finally, the resolution reduction opera-
tion provides better tolerance against slight distortions
in translation, scale or rotation. CNNs have justified
themselves in many visual recognitions tasks including
handwritten digit recognition (LeCun et al., 1998) and
face detection (Osadchy et al., 2007).

We now formally describe this architecture.

2.1. Convolution and Subsampling

Each convolution layer Cl in our architecture described
in Figure 1 operates a linear Kl × Kl filtering over
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Figure 2. Siamese Architecture: the parameters θ are
shared between the two identical copies of the network.
Two examples are input, one for each copy, and the com-
parison between them is used to train θ, i.e. using the
temporal coherence regularizer in equation (4).

N l−1 image input planes zl−1
1...N l−1 of size Dl−1×Dl−1.

It outputs an arbitrary chosen number N l of planes
zl

1...N l , where the value at position (i, j) in the pth

plane is computed as follows:

zl
p(i, j) = bl

p+
∑

q

Kl∑
s=1

Kl∑
t=1

wl
p,q,s,t zl−1

q (i−1+s, j−1+t) ,

where the biases bl
p and the filter weights wl

p,q,s,t are
trained by backpropagation. The output plane size is
Dl ×Dl, where Dl = Dl−1 −Kl + 1.

Subsampling layers Sl simply apply a Kl×Kl smooth-
ing over each input planes:

zl
p(i, j) = bp + wp

Kl∑
s=1

Kl∑
t=1

zl−1
p (i− 1 + s, j − 1 + t) ,

where the parameters bl
p and wl

p are also trained by
backpropagation.

A non-linearity function like tanh(·) is applied after
each convolution and subsampling layer. A final clas-
sical fully-connected layer outputs one value per class
in the considered task. To interpret these values as
probabilities, we add a “softmax” layer which com-
putes:

P̃p =
exp(zl−1

p )∑
q exp(zl−1

q )
. (1)

We suppose we are given a set of training exam-
ples {(xn, yn)}n=1...N , where xn represents a two-
dimensional input image, and yn a label. We
then minimize the negative log-likelihood L(θ) =∑N

n=1 L(θ,xn, yn) over the data with respect to all
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Figure 1. A Convolutional Neural Network (CNN) performs a series of convolutions and subsamplings given the raw input
image until it finally outputs a vector of predicted class labels.

parameters θ of the network:

L(θ) = −
N∑

n=1

log Pθ(yn|xn) = −
N∑

n=1

log P̃θ,yn(xn) (2)

We use stochastic gradient descent (Bottou, 1991) op-
timization for that purpose. Random examples (x, y)
are sampled from the training set. After computation
of the gradient ∂L(θ)/∂θ, a gradient descent update
is applied:

θ ←− θ − λ
∂L(θ, x, y)

∂θ
, (3)

where λ is a carefully chosen learning rate (e.g., choos-
ing the rate which optimizes the training error).

2.2. Leveraging Video Coherence

As highlighted in the introduction, video coherence en-
sures that consecutive images in a video are likely to
represent the same scene. It is also natural to enforce
the representation of input images in the deep layers
of the neural network to be similar if we know that the
same scene is represented in the input images.

We consider now two images x1 and x2, and their
corresponding generated representation zl

θ(x1) and
zl

θ(x2) in the lth layer. We exploit the video coher-
ence property by enforcing zl

θ(x1) and zl
θ(x2) to be

close (in the  L1 norm) if the two input images are con-
secutive video images. If the two input images are not
consecutive frames, then we push their representations
apart. This corresponds to minimizing the following
cost:

Lcoh(θ, x1,x2) = (4)
||zl

θ(x1)− zl
θ(x2)||1, if x1, x2 consecutive

max(0, δ − ||zl
θ(x1)− zl

θ(x2)||1), otherwise

where δ is the size of the margin, a hyperparameter
chosen in advance, e.g. δ = 1.

Algorithm 1 Stochastic Gradient with Video Coher-
ence.

