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Abstract

Practical data mining rarely falls exactly into
the supervised learning scenario. Rather, the
growing amount of unlabeled data poses a
big challenge to large-scale semi-supervised
learning (SSL). We note that the computa-
tional intensiveness of graph-based SSL arises
largely from the manifold or graph regular-
ization, which in turn lead to large mod-
els that are difficult to handle. To alleviate
this, we proposed the prototype vector ma-

chine (PVM), a highly scalable, graph-based
algorithm for large-scale SSL. Our key inno-
vation is the use of “prototypes vectors” for
efficient approximation on both the graph-
based regularizer and model representation.
The choice of prototypes are grounded upon
two important criteria: they not only per-
form effective low-rank approximation of the
kernel matrix, but also span a model suffer-
ing the minimum information loss compared
with the complete model. We demonstrate
encouraging performance and appealing scal-
ing properties of the PVM on a number of
machine learning benchmark data sets.

1. Introduction

In practical data analysis and mining, large-scale prob-
lems rarely fall exactly into the classic supervised
learning scenario. In most cases, what dominates is the
huge amount of unlabeled data acquired with an ever
growing rate in the various scientific domains, while
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the fraction of labeled samples will always be tiny due
to the expensive and tedious human intervention. Ex-
amples include but are not limited to document classi-
fication, gene functionality analysis, and phenotypic
response prediction based on structural similarities.
These situations make urgent the development of semi-
supervised learning framework, where the unlabeled
sample are used together with the labeled ones to im-
prove the performance of classifiers. On the other
hand, more challengingly, the semi-supervised tech-
niques will have to scale themselves well to accom-
modate large data at hand to play practical roles.

Although semi-supervised learning has drawn consid-
erable interest from the learning community, current
methods have not yet handled large amount of data.
Many graph-based methods to semi-supervised learn-
ing (Zhu et al., 2003; M. Belkin et al., 2006; Zhou
et al., 2003) scale cubically with the data size, where
manipulation of the kernel matrix defined on all the
labeled and unlabeled samples is the primary bottle-
neck. As to the transductive SVM (Joachims, 1999),
the formulation requires solving a combinatorial op-
timization that is computationally expensive, and re-
laxations into convex formulations (Bie & Cristianini,
2004; Xu et al., 2008) usually lead to semi-definite
programs that scale at least O(n4). In (Lawrence &
Jordan, 2003), the binary SSL problem is formulated
in the Gaussian process framework, which needs to be
scaled up by approximate, sparse GP-solvers.

Here, we summarize some advances in scaling up semi-
supervised learning algorithms. For the transduc-
tive SVM, Fung and Mangasarian (2001) considered
a sequential optimization procedure where a SVM is
trained using the labeled samples while simultaneously
assigning the unlabeled points to one of two classes
to maximize the margin. The algorithm shows clear
improvement in prediction performance, but it is de-



signed for the linear case and a special SVM with L1-
regularization. In (Collobert et al., 2006), a large-scale
training method, based on the Concave-Convex proce-
dure, is proposed for TSVMs. It iteratively optimizes
the non-convex function through a series of conven-
tional convex SVM training. The complexity is the
best among the existing TSVMs. Empirically, it scales
quadratically with the sample size but can still be ex-
pensive for large problems.

For graph-based methods, Zhu and Lafferty (2005)
proposed an elegant framework that combines the gen-
erative mixture model with graph-based regulariza-
tion, overcoming the limitations of scalability and non-
inductive inference. However, as the authors com-
mented, the curse of dimensionality could prevent a
mixture model from fitting the data well. In (Delal-
leau et al., 2005), a nonparametric function induction
framework is proposed which makes prediction based
on a subset of samples. The graph regularization is
also approximated by using only the selected subset
of samples and their connections with the rest of the
data. However, approximation of the graph regularizer
is achieved by ignoring the inter-connections among
the majority part of the data: those outside the pre-
chosen small subset. This can weaken the smoothness
of the resultant predictor. In (Gustavo et al., 2007),
the Nyström method is used to numerically approx-
imate the large matrix inverse used in (Zhou et al.,
2003), which leads to an efficient algorithm. It is trans-
ductive and does not handle new testing points.