Input: Labeled data (xn, yn), n = 1, ...N , unla-
beled video data xn, n = N + 1, ...N + U
repeat

Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(θ, xn, yn)
Pick a random pair of consecutive images xm,xn

in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)
Pick a random pair of images xm,xn in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)

until Stopping criterion is met

In our experiments, we enforced video coherence as de-
scribed in (4) on the (M−1)th layer of our M -layer net-
work, i.e. on the representation yielded by the succes-
sive layers of the network just before the final softmax
layer (1). The reasoning behind this choice is that the
 L1 distance we use may not be appropriate for the log
probability representation in the last layer, although
in principle we could apply this coherence regulariza-
tion at any layer l. In practice, minimizing (4) for all
pairs of images is achieved by stochastic gradient de-
scent over a “siamese network” architecture (Bromley
et al., 1993): two networks sharing the same param-
eters θ compute the representation for two sampled
images x1 and x2 as shown in Figure 2. The gradient
of the cost (4) with respect to θ is then computed and
updated in the same way as in (3).

The optimization of the object recognition task (2) and
the video coherence (4) is done simultaneously. That
is, we minimize:

N∑
n=1

L(θ, xn, yn) + γ
∑
m,n

Lcoh(θ, xm, xn)

with respect to θ.

In order to limit the number of hyper-parameters, we
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gave the same weight to each task, i.e. γ = 1, and min-
imization is then achieved by alternating stochastic
updates from each of the two tasks. Further, the dis-
tribution of consecutive versus non-consecutive frames
used to minimize Lcoh(·) presented during stochastic
gradient descent will also affect learning. Here, again
we simplify things by presenting an equal number of
each, as described in Algorithm 1.

3. Previous and Related Work

Temporal Coherence Learning Wiskott and Se-
jnowski (2002) learn invariant (slowly varying) fea-
tures from unsupervised video based on a reconstruc-
tion loss. This can then be used for a supervised task
but is not trained at the same time.

The work of Becker (1996a; 1999), which is proba-
bly the most related work to ours, explores the use of
temporal context using a fully connect neural network
algorithm which introduces extra neurons, called con-
textual gating units, and a Hebbian update rule for
clustering based on context (“competitive learning”)
This method was applied to rotating objects (faces)
and showed improvements over not taking into account
the temporal context. In comparison, our work does
not introduce new network architectures, we instead
introduce a natural choice of regularizer for taking ad-
vantage of temporal coherence that can be applied to
any choice of network. We chose to apply our method
to a state-of-the art deep convolutional network.

Becker and Hinton (1992; 1996b) also introduced the
IMAX method that maximizes the mutual information
between different output units which can be applied to
learning spacial or temporal coherency. However, this
method has a number of drawbacks including a “ten-
dency to become trapped in poor local minima” and
that “learning is very slow” (unless specific tricks are
used) due to the small gradients induced by their cri-
terion, as reported by the authors. In contrast, our
method is highly scalable and can be easily trained on
millions of examples, and we observe improved gener-
alization whenever we applied it.

Semi-Supervised Learning Classical Semi-
supervised learning methods utilize unlabeled exam-
ples coming from the same distribution (and hence
classes) as the labeled data, and can be realized by
either shallow architectures (e.g. kernelized methods)
or deep ones. There are many variants of each type,
see e.g. (Chapelle et al., 2006).

Two main methods are transductive inference and
graph-based approaches. Transductive methods like
TSVMs (Vapnik, 1995) involve maximizing the mar-

gin (confidence) on a set of unlabeled examples which
come from the same distribution as the training data.
Several authors argue that this makes an assumption
that the decision rule lies in a region of low density
(Chapelle & Zien, 2003). Graph-based methods use
the unlabeled data by constructing a graph based on
a chosen similarity metric, e.g. one builds edges be-
tween k-nearest neighbors. For example, Laplacian
SVM (Belkin et al., 2005) works by directly regulariz-
ing for a two-class SVM that ||f(x) − f(x′)||2 should
be small for two examples x and x′ connected in the
graph. (Weston et al., 2008) presents a similar ap-
proach for neural networks. Further, (Chopra et al.,
2005) applied a siamese network similar to ours but
for a fully supervised (not semi-supervised) face simi-
larity task (not using video). See also (Bowling et al.,
2005) for an embedding algorithm using the actions
of a robot which seems related to our work. Finally,
we note that many graph-based approaches are also
used in an unsupervised rather than supervised setup
(Tenenbaum et al., 2000; Roweis & Saul, 2000).