Note that graph-based methods can usually be accel-
erated to scale as O(m2n) (Delalleau et al., 2005; Gus-
tavo et al., 2007), where m is the number of samples
selected, and n is the data size. Since m � n, this
is almost linear in n. They are more efficient than
transductive SVMs that scale at least quadratically
(Collobert et al., 2006). Therefore, we will focus on
graph-based methods, another advantage of which is
their ease in handling multi-class problems. Our key
observation is that the computational intensiveness
of graph-based semi-supervised learning arises largely
from the regularization term. On the one hand, this
often requires manipulation of the n×n kernel matrix
(such as multiplication or inverse) which is impracti-
cal for large problems. On the other hand, as shown
in the representer theorem (M. Belkin et al., 2006),
when the complete graph structure is used as the reg-
ularizer (such as the graph Laplacian), the resultant
model will span over both the labeled and unlabeled
samples, potentially leading to a very large model that
is difficult to handle.

To alleviate this problem, we propose to enforce the

graph-based regularization in a more economical way
by extracting a set of “prototypes vectors” from the
data, in order to improve both the scalability and
model simplicity for semi-supervised learning. On the
one hand, these prototype vectors are applied in the
low-rank approximation of the kernel matrix, which
recovers the global graph structure crucial for regular-
ization. On the other hand, with a certain informa-
tion theoretic measure, we require the prototypes to
span a prediction model with as much representation
power as the complete model obtained from the rep-
resenter theorem for graph-regularized structural risk
minimization. Since the prototypes have a small size,
they can be used to reformulate the optimization prob-
lem in SSL for improved scalability.

Our algorithm overcomes the difficulty with current
practices in scaling up graph-based semi-supervised
learning. It is non-parametric and makes no specific
assumption about the sample distribution. On the
other hand, the graph-based regularizer is enforced re-
liably based on a systematic approximation of the ker-
nel matrix, guaranteeing the smoothness of the resul-
tant model with regard to the overall manifold struc-
ture. Our algorithm differs from a direct application
of low-rank approximation technique in speeding up
existing graph-based SSL algorithms. Instead, it com-
bines the insight from low-rank kernel matrix approx-
imation with the learning of inductive models.

The rest of the paper is organized as follows. In Sec-
tion 2, we give a brief introduction on graph-based
semi-supervised learning algorithms. In Section 3,
we discuss two important roles played by the proto-
types, i.e., approximating the graph-based regularizer
and simplifying the model parametrization. We also
show that with the use of the Gaussian kernel, the two
criteria lead to a simple and unified prototype selec-
tion scheme via k-means clustering. In Section 4, we
demonstrate how to use the prototypes to reduce the
problem size in SSL, under both the L2 and hinge loss
functions. In Section 5, we make empirical evaluations
on a number of algorithms to demonstrate the perfor-
mance of the proposed prototype vector machine. The
last section gives some concluding remarks.

2. Related Work

Suppose that we are given a set of l labeled sam-
ples {(xi,yi)}

l
i=1 and u unlabeled samples {xi}

l+u
i=l+1,

where n = l + u, xi ∈ R
d, yi ∈ R

c is the label vector
such that if xi belongs to the kth class (1 ≤ k ≤ c),
the kth entry in yi is 1 and all the other entries are
0’s. A number of graph-based semi-supervised learn-
ing algorithms (Zhou et al., 2003; Zhu et al., 2003) can



be placed under the following optimization framework

min
f=[f>

l
f>
u

]>∈Rn×c

tr(f>Sf) + C1L(fl,Yl) + C2‖fu‖
2
F . (1)

Here S ∈ R
n×n is the graph-based regularization ma-

trix, Yl ∈ R
l×c is the class assignment matrix for the

labeled points, f ∈ R
n×c is the predicted class labels

for all the data points, which is divided into the la-
beled part fl ∈ R

l×c and the unlabeled part fu ∈ R
u×c,

C1 and C2 are positive regularization parameters, and
L is the loss function. The first term in (1) enforces
the smoothness of the predicted labels f with regard
to the manifold structure of the graph. The second
term requires that the prediction f should be consis-
tent with the known class labels, and the third term
enforces some kind of regularization on predicting the
unlabeled samples.

Usually S is chosen as the graph Laplacian matrix S =
D − K, where K ∈ R

n×n is the adjacency matrix of
the graph (or the kernel matrix) and D = diag(K1n) is
the degree matrix; or sometimes the normalized graph
Laplacian matrix S = I − D−1/2KD−1/2. For exam-
ple, in (Zhou et al., 2003), S is chosen as the normal-
ized Laplacian, and the two regularization parameters
C1 and C2 are chosen the same; in (Zhu et al., 2003),
S is chosen as the graph Laplacian, C1 approaches in-
finity, and C2 = 0. Note that these algorithms are
transductive and do not handle new test points. In
(M. Belkin et al., 2006), it is shown that in order to
optimize

min

l
∑

i=1

L (f(xi),yi) + γA‖f‖K + γI‖f‖G , (2)

where L(·, ·) is an empirical loss function, γA and γI

are regularization parameters to control the RKHS-
norm (‖ · ‖K) and graph-based smoothness (‖ · ‖G) of
the model f , respectively, the model will expand over
all the labeled and unlabeled points in the form of

f(x) =
l+u
∑

i=1

αiK(x,xi), (3)

where αi’s are the multipliers. By plugging (3) into
(2), the authors extended standard regularization al-
gorithms to their Laplacian-regularized versions. For
example, the Laplacian regularized least-squares min-
imizes

min ‖Yl − Kα‖2
F + γAα>Kα + γIα

>KSKα,

where α is the vector of αi’s. This can be deemed as
the inductive counterpart of (1) with a certain choice
of the regularization parameters γA and γI .

3. Approximations via Prototypes

This section introduces the basic idea of using proto-
types for solving SSL problems. By prototypes, we
mean a small set of points in the input space that can
be used as a replacement of the original data to ob-
tain efficient yet accurate solutions. More specifically,
in this paper we will need two kinds of prototypes: (i)
low-rank-approximation prototype for the graph-based
regularization (Section 3.1); (ii) label-reconstruction
prototype for model representation (Section 3.2).

3.1. Graph Regularization

Graph-based regularization in semi-supervised learn-
ing is usually in the form of the quadratic term f>Sf ,
where S is usually chosen as the (normalized) graph
Laplacian matrix, and f is the realization of the tar-
get function (the class labels) on the whole data set.
The computation of S is based on all the labeled and
unlabeled samples, which not only requires storing the
n × n kernel matrix, but may also involve expensive
operations such as the matrix inverse in solving the
optimization problem. As a result, it will dominate
the overall training complexity.

Note that the kernel matrix encountered in practice
usually have low numerical-rank compared with the
matrix size (Williams & Seeger, 2000). This opens up
the possibility of reducing the computational burdens
of enforcing the graph-based regularization by per-
forming low-rank approximation on the kernel matrix
K. Theoretically, the optimal rank-k approximation of
a kernel matrix K is provided by its eigenvectors as-
sociated with the dominant k eigenvalues. Therefore,
efficient alternatives have to be adopted. In this pa-
per, we use the Nyström method (Williams & Seeger,
2001), a well-known sampling-based approach that ap-
proximates the kernel matrix K ∈ R

n×n by

K ≈ KnmK−1
mmK>

nm. (4)

Here, Knm denotes the sub-matrix of K with m
columns, and Kmm is the sub-matrix that corresponds
to the intersection of the chosen columns and rows.