In contrast to TSVMs, our method does not make
a strong assumption that the class labels of objects
in the unlabeled video have to belong to the training
classes, and we show experimentally in Section 4 that
our method takes advantage of examples coming from
differing classes.

Graph methods on the other hand suffer from two fur-
ther problems: (1) building the graph is computation-
ally burdensome for large-scale tasks, (2) they make
an assumption that the decision rule lies in a region of
low density with respect to the distance metric chosen
for k-nearest neighbors.

Our method does not rely on the low density as-
sumption at all. To see this, consider uniform two-
dimensional data where the class label is positive if
it is above the y-axis, and negative if it is below. A
nearest-neighbor graph gives no information about the
class label, or equivalently there is no margin to op-
timize for TSVMs. However, if sequence data (analo-
gous to a video) only has data points with the same
class label in consecutive frames then this would carry
information. Further, no computational cost is asso-
ciated with collecting video data for computing (4),
in contrast to building neighbor graphs. Realistically,
in high dimensional spaces nearest neighbors can also
perform poorly, e.g. in the pixel space of images.

4. Experiments

We consider two types of experiment, object and face
recognition, detailed in Sections 4.1 and 4.2.
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4.1. Object Recognition

We considered several datasets, described below.

4.1.1. Datasets

COIL100 We use the COIL100 image dataset devel-
oped at Columbia University as our main recognition
task (Nayar et al., 1996). This set contains color pic-
tures of 100 objects, each 72x72 pixels; some examples
are shown in Figure 3. There are 72 different views
for every object, i.e. there are 7200 images in total.
The images were obtained by placing the objects on a
turntable and taking a shot for each 5 degree turn. The
images were clipped and passed through illumination
normalization.

COIL100-Like We created a video dataset of aux-
iliary images to complement COIL100. The idea is to
provide images that are similar to, but not the same
objects as, the ones in COIL100. This will enable us
to measure the success of our method when the unla-
beled video comes from a different distribution. For
this purpose we collected 4 types of objects that are
also present in COIL100: namely fruits, cars, cups,
and cans with 10 objects per type (see Figure 4).

Similar to COIL100, we recorded video utilizing a
turntable. As we wanted to record a continuous stream
of video, in real-time we removed and placed each ob-
ject, where the operator is wearing a black glove which
can be seen in the video. The idea is that our setup
mimics that of a child holding a toy or other object
and rotating it in her hand, and in this way learning
about image transformations. The turntable makes 4
revolutions per minute and the recording rate is 24
fps. We downsampled the video so that two successive
frames give a 5 degree rotation of the objects.

Animal Set We also created a video dataset con-
taining objects rather dissimilar to COIL100. This will
enable us to measure the success of our method when
the unlabeled video shares no objects in common with
the supervised task of interest. To do this, we collected
a set of toy animals, consisting of 60 toys of different
types such as horse, duck, cow, sheep, deer, dog, cat,
pig, mouse, rabbit and different types of birds. The
data was collected in the same way as for COIL100-
Like. Some examples are given in Figure 5.

Although both COIL100 and our video are in color, we
convert them to gray scale so that recognition only de-
pends on the shape of the objects. This will enable us
to compare our results with other works who also use
only the shape information, which is indeed a harder
task than using color information as well.

Figure 3. Dataset 1: Examples of the 100 objects from
COIL100, each of which has 72 different poses.

Figure 4. Dataset 2: Examples of 40 COIL100-Like ob-
jects, each of which is provided with 72 different poses, as
a video stream. This video was collected to provide similar
sensory data as provided in the COIL dataset.

Figure 5. Dataset 3: Examples of 60 animals from our An-
imal Set, comprising of animals such as horses, ducks, deer
and rabbits. Again, 72 poses are provided for each animal
as a video stream.

Figure 6. Dataset 4: Examples from the ORL face dataset.
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Both the datasets we collected, COIL100-Like and An-
imal Set are available at http://ml.nec-labs.com/
download/data/videoembed.