The Nyström low-rank approximation can be inter-
preted as a kind of prototype approximation, i.e.,
choosing a subset of “prototype” points {ui}

m
i=1 from

the given data X = {xi}
n
i=1, computing the kernel

matrix W ∈ R
m×m on the prototype points

Wij = K(ui,uj), 1 ≤ i, j ≤ m,

the cross-similarity matrix E ∈ R
n×m between the

whole data X and the prototype points,

Eij = K(xi,uj), 1 ≤ i ≤ n, 1 ≤ j ≤ m,



and then apply K ≈ EW−1E>. Therefore, we call
ui’s low-rank-approximation prototypes. With this
approximation, the graph-based regularization term
can be approximated as

f>Sf ≈ f>(D̃ − EW−1E>)f ,

where D̃ = diag(EW−1E>1n) and 1n ∈ R
n is the vec-

tor of all 1’s. Usually, the prototype points are simply
chosen as a random subset of the samples (Williams
& Seeger, 2001). Recently, Zhang and Kwok (2008)
showed that the Nyström low-rank approximation er-
ror is related to the encoding errors of the landmark
points in summarizing the data, for a number of com-
monly used kernels (Gaussian, linear, and polyno-
mial). Based on this error analysis, we will choose the
k-means clustering centers as the low-rank approxima-
tion prototypes.

3.2. Label Reconstruction

As has been discussed, the inclusion of a graph-based
regularizer results in a model that will expand over all
the labeled and unlabeled samples (3). This not only
leads to slow testing, but in turn causes computations
to be huge by applying such model in the structural
risk minimization (2) as considered in (M. Belkin et al.,
2006). Actually, in practice a classifier rarely needs
the whole basis set. In Figure 1, we illustrate this
using a toy data set. We choose a set of prototypes
(crosses) from each class, whose labels depend on the
classes they are chosen from. To predict the label of a
sample x, we compute its similarity with all the proto-
types, and linearly combine the prototype labels using
the similarities as weights. The decision boundary is
shown in blue. We also train a SVM on the full data
set and labels, and plot the support vectors (circles)
and the decision boundary in green. As can be seen,
the two decision boundaries are very similar.
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Figure 1. Decision boundaries of a prototype-based model
(blue) and a SVM trained on the full data set (green).

This example illustrates the value of prototypes, i.e.,
a set of properly chosen prototype vectors, together

with their labels (have to be learned, though), is sup-
posed to reconstruct the whole landscape of sample
labels. To formalize this, we assume that the label of
any sample point x can be recovered by a linear com-
bination of the labels of a set of prototypes {vi}

k
i=1

g(x) =

k
∑

i=1

fiK(x,vi), (5)

where fi’s are the estimated labels for xi. Therefore,
we call vi’s the label-reconstruction prototypes. In
matrix form, this can be written as

f = Hfv, (6)

where f is the predicted labels on all the samples, fv ∈
R

k×c is the label of prototypes vi’s, and H ∈ R
n×k is

the cross-similarity matrix between the whole data X

and the prototype points vi’s,

Hij = K(xi,vj), 1 ≤ i ≤ n, 1 ≤ j ≤ k.

We may also want to normalize H by dividing each
row of H by the sum of entries in that row. This can
prevent too large/small values in predicting the label.

The prototype reconstruction (5) resembles the ef-
fect of a nearest neighbor decision rule. Due to the
similarity-based weighting scheme, the reconstructed
label of x will be mostly dependent on those proto-
types having large similarities with x. Therefore, as
long as there are enough prototypes “filling” the space
of the input data, the sample label of a point can al-
ways be reconstructed reliably by finding prototypes
close to it. Our goal is to find a compact set of proto-
types that can faithfully reconstruct the labels.

Next, we examine how to choose the label recon-
struction prototypes for (5). Note that (5) can be
deemed as an approximation to the complete model
(3) from the representer theorem of graph-regularized
structural risk minimization. In supervised learning,
the kernel expansions in the model are all over “sup-
port vectors” lying on the class boundaries. How-
ever, in semi-supervised scenario, the small amount
of labeled data never suffice in delineating the com-
plete class boundary. In this case, the classifier has to
be expanded over unlabeled samples as well, many of
which could reside far off the class boundaries. Now,
our goal is to avoid allowing the model to be ex-
panded over the whole data set from scratch by find-
ing a small set of prototypes that can generate simi-
lar decision boundaries. Mathematically, this will re-
quire minimizing the distance between the complete
model f (3) and the approximate model g (5) as

D
(

∑l+u
i=1 αiK(x,xi),

∑m
i=1 βiK(x,vi)

)

, where D(·, ·)



is a distance between functions, and we rewrite the
model g (5) as g(x) =

∑m
i=1 βiK(x,vi) because the

estimated labels of the prototypes usually take real
values instead of {±1} (binary) or {0, 1} (multi-class).

In practice, the coefficients in the two models are un-
known during the training phase, so it is infeasible to
directly minimize their distance. However, note that
both models are expanded over their respective dictio-
naries of basis functions: f is spanned by the kernel
function K(·, )’s over the complete sample set, and g
by those over the prototypes. Therefore, the approx-
imate model g is expected to have similar representa-
tion power as the complete model f , if the basis in f
can be reliably coded by those from g. More specifi-
cally, the prototypes in g can be chosen to minimize

Q =

l+u
∑

i=1

k
∑

j=1

min D((K(x,xi),K(x,vj)) . (7)

This can be imagined as the error of coding each com-
ponent in f with the best prototype in g.

Obviously, the selection of the prototypes vi’s in (7)
will vary depending on the specific kernel K(·, ·) and
distance measure D(·, ·) adopted. In the following,
we consider the case where K is the Gaussian ker-
nel and D(·, ·) is the cross-entropy. The cross-entropy
is defined as H(p, q) = H(p) + DKL(p||q), where p
and q are basis functions from the two models f and
g, respectively, H(p) = −

∫

p(x) log(p(x))dx is the

entropy of p, and DKL(p||q) =
∫

p(x) log
(

p(x)
q(x)

)

dx

is the Kullback-Leibler divergence. Since our vari-
ables (the prototypes vi’s) rest with the basis in
g, H(p) will be constant and we only need to con-
sider the KL-divergence part. Using the Gaussian
kernel K(z1, z2) = exp

(

−‖z1 − z2‖
2/2h2

)

, the KL-
divergence can be written as (Goldberger & Roweis,
2005)1

DKL [K(x,xi)||K(x,vj)] =
1

4h2
‖xi − vj‖

2. (8)

Then the objective (7) can be simplified as

Q =
1

4h2

k
∑

i=1

∑

j∈Si

‖vi − xj‖
2,

where Si is the set of those kernels K(xj , ·) in f whose
closest prototype in g is K(vi, ·). As can be seen,
interestingly, this is exactly the objective of k-means
clustering, and the prototypes vi’s in (5) can be chosen

1This is a special case of the problem considered in
(Goldberger & Roweis, 2005), where the model g has vary-
ing bandwidths and the components in f are weighted.

as the k-means cluster centers as well. For other types
of kernels (linear or polynomial), the cross-entropy is
no longer suitable and new distance measures will be
investigated in the future.

4. Prototype Vector Machine

We have used two kinds of prototypes, the low-
rank-approximation prototypes {ui}

m
i=1 and the label-

reconstruction prototypes {vi}
k
i=1 as discussed in Sec-

tion 3. Since we require the prototype sizes (m and k)
to be much smaller than the sample size (n), the pro-
totypes can be used to reformulate problem (1) for a
more efficient optimization. More specifically, the low-
rank-approximation prototypes avoid computing the
n×n kernel matrix in enforcing the graph-based regu-
larization. On the other hand, the label-reconstruction
prototypes avoid optimizing the labels of all the sam-
ples f ∈ R

n×c, by just focusing on the labels of the k
prototypes fv ∈ R

k×c. Suppose that we have chosen
the prototype sets ui’s and vi’s. Then by plugging (5)
and (6) into (1) and considering the use of different
loss functions, we can formulate the prototype vector
machine in the following.