4.1.2. Methods

We compare our CNN architecture summarized in Fig-
ure 1 against previously used methods. These include
Support Vector Machines (SVM) using a polynomial
kernel (Roobaert & Hulle, 1999), a nearest neighbor
classifier on the direct images (Wersing & Körner,
2003) (Nearest Neighbor), an eigenspace plus spline
recognition model (Nayar et al., 1996) (Eigen Spline),
a SpinGlass Markov Random Field (SpinGlass MRF)
(Caputo et al., 2002), and a hierarchical view-tuned
network for visual recognition tasks (VTU) (Wersing
& Körner, 2003).

Linear SVM and Nearest Neighbor Classifier are well-
known, so we briefly describe the other methods. Spin
Glass MRF essentially uses an energy function in-
spired by models of physics of disordered systems.
The eigenspace and spline method first obtains the
eigenspace of training images (all classes together). It
then projects training samples onto a subset of eigen-
vectors with the top eigenvalues. In the reduced space,
a spline interpolation is applied to the samples of each
class separately. The recognition phase projects a test
point to the reduced space and assigns it to the class
with closest spline.

The VTU method builds a hierarchy of biologically
inspired feature detectors. The method applies Gabor
filters at four orientations, followed by spatial pooling.
It then learns receptive field profiles using a special
type of sparse coding algorithm with invariance con-
straints. VTU has shown to achieve very good results,
but there is a lot of manual engineering of knowledge
in the algorithm as well as a lot of tuning parameters.

4.1.3. Results

The setup of our experiments is as follows. First, we
use a standard CNN without utilizing any temporal in-
formation to establish a baseline for our contribution.
We then explore three scenarios based on the source
of the unlabeled video. These sources are COIL100
objects, COIL100-Like, and our Animal Set. In all of
these scenarios, the labeled training and testing data
for the supervised task belong to COIL.

For comparability with the settings available from
other studies on COIL100, we choose two experimental
setups. These are (i) when all 100 objects of COIL are
considered in the experiment and (ii) when only 30 la-
beled objects out of 100 are studied (for both training

and testing). In either case, 4 out of 72 views (at 0, 90,
180, and 270 degrees) per object are used for training,
and the rest of the 68 views are used for testing. All of
our reported numbers are based on averaging the clas-
sification rate on the test data over 10 training runs.
The results are given in Table 1.

The first experiment uses only the labeled examples,
and no unlabeled video, for training (Standard CNN).
The performance (test set accuracy) is 71.49% and
84.88% for 100 and 30 objects respectively. This is
slightly better than SVM but worse than VTU.

Next, we treat COIL100 as a continuous unlabeled
video sequence of rotating objects with 72 consecutive
frames per each object (after 72 frames the continuous
video switches object). For the 100 object result, the
test set is hence part of the unlabeled video (a so-called
“transductive” setting). Here we obtained 92.25% ac-
curacy (videoCNN V:COIL100) which is much higher
than the best alternative method (VTU).

A natural question is what happens if we do not have
access to test data during training, i.e. the setting
is a typical semi-supervised situation rather than a
“transductive” setting. To explore this, we used 30
objects as the primary task, i.e. 4 views of each ob-
ject in this set were used for training, and the rest for
test. The other 70 objects were treated as an unlabeled
video sequence (again, images of each object were put
in consecutive frames of a video sequence). Training
with 4 views of 30 objects (labeled data) and 72 views
of 70 objects (unlabeled video sequence) resulted in
an accuracy of 95.03% on recognizing 68 views of the
30 objects (videoCNN V:COIL“70”) This is about 5%
above VTU’s performance.

So far the unlabeled sequence was from the same
dataset as the training and test. To investigate
whether unlabeled video recordings of a large amount
of video of some other (possibly similar) objects also
improve recognition rates on the supervised task of in-
terest, we then considered our datasets COIL100-Like
and Animal Set.