4.1. L2 Loss Function

By choosing the loss function L (1) as the L2-norm
(or the Frobenius norm in the multi-class case), the
objective can be written as

min
fv∈Rm×k

tr
(

(Hfv)>S(Hfv)
)

+ C1‖Hlfv − Yl‖
2
F

+C2‖Hufv‖
2
F .

Here, Hl ∈ R
l×k and Hu ∈ R

u×k are the rows in H

that correspond to the labeled and unlabeled points,
respectively, and S is as defined in (5). By setting the
derivative w.r.t. fv to zero, we obtain

f∗
v

=
(

H>
SH + C1H

>
l Hl + C2H

>
u Hu

)−1
E>

l Yl. (9)

Note that H>
SH = H>D̃H − (H>E)W−1(H>E)>

can be computed in O((m + k) · nk) time, therefore
the overall complexity is bounded by O((m + k)2 · n).

4.2. Hinge Loss Function

Here, we consider the binary classification case where
the labels Yl ∈ {±1}l×1, and L is chosen as the hinge
loss used in the SVM. Let ek be the transpose of the
kth row in Hl, i.e., Hl = [e1, e2, ..., el]

>, and

A = H>
SH + C2H

>
u Hu. (10)



Then the optimization problem (1) can be written as

min
fv∈Rm×1

1

2
f>
v

Afv + C1

l
∑

i=1

ξi

s.t. yie
>
i fv ≥ 1 − ξi, ξi ≥ 0.

The first term is the regularization part, and the sec-
ond term is the hinge loss induced by approximating
the labels of Xl with the reconstructed ones (Hlfv).
The Lagrangian function can be written as

L =
1

2
f>v Afv+C1

l
∑

i=1

ξi−

l
∑

i=1

βi(yie
>
i fv−1+ξi)−

l
∑

i=1

γiξi.

By setting the derivative w.r.t. fv and ξi’s to zero,

Afv =

l
∑

i=1

βiyiei, (11)

C1 = βi + γi.

Plugging back into the Lagrangian, we have

max−
1

2

(

l
∑

i=1

βiyie
>
i

)

A−1

(

l
∑

i=1

βiyiei

)

+
l
∑

i=1

βi.

The above optimization problem can be written as

max −
1

2
β
>Qβ + 1>

l β

s.t. 0 ≤ βi ≤ C1, i = 1, 2, . . . , l,

where Q = HlA
−1H>

l �YlY
>
l , and � is the element-

wise product. This is a convex QP problem with a
similar form as the standard SVM with only l vari-
ables. In practice, we will first remove the negative
eigenvalues of A (10) and then compute matrix Q.
Since A can be deemed as an approximation to the
psd matrix, its negative eigenvalues are all of vanish-
ing magnitudes and can be removed safely. Then the
resultant matrix Q is guaranteed to be positive semi-
definite. After solving the QP, labels of the proto-
types vi’s can be recovered using the KKT condition
(11), as f∗v = A−1H>

l β � Yl. Note that the matrix
A (10) can be computed efficiently (similar to S). On
the other hand, modern SVM implementations typ-
ically have an empirical time complexity that scales
between O(l) and O(l2.3) for solving the QP (Platt,
1999). So the overall complexity is still bounded by
O((m + k)2 · n) since the labeled set is usually small.
After obtaining f∗

v
, the predicted labels of Xu are com-

puted by fu = Huf
∗
v
.

5. Experiments

This section compares the following algorithms: (1)
LGC: local and global consistency method (Zhou

et al., 2003); (2) Lap-RLS: Laplacian regularized least
squares (M. Belkin et al., 2006); (3) NYS-LGC: Di-
rect acceleration of LGC using Nyström low-rank ap-
proximation (use the Woodbury formula plus Nyström
method to accelerate the matrix inverse in LGC);
(4) NFI: nonparametric function induction (Delalleau
et al., 2005); (5) PVM(1): our method using the L2

loss; (6) PVM(2): our method using the hinge loss
(only for binary classification). All codes are in mat-
lab and run on a Intel(R) T2400 1.83GHz Laptop with
1GB memory.

We use 15 benchmark data sets on binary and multi-
class semi-supervised classification, including: data
sets from (Olivier Chapelle & Zien, 2006)2 and the
libsvm webset3 (training and testing sets are merged
for some libsvm data sets). The number of labels/per-
class is chosen as 50 for most tasks, except the
usps3589 data (20 labels) and the 2-moon data (1
labels). We used the Gaussian kernel K(xi,xj) =
exp

(

−‖xi − xj‖
2 · b

)

in our experiments. As discussed
in Section 3, this will lead to a unified prototype se-
lection scheme, i.e., we will perform the k-means and
use the cluster centers for both types of prototypes in
our algorithm. The prototype size m (or subset size in
methods 3,4) is chosen as follows: m = 20 for 2-moon;
m = 10%n if n ≤ 3000; m = 200 if n > 3000. Pa-
rameters of the different algorithms are chosen based
on cross-validation as follows. For the kernel parame-
ter b, we choose among b0 × {2−5 − 25} where b0 is
the reciprocal of the averaged distance between data
points; for regularization parameters, those in method
2 are chosen among {10−6−101}; while the other algo-
rithms will choose from {10−3 − 105}; and in PVM(1)
and PVM(2) we simply set the regularization parame-
ter C2 = 0 and only tune C1. For all the algorithms,
we randomly pick the labeled samples for 30 times and
report the averaged error and time consumption.

Results are given in Table 1 (LGC and LAP-RLS need
O(n2) space and cannot handle the largest 3 data sets).
Among the 15 data sets, PVM(1) and PVM(2) give
the most accurate solution among 6 data sets. For
other data sets their performances are close to the full
SSL algorithms (LGC, LAP-RLS), but the speed is 1
to 3 orders of magnitude faster. On the other hand,
PVM outperforms NYS-LGC that directly uses low-
rank approximation to numerically scale up the LGC.
The NFI method is very efficient but is less accurate
on some data sets. We speculate that it is due to the
ignorance of the graph-based regularization on a large
portion of the data (Delalleau et al., 2005).

2
http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

3
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
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Figure 2. Case study of PVM on the USPS digits 3,5,6,8,9.

We perform a case study of PVM(1) on a 5-class clas-
sification task of mnist digit 3,5,6,8,9, with n = 29270
and d = 784. First, we gradually increase the sam-
ple size, and for each subset size we perform PVM
30 times while fixing m = 200 and record the aver-
aged time consumption and error. As can be seen,
PVM scales exactly linearly with the sample size (Fig-
ure 2(a)), and the accuracy is stable as the sample size
increases (Figure 2(b)). This coincides with our intu-
ition that the prototype size needed depends largely
on the distribution of the data and the class bound-
aries, but not on the data size. From Figure 2(c), we
can see that the accuracy of PVM increases steadily
with more and more labeled points. Figure 2(d) ex-
amines the error of PVM over the prototype size m
(while fixing #labels). As can be seen, larger proto-
type size will lead to better performance. However,
the improvement diminishes when m is beyond a cer-
tain value. In this example, m = 200 already suffices
to give a good performance, which is less than 1% of
the whole data size.

6. Conclusion

In this paper, we proposed the prototype vector ma-
chine to scale up the graph-based semi-supervised
learning. By using the prototype vectors to approx-
imate the graph-based regularizer as well as the com-
plete prediction model, we can drastically reduce the
problem size and apply our algorithm to large-scale
real-world problems. The PVM demonstrates appeal-
ing scaling behavior (linear in sample size) and com-
petitive performance. In the future, we will explore
different ways to extend it. For example, we will con-
sider different label reconstruction schemes based on
local data geometry. We can also derive the proto-
type version for the Laplacian-regularized algorithms
in (M. Belkin et al., 2006). Finally, our current proto-
type selection treats the labeled and unlabeled data as
equally important. This can be extended to a weighted
version that assigns importance-based weighting based
on some prior knowledge.
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