For the following experiment, we consider all 100 ob-
jects in COIL (4 training, 68 for testing of each object).
The performance when leveraging the COIL-Like
video and Animal Set videos are 79.77% (videoCNN
V:COIL100-Like) and 78.67% (videoCNN V:Animal
Set) respectively. Compared to the state-of-the art
VTU method, the first number is slightly better and
the second slightly worse. However, in both cases
we have managed to match the state-of-the-art whilst
avoiding a strongly engineered solution for this task by
utilizing learning from unlabeled video.
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Table 1. Test Accuracy on COIL100 in various settings.
Both 30 and 100 objects were used following (Wersing &
Körner, 2003). Our temporal coherence respecting algo-
rithm videoCNN, with various choices of video, outper-
forms a standard CNN and other baselines.

Method 30 objects 100 objects

Nearest Neighbor 81.8 70.1
SVM 84.9 74.6
SpinGlass MRF 82.79 69.41
Eigen Spline 84.6 77.0
VTU 89.9 79.1
Standard CNN 84.88 71.49
videoCNN V:COIL100 - 92.25
videoCNN V:COIL“70” 95.03 -
videoCNN V:COIL-Like - 79.77
videoCNN V:Animal - 78.67

Table 2. Test Accuracy Performance on ORL Faces with k
labeled examples per subject.

Method k=1 k=2 k=5

Nearest Neighbor 69.07 81.08 94.64
PCA 56.43 71.19 88.31
LDA - 68.84 88.87
MRF 51.06 68.38 86.95
Standard CNN 71.83 82.58 94.05
videoCNN V:ORL 90.35 94.77 98.86

Compared to a plain CNN without using unlabeled
video, these are improvements of about 7% and 8%.
This indicates that although use of similar objects has
a larger improvement, the difference between the gain
obtained by COIL-Like and the Animal Set is rela-
tively small. This is important because it opens up
the possibility that the CNN structure has the ability
to learn pose invariance abstractly, without relying on
the actual object set used for training.

The drop in performance when using the COIL-
Like set as unlabeled video (videoCNN V:COIL-Like)
rather than objects from COIL100 itself (videoCNN
V:COIL100) is probably partly due to the change in
camera and environment parameters. However, our
results indicate that using unlabeled auxiliary video
is still always beneficial compared to not using video,
even when the objects in the auxiliary video are not
similar to those of the primary task.

4.2. Face Recognition

We also report a simple experiment on AT&T’s ORL
face database (Samaria & Harter, 1994), which con-
sists of 10 different gray scale images for each of the
40 distinct subjects, taken at different times and with
varying lighting and facial expressions (open / closed

eyes, smiling / not smiling). See Figure 6 for examples.

The images were placed in a “video” sequence by con-
catenating 40 segments, one for each subject, order-
ing according to the (arbitrary) numbering system
in the dataset. Note this is a “transductive” setup,
where the labeled train and test images are part of the
video (training examples are evenly spaced). We la-
beled k =1,2 or 5 images per subject and compared to
the baselines Nearest Neighbor, PCA, LDA and MRF
(Huang et al., 2004). We used the same CNN as in
Section 4.1 and rescaled the images from 92 × 112 to
72 × 72 pixels for that purpose, and otherwise per-
formed no special pre-processing. The results given in
Table 2 again indicate that learning significantly bene-
fits from unlabeled video through temporal coherence.

5. Conclusion

In this work we proposed a deep learning algorithm
for visual object recognition exploiting the temporal
coherence in video. Video acts a pseudo-supervisory
signal that improves the internal representation of im-
ages by preserving translations in consecutive frames.
This should be beneficial for many supervised tasks,
and huge collections of data can be obtained without
human annotation.

In our method, labeled and unlabeled data are trained
on simultaneously; temporal coherence of unlabeled
data acts as a regularizer for the supervised task. Po-
tentially, one can learn representations that are invari-
ant to pose, illumination, background or clutter, de-
formations (e.g. facial expressions) or occlusions with
appropriate videos. Further, our method might be use-
ful for non-visual tasks as well where sequence infor-
mation has structure, e.g. speaker verification to name
one possibility.

We conducted several experiments to evaluate our ap-
proach by considering several choices of video dataset.
Our result suggests that strong improvements can be
achieved when the unlabeled data comes from the same
dataset that labeled data comes from. When the two
sets come from different datasets, use of unlabeled data
is still beneficial, where probably the more similar the
objects are, the more beneficial the data is.
